1
|
Budkina A, Medvedeva YA, Stupnikov A. Assessing the Differential Methylation Analysis Quality for Microarray and NGS Platforms. Int J Mol Sci 2023; 24:ijms24108591. [PMID: 37239934 DOI: 10.3390/ijms24108591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Differential methylation (DM) is actively recruited in different types of fundamental and translational studies. Currently, microarray- and NGS-based approaches for methylation analysis are the most widely used with multiple statistical models designed to extract differential methylation signatures. The benchmarking of DM models is challenging due to the absence of gold standard data. In this study, we analyze an extensive number of publicly available NGS and microarray datasets with divergent and widely utilized statistical models and apply the recently suggested and validated rank-statistic-based approach Hobotnica to evaluate the quality of their results. Overall, microarray-based methods demonstrate more robust and convergent results, while NGS-based models are highly dissimilar. Tests on the simulated NGS data tend to overestimate the quality of the DM methods and therefore are recommended for use with caution. Evaluation of the top 10 DMC and top 100 DMC in addition to the not-subset signature also shows more stable results for microarray data. Summing up, given the observed heterogeneity in NGS methylation data, the evaluation of newly generated methylation signatures is a crucial step in DM analysis. The Hobotnica metric is coordinated with previously developed quality metrics and provides a robust, sensitive, and informative estimation of methods' performance and DM signatures' quality in the absence of gold standard data solving a long-existing problem in DM analysis.
Collapse
Affiliation(s)
- Anna Budkina
- Department of Biomedical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Yulia A Medvedeva
- Department of Biomedical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», 119071 Moscow, Russia
| | - Alexey Stupnikov
- Department of Biomedical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
2
|
Li M, Zhu C, Xue Y, Miao C, He R, Li W, Zhang B, Yu W, Huang X, Lv M, Xu Y, Huang Q. A DNA methylation signature for the prediction of tumour recurrence in stage II colorectal cancer. Br J Cancer 2023; 128:1681-1689. [PMID: 36828869 PMCID: PMC10133253 DOI: 10.1038/s41416-023-02155-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND A major challenge in stage II colorectal carcinoma is to identify patients with increased risk of recurrence. Biomarkers that distinguish patients with poor prognosis from patients without recurrence are currently lacking. This study aims to develop a robust DNA methylation classifier that allows the prediction of recurrence and chemotherapy benefit in patients with stage II colorectal cancer. We performed a genome-wide DNA methylation capture sequencing in 243 stage II colorectal carcinoma samples and identified a relapse-specific DNA methylation signature consisting of eight CpG sites. METHODS Two hundred and forty-three patients with stage II CRC were enrolled in this study. In order to select differential methylation sites among recurrence and non-recurrence stage II CRC samples, DNA methylation profiles of 62 tumour samples including 31 recurrence and 31 nonrecurrence samples were analysed using the Agilent SureSelectXT Human Methyl-Seq, a comprehensive target enrichment system to analyse CpG methylation. Pyrosequencing was applied to quantify the methylation level of candidate DNA methylation sites in 243 patients. Least absolute shrinkage and selection operator (LASSO) method was employed to build the disease recurrence prediction classifier. RESULTS We identified a relapse-related DNA methylation signature consisting of eight CpG sites in stage II CRC by DNA methylation capture sequencing. The classifier showed significantly higher prognostic accuracy than any clinicopathological risk factors. The Kaplan-Meier survival curve showed an association of high-risk score with poor prognosis. In multivariate analysis, the signature was the most significant prognosis factor, with an HR of 2.80 (95% CI, 1.71-4.58, P < 0.001). The signature could identify patients who are suitable candidates for adjuvant chemotherapy. CONCLUSIONS An eight-CpG DNA methylation signature is a reliable prognostic and predictive tool for disease recurrence in patients with stage II CRC.
Collapse
Affiliation(s)
- Min Li
- Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, P. R. China
- Institute of Clinical Sciences, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, P. R. China
| | - Congcong Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, 200032, Shanghai, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'An Road, 200032, Shanghai, P. R. China
| | - Ying Xue
- Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, P. R. China
- Institute of Clinical Sciences, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, P. R. China
| | - Changhong Miao
- Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, P. R. China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, P. R. China
| | - Ruiping He
- Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, P. R. China
- Institute of Clinical Sciences, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, P. R. China
| | - Wei Li
- Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Fudan University, 130 Dong'An Road, 200032, Shanghai, P. R. China
| | - Baolong Zhang
- Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Fudan University, 130 Dong'An Road, 200032, Shanghai, P. R. China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Fudan University, 130 Dong'An Road, 200032, Shanghai, P. R. China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, P. R. China
| | - Minzhi Lv
- Institute of Clinical Sciences, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, P. R. China.
- Department of Biostatistics, Clinical Research Unit, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, P. R. China.
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, 200032, Shanghai, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'An Road, 200032, Shanghai, P. R. China.
| | - Qihong Huang
- Cancer Center, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, P. R. China.
- Institute of Clinical Sciences, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, P. R. China.
- Shanghai Respiratory Research Institute, 180 Fenglin Road, 200032, Shanghai, P. R. China.
| |
Collapse
|
3
|
Verma S, Dhanda H, Singh A, Rishi B, Tanwar P, Chaudhry S, Siraj F, Misra A. Systematic review of epigenetic targets in acute myeloid leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:458-471. [PMID: 34824880 PMCID: PMC8610793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Acute myeloid leukemia (AML), although genetically and morphologically distinct from other B and T cell ALL subtypes, has one of the most rapidly progressing course and worse outcomes. The current diagnostic classification of AML offers best curative intent, the outcomes are not usually those that are expected at the start of therapy. This is partly attributed to the complex mechanism of leukemogenesis and resistance to chemotherapy. The underlying genetic mechanism of resistance is as complex as is the disease etiopathogenesis. Recent advances in therapy of drug resistant AML highlight the role of epigenetic targets. New FDA approved targeted therapy has also provided some evidence at improving outcomes in clinical trials. This review provides a detailed review of FDA approved targets and ongoing clinical trials for targeting CRISPER, CAR-T and other intestinal modalities for approach to epigenetictargets. However, this group of epigenetic targeted therapy needs more validation to prove its clinical efficacy. A systematic review of all published research on these targets, investigational agents and FDA approved targeted therapy summarizes this evidence. It also takes us through a brief review of mechanism of action and targets for therapy.
Collapse
Affiliation(s)
- Shweta Verma
- M.Sc Trainee, ICMR-National Institute of Pathology, Safdarjung Hospital CampusAnsari Nagar, New Delhi, India
| | - Himanshu Dhanda
- M.Sc Trainee, ICMR-National Institute of Pathology, Safdarjung Hospital CampusAnsari Nagar, New Delhi, India
| | - Amitabh Singh
- Department of Pediatrics, VMMC and Safdarjung HospitalAnsari Nagar, New Delhi, India
| | - Bhavika Rishi
- ICMR-National Institute of Pathology, Safdarjung Hospital CampusAnsari Nagar, New Delhi, India
| | - Pranay Tanwar
- Department of Laboratory Oncology, DR B R A IRCH, All India Institute of Medical SciencesNew Delhi, India
| | - Sumita Chaudhry
- Senior Medical Specialist, Department of Hematology, VMMC and Safdarjung HospitalAnsari Nagar, New Delhi, India
| | - Fouzia Siraj
- ICMR-National Institute of Pathology, Safdarjung Hospital CampusAnsari Nagar, New Delhi, India
| | - Aroonima Misra
- ICMR-National Institute of Pathology, Safdarjung Hospital CampusAnsari Nagar, New Delhi, India
| |
Collapse
|
4
|
Meta-analysis of gene signatures and key pathways indicates suppression of JNK pathway as a regulator of chemo-resistance in AML. Sci Rep 2021; 11:12485. [PMID: 34127725 PMCID: PMC8203646 DOI: 10.1038/s41598-021-91864-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/02/2021] [Indexed: 11/08/2022] Open
Abstract
The pathways and robust deregulated gene signatures involved in AML chemo-resistance are not fully understood. Multiple subgroups of AMLs which are under treatment of various regimens seem to have similar regulatory gene(s) or pathway(s) related to their chemo-resistance phenotype. In this study using gene set enrichment approach, deregulated genes and pathways associated with relapse after chemotherapy were investigated in AML samples. Five AML libraries compiled from GEO and ArrayExpress repositories were used to identify significantly differentially expressed genes between chemo-resistance and chemo-sensitive groups. Functional and pathway enrichment analysis of differentially expressed genes was performed to assess molecular mechanisms related to AML chemotherapeutic resistance. A total of 34 genes selected to be differentially expressed in the chemo-resistance compared to the chemo-sensitive group. Among the genes selected, c-Jun, AKT3, ARAP3, GABBR1, PELI2 and SORT1 are involved in neurotrophin, estrogen, cAMP and Toll-like receptor signaling pathways. All these pathways are located upstream and regulate JNK signaling pathway which functions as a key regulator of cellular apoptosis. Our expression data are in favor of suppression of JNK pathway, which could induce pro-apoptotic gene expression as well as down regulation of survival factors, introducing this pathway as a key regulator of drug-resistance development in AML.
Collapse
|
5
|
Krali O, Palle J, Bäcklin CL, Abrahamsson J, Norén-Nyström U, Hasle H, Jahnukainen K, Jónsson ÓG, Hovland R, Lausen B, Larsson R, Palmqvist L, Staffas A, Zeller B, Nordlund J. DNA Methylation Signatures Predict Cytogenetic Subtype and Outcome in Pediatric Acute Myeloid Leukemia (AML). Genes (Basel) 2021; 12:895. [PMID: 34200630 PMCID: PMC8229099 DOI: 10.3390/genes12060895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease composed of clinically relevant subtypes defined by recurrent cytogenetic aberrations. The majority of the aberrations used in risk grouping for treatment decisions are extensively studied, but still a large proportion of pediatric AML patients remain cytogenetically undefined and would therefore benefit from additional molecular investigation. As aberrant epigenetic regulation has been widely observed during leukemogenesis, we hypothesized that DNA methylation signatures could be used to predict molecular subtypes and identify signatures with prognostic impact in AML. To study genome-wide DNA methylation, we analyzed 123 diagnostic and 19 relapse AML samples on Illumina 450k DNA methylation arrays. We designed and validated DNA methylation-based classifiers for AML cytogenetic subtype, resulting in an overall test accuracy of 91%. Furthermore, we identified methylation signatures associated with outcome in t(8;21)/RUNX1-RUNX1T1, normal karyotype, and MLL/KMT2A-rearranged subgroups (p < 0.01). Overall, these results further underscore the clinical value of DNA methylation analysis in AML.
Collapse
Affiliation(s)
- Olga Krali
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden;
| | - Josefine Palle
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden;
- Department of Women’s and Children’s Health, Uppsala University, 752 37 Uppsala, Sweden
| | - Christofer L. Bäcklin
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, 751 85 Uppsala, Sweden; (C.L.B.); (R.L.)
| | - Jonas Abrahamsson
- Department of Pediatrics, Queen Silvia Children’s Hospital, 416 85 Gothenburg, Sweden;
| | - Ulrika Norén-Nyström
- Department of Clinical Sciences, Pediatrics, Umeå University Hospital, 901 85 Umeå, Sweden;
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, DK-8200 Aarhus, Denmark;
| | - Kirsi Jahnukainen
- Children’s Hospital, Helsinki University Central Hospital, Helsinki, and University of Helsinki, 00290 Helsinki, Finland;
| | - Ólafur Gísli Jónsson
- Department of Pediatrics, Landspitali University Hospital, 101 Reykjavík, Iceland;
| | - Randi Hovland
- Center of Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5009 Bergen, Norway;
| | - Birgitte Lausen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Rolf Larsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, 751 85 Uppsala, Sweden; (C.L.B.); (R.L.)
| | - Lars Palmqvist
- Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (L.P.); (A.S.)
| | - Anna Staffas
- Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (L.P.); (A.S.)
| | - Bernward Zeller
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0450 Oslo, Norway;
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden;
| |
Collapse
|
6
|
Xia YK, Zeng YR, Zhang ML, Liu P, Liu F, Zhang H, He CX, Sun YP, Zhang JY, Zhang C, Song L, Ding C, Tang YJ, Yang Z, Yang C, Wang P, Guan KL, Xiong Y, Ye D. Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. Protein Cell 2020; 12:557-577. [PMID: 32683582 PMCID: PMC8225741 DOI: 10.1007/s13238-020-00754-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
Additional sex combs-like 1 (ASXL1) interacts with BRCA1-associated protein 1 (BAP1) deubiquitinase to oppose the polycomb repressive complex 1 (PRC1)-mediated histone H2A ubiquitylation. Germline BAP1 mutations are found in a spectrum of human malignancies, while ASXL1 mutations recurrently occur in myeloid neoplasm and are associated with poor prognosis. Nearly all ASXL1 mutations are heterozygous frameshift or nonsense mutations in the middle or to a less extent the C-terminal region, resulting in the production of C-terminally truncated mutant ASXL1 proteins. How ASXL1 regulates specific target genes and how the C-terminal truncation of ASXL1 promotes leukemogenesis are unclear. Here, we report that ASXL1 interacts with forkhead transcription factors FOXK1 and FOXK2 to regulate a subset of FOXK1/K2 target genes. We show that the C-terminally truncated mutant ASXL1 proteins are expressed at much higher levels than the wild-type protein in ASXL1 heterozygous leukemia cells, and lose the ability to interact with FOXK1/K2. Specific deletion of the mutant allele eliminates the expression of C-terminally truncated ASXL1 and increases the association of wild-type ASXL1 with BAP1, thereby restoring the expression of BAP1-ASXL1-FOXK1/K2 target genes, particularly those involved in glucose metabolism, oxygen sensing, and JAK-STAT3 signaling pathways. In addition to FOXK1/K2, we also identify other DNA-binding transcription regulators including transcription factors (TFs) which interact with wild-type ASXL1, but not C-terminally truncated mutant. Our results suggest that ASXL1 mutations result in neomorphic alleles that contribute to leukemogenesis at least in part through dominantly inhibiting the wild-type ASXL1 from interacting with BAP1 and thereby impairing the function of ASXL1-BAP1-TF in regulating target genes and leukemia cell growth.
Collapse
Affiliation(s)
- Yu-Kun Xia
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Yi-Rong Zeng
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Meng-Li Zhang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Peng Liu
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Fang Liu
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hao Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai, 200032, China.,Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chen-Xi He
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China
| | - Yi-Ping Sun
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Jin-Ye Zhang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Cheng Zhang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China.,National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yu-Jie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhen Yang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China
| | - Chen Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai, 200032, China.,Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pu Wang
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China.,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Dan Ye
- Huashan Hospital, Fudan University, and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, and the Shanghai Key Laboratory of Medical Epigenetics, and the Key Laboratory of Metabolism and Molecular, Ministry of Education, Shanghai, 200032, China. .,The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai, 200032, China. .,Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Ren J, Cui JP, Luo M, Liu H, Hao P, Wang X, Zhang GH. The prevalence and persistence of aberrant promoter DNA methylation in benzene-exposed Chinese workers. PLoS One 2019; 14:e0220500. [PMID: 31381583 PMCID: PMC6681966 DOI: 10.1371/journal.pone.0220500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant DNA methylation patterns are common in cancers and environmental pollutant exposed subjects. Up to date, few studies have examined the aberrant DNA methylation patterns in benzene exposed workers. We recruited 141 benzene-exposed workers, including 83 benzene-exposed workers from a shoe factory in Wenzhou and 58 workers from a painting workshop in Wuhu, 35 workers in Wuhu were followed from 2009 to 2013, and 48 indoor workers as controls from Wenzhou. We used high-resolution melting (HRM) to quantitate human samples of DNA methylation in long interspersed nuclear element-1 (LINE-1), (6)-methylguanine-DNA methyltransferase (MGMT), and DNA mismatch repair gene human mutator L homologue 1 (hMLH1). AML-5 cells were treated with benzoquinone (BQ) and hydroquinone (HQ), and the promoter methylation of MGMT and hMLH1 was detected using the bisulfite sequencing PCR method. The degree of LINE-1 methylation in benzene-exposed workers was significantly lower than that of the controls (p<0.001), and the degree of MGMT (p<0.001) and hMLH1 (p = 0.01) methylation was significantly higher than that of the controls. The in vitro study validated the aberrant hypermethylation of hMLH1 after treatment with BQ. Among the cohort workers who were followed from 2009 to 2013, the LINE1 methylation elevated in 2013 than 2009 (p = 0.004), and premotor methylation in hMLH1 reduced in 2013 than 2009 (p = 0.045) with the reduction of the benzene exposure. This study provides evidence that benzene exposure can induce LINE-1 hypomethylation and DNA repair gene hypermethylation.
Collapse
Affiliation(s)
- Jingchao Ren
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Jun-peng Cui
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Mengkai Luo
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Huan Liu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Pengfei Hao
- Xinxiang Center for Disease Control and Prevention, Xinxiang, China
| | - Xiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
- * E-mail: (GZ); (XW)
| | - Guang-hui Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
- * E-mail: (GZ); (XW)
| |
Collapse
|