1
|
James CD, Lewis RL, Fakunmoju AL, Witt AJ, Youssef AH, Wang X, Rais NM, Prabhakar AT, Machado JM, Otoa R, Bristol ML. Fibroblast stromal support model for predicting human papillomavirus-associated cancer drug responses. J Virol 2024; 98:e0102424. [PMID: 39269177 PMCID: PMC11494926 DOI: 10.1128/jvi.01024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Currently, there are no specific antiviral therapeutic approaches targeting Human papillomaviruses (HPVs), which cause around 5% of all human cancers. Specific antiviral reagents are particularly needed for HPV-related oropharyngeal cancers (HPV+OPCs) whose incidence is increasing and for which there are no early diagnostic tools available. We and others have demonstrated that the estrogen receptor alpha (ERα) is overexpressed in HPV+OPCs, compared to HPV-negative cancers in this region, and that these elevated levels are associated with an improved disease outcome. Utilizing this HPV+-specific overexpression profile, we previously demonstrated that estrogen attenuates the growth and cell viability of HPV+ keratinocytes and HPV+ cancer cells in vitro. Expansion of this work in vivo failed to replicate this sensitization. The role of stromal support from the tumor microenvironment (TME) has previously been tied to both the HPV lifecycle and in vivo therapeutic responses. Our investigations revealed that in vitro co-culture with fibroblasts attenuated HPV+-specific estrogen growth responses. Continuing to monopolize on the HPV+-specific overexpression of ERα, our co-culture models then assessed the suitability of the selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen, and showed growth attenuation in a variety of our models to one or both of these drugs in vitro. Utilization of these SERMs in vivo closely resembled the sensitization predicted by our co-culture models. Therefore, the in vitro fibroblast co-culture model better predicts in vivo responses. We propose that utilization of our co-culture in vitro model can accelerate cancer therapeutic drug discovery. IMPORTANCE Human papillomavirus-related cancers (HPV+ cancers) remain a significant public health concern, and specific clinical approaches are desperately needed. In translating drug response data from in vitro to in vivo, the fibroblasts of the adjacent stromal support network play a key role. Our study presents the utilization of a fibroblast 2D co-culture system to better predict translational drug assessments for HPV+ cancers. We also suggest that this co-culture system should be considered for other translational approaches. Predicting even a portion of treatment paradigms that may fail in vivo with a co-culture model will yield significant time, effort, resource, and cost efficiencies.
Collapse
Affiliation(s)
- Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Rachel L. Lewis
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Alexis L. Fakunmoju
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Austin J. Witt
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Aya H. Youssef
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Xu Wang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Nabiha M. Rais
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Apurva T. Prabhakar
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - J. Mathew Machado
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Raymonde Otoa
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Molly L. Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
2
|
Kofler B, Widschwendter A, Hofauer B, Gatt C, Fabel S, Leichtle A, Ciresa-König A, Dudas J, Borena W. Is an oropharyngeal HPV infection more frequently detectable in women with a genital HPV infection? Eur Arch Otorhinolaryngol 2024; 281:1041-1046. [PMID: 37947818 DOI: 10.1007/s00405-023-08314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE If not eliminated by the immune system and persisting over years, oropharyngeal high-risk HPV infection can lead to cancer development in the oropharynx. HPV infection is very commonly found in the genital region and can serve as an HPV reservoir. In this study, we investigate whether women with a genital HPV infection are at a higher risk of harboring an undetected oropharyngeal HPV infection via genital-oropharyngeal transmission. METHODS Women presenting for routine gynecological checkups were included in this study. All participants received an HPV brush test from the genital region as well as from the oropharynx. Additionally, probable risk factors for an HPV infection were assessed in a structured questionnaire. RESULTS 142 women were included in this study. The rate of oropharyngeal HPV infection was low with 2/142 (1,4%) women positive for a low-risk HPV genotype. In the genital brush test, 54/142 (38%) women were tested HPV positive of which 41/142 (29%) were positive for a high-risk HPV genotype. CONCLUSIONS The rate of an oropharyngeal HPV detection in our population was low with 2/142 women harboring a low-risk HPV infection.
Collapse
Affiliation(s)
- Barbara Kofler
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Andreas Widschwendter
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Benedikt Hofauer
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Carina Gatt
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sophie Fabel
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Anke Leichtle
- Department of Otorhinolaryngology, Medical University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Alexandra Ciresa-König
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Wegene Borena
- Institute of Virology, Department of Hygiene, Microbiology, Social Medicine, Medical University of Innsbruck, Peter-Mayr-Strasse 4B, 6020, Innsbruck, Austria
| |
Collapse
|
3
|
Holubekova V, Kolkova Z, Kasubova I, Samec M, Mazurakova A, Koklesova L, Kubatka P, Rokos T, Kozubik E, Biringer K, Kudela E. Interaction of cervical microbiome with epigenome of epithelial cells: Significance of inflammation to primary healthcare. Biomol Concepts 2022; 13:61-80. [PMID: 35245973 DOI: 10.1515/bmc-2022-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
One pillar of the predictive, preventive, and personalized medicine framework strategies is the female health. The evaluation of women's lifestyle and dietary habits in context with genetic and modifiable risk factors may reflect the prevention of cervical cancer before the occurrence of clinical symptoms and prediction of cervical lesion behavior. The main aim of this review is to analyze publications in the field of precision medicine that allow the use of research knowledge of cervical microbiome, epigenetic modifications, and inflammation in potential application in clinical practice. Personalized approach in evaluating patient's risk of future development of cervical abnormality should consider the biomarkers of the local microenvironment characterized by the microbial composition, epigenetic pattern of cervical epithelium, and presence of chronic inflammation. Novel sequencing techniques enable a more detailed characterization of actual state in cervical epithelium. Better understanding of all changes in multiomics level enables a better assessment of disease prognosis and selects the eligible targeted therapy in personalized medicine. Restoring of healthy vaginal microflora and reversing the outbreak of cervical abnormality can be also achieved by dietary habits as well as uptake of prebiotics, probiotics, synbiotics, microbial transplantation, and others.
Collapse
Affiliation(s)
- Veronika Holubekova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Zuzana Kolkova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Ivana Kasubova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Marek Samec
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Alena Mazurakova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, SK-03601, Slovakia
| | - Tomas Rokos
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Erik Kozubik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin University Hospital, Martin, SK-03601, Slovakia
| |
Collapse
|
4
|
Ye G, Kaya M. Automated Cell Foreground–Background Segmentation with Phase-Contrast Microscopy Images: An Alternative to Machine Learning Segmentation Methods with Small-Scale Data. Bioengineering (Basel) 2022; 9:bioengineering9020081. [PMID: 35200434 PMCID: PMC8869246 DOI: 10.3390/bioengineering9020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Cell segmentation is a critical step for image-based experimental analysis. Existing cell segmentation methods are neither entirely automated nor perform well under basic laboratory microscopy. This study proposes an efficient and automated cell segmentation method involving morphological operations to automatically achieve cell segmentation for phase-contrast microscopes. Manual/visual counting of cell segmentation serves as the control group (156 images as ground truth) to evaluate the proposed method’s performance. The proposed technology’s adaptive performance is assessed at varying conditions, including artificial blurriness, illumination, and image size. Compared to the Trainable Weka Segmentation method, the Empirical Gradient Threshold method, and the ilastik segmentation software, the proposed method achieved better segmentation accuracy (dice coefficient: 90.07, IoU: 82.16%, and 6.51% as the average relative error on measuring cell area). The proposed method also has good reliability, even under unfavored imaging conditions at which manual labeling or human intervention is inefficient. Additionally, similar degrees of segmentation accuracy were confirmed when the ground truth data and the generated data from the proposed method were applied individually to train modified U-Net models (16848 images). These results demonstrated good accuracy and high practicality of the proposed cell segmentation method with phase-contrast microscopy image data.
Collapse
|
5
|
Stejskalová A, Vankelecom H, Sourouni M, Ho MY, Götte M, Almquist BD. In vitro modelling of the physiological and diseased female reproductive system. Acta Biomater 2021; 132:288-312. [PMID: 33915315 DOI: 10.1016/j.actbio.2021.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
The maladies affecting the female reproductive tract (FRT) range from infections to endometriosis to carcinomas. In vitro models of the FRT play an increasingly important role in both basic and translational research, since the anatomy and physiology of the FRT of humans and other primates differ significantly from most of the commonly used animal models, including rodents. Using organoid culture to study the FRT has overcome the longstanding hurdle of maintaining epithelial phenotype in culture. Both ECM-derived and engineered materials have proved critical for maintaining a physiological phenotype of FRT cells in vitro by providing the requisite 3D environment, ligands, and architecture. Advanced materials have also enabled the systematic study of factors contributing to the invasive metastatic processes. Meanwhile, microphysiological devices make it possible to incorporate physical signals such as flow and cyclic exposure to hormones. Going forward, advanced materials compatible with hormones and optimised to support FRT-derived cells' long-term growth, will play a key role in addressing the diverse array of FRT pathologies and lead to impactful new treatments that support the improvement of women's health. STATEMENT OF SIGNIFICANCE: The female reproductive system is a crucial component of the female anatomy. In addition to enabling reproduction, it has wide ranging influence on tissues throughout the body via endocrine signalling. This intrinsic role in regulating normal female biology makes it susceptible to a variety of female-specific diseases. However, the complexity and human-specific features of the reproductive system make it challenging to study. This has spurred the development of human-relevant in vitro models for helping to decipher the complex issues that can affect the reproductive system, including endometriosis, infection, and cancer. In this Review, we cover the current state of in vitro models for studying the female reproductive system, and the key role biomaterials play in enabling their development.
Collapse
|
6
|
Alzamil L, Nikolakopoulou K, Turco MY. Organoid systems to study the human female reproductive tract and pregnancy. Cell Death Differ 2020; 28:35-51. [PMID: 32494027 PMCID: PMC7852529 DOI: 10.1038/s41418-020-0565-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Both the proper functioning of the female reproductive tract (FRT) and normal placental development are essential for women’s health, wellbeing, and pregnancy outcome. The study of the FRT in humans has been challenging due to limitations in the in vitro and in vivo tools available. Recent developments in 3D organoid technology that model the different regions of the FRT include organoids of the ovaries, fallopian tubes, endometrium and cervix, as well as placental trophoblast. These models are opening up new avenues to investigate the normal biology and pathology of the FRT. In this review, we discuss the advances, potential, and limitations of organoid cultures of the human FRT. ■. ![]()
Collapse
Affiliation(s)
- Lama Alzamil
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | - Margherita Y Turco
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Centre for Trophoblast Research, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
7
|
Jackson R, Eade S, Zehbe I. An epithelial organoid model with Langerhans cells for assessing virus-host interactions. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180288. [PMID: 30955491 PMCID: PMC6501905 DOI: 10.1098/rstb.2018.0288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Persistent infection with oncogenic human papillomavirus (HPV) may lead to cancer in mucosal and skin tissue. Consequently, HPV must have developed strategies to escape host immune surveillance. Nevertheless, most HPV infections are cleared by the infected host. Our laboratory investigates Langerhans cells (LCs), acting at the interface between innate and adaptive immunity. We hypothesize that this first line of defence is vital for potential HPV elimination. As an alternative to animal models, we use smaller-scale epithelial organoids grown from human primary keratinocytes derived from various anatomical sites. This approach is amenable to large sample sizes-an essential aspect for scientific rigour and statistical power. To evaluate LCs phenotypically and molecularly during the viral life cycle and onset of carcinogenesis, we have included an engineered myeloid cell line with the ability to acquire an LC phenotype. This model is accurately tailored for the crucial time-window of early virus elimination in a complex organism and will shed more light on our long-standing research question of how naturally occurring HPV variants influence disease development. It may also be applied to other microorganism-host interaction research or enquiries of epithelium immunobiology. Finally, our continuously updated pathogen-host analysis tool enables state-of-the-art bioinformatics analyses of next-generation sequencing data. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Robert Jackson
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario, CanadaP7B 6V4
- Biotechnology Program, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, CanadaP7B 5E1
| | - Statton Eade
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario, CanadaP7B 6V4
| | - Ingeborg Zehbe
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario, CanadaP7B 6V4
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, CanadaP7B 5E1
| |
Collapse
|
8
|
Eisenberg CA, Eisenberg LM. A Consideration of the Non-Pregnant Human Uterus as a Stem Cell Source for Medical Therapy. Curr Stem Cell Res Ther 2019; 14:77-78. [DOI: 10.2174/1574888x1401181217130033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Carol A. Eisenberg
- New York Medical College / Westchester Medical Center Stem Cell Laboratory, Departments of Physiology and Medicine, New York Medical College, Valhalla, NY 10595, United States
| | - Leonard M. Eisenberg
- New York Medical College / Westchester Medical Center Stem Cell Laboratory, Departments of Physiology and Medicine, New York Medical College, Valhalla, NY 10595, United States
| |
Collapse
|
9
|
Deng H, Mondal S, Sur S, Woodworth CD. Establishment and optimization of epithelial cell cultures from human ectocervix, transformation zone, and endocervix optimization of epithelial cell cultures. J Cell Physiol 2019; 234:7683-7694. [PMID: 30609028 DOI: 10.1002/jcp.28049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022]
Abstract
Cervical cancer is a major public health problem and research using cell culture models has improved understanding of this disease. The human cervix contains three anatomic regions; ectocervix with stratified squamous epithelium, endocervix with secretory epithelium, and transformation zone (TZ) with metaplastic cells. Most cervical cancers originate within the TZ. However, little is known about the biology of TZ cells or why they are highly susceptible to carcinogenesis. The goal of this study was to develop and optimize methods to compare growth and differentiation of cells cultured from ectocervix, TZ or endocervix. We examined the effects of different serum-free media on cell attachment, cell growth and differentiation, and cell population doublings in monolayer culture. We also optimized conditions for organotypic culture of cervical epithelial cells using collagen rafts with human cervical stromal cells. Finally, we present a step-by-step protocol for culturing cells from each region of human cervix.
Collapse
Affiliation(s)
- Han Deng
- Department of Biology, Clarkson University, Potsdam, New York
| | - Sumona Mondal
- Department of Mathematics, Clarkson University, Potsdam, New York
| | - Shantanu Sur
- Department of Biology, Clarkson University, Potsdam, New York
| | | |
Collapse
|
10
|
Deng H, Hillpot E, Mondal S, Khurana KK, Woodworth CD. HPV16-Immortalized Cells from Human Transformation Zone and Endocervix are More Dysplastic than Ectocervical Cells in Organotypic Culture. Sci Rep 2018; 8:15402. [PMID: 30337615 PMCID: PMC6194146 DOI: 10.1038/s41598-018-33865-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022] Open
Abstract
A major risk factor for cervical cancer is persistent infection with high-risk human papillomaviruses (HPV) which can cause cervical intraepithelial neoplasia. Greater than 90% of cervical cancers develop in the transformation zone (TZ), a small region of metaplastic squamous epithelium at the squamocolumnar junction between endocervix and ectocervix. However, it is unclear why this region is highly susceptible to malignant progression. We hypothesized that cells from TZ were more susceptible to dysplastic differentiation, a precursor to cervical cancer. We used three-dimensional organotypic culture to compare differentiation of HPV16-immortalized epithelial cell lines derived from ectocervix, TZ, and endocervix. We show that immortal cells from TZ or endocervix form epithelia that are more dysplastic than immortal cells from ectocervix. A higher percentage of immortal cells from TZ and endocervix express the proliferation marker Ki-67 and are positive for phospho-Akt. Immortal cells from TZ and endocervix invade collagen rafts and express increased levels of matrix metalloproteinase-1. Inhibition of MMP-1 or Akt activity blocks invasion. We conclude that HPV16-immortalized cells cultured from TZ or endocervix are more susceptible to dysplastic differentiation, and this might enhance their susceptibility to cervical cancer.
Collapse
Affiliation(s)
- Han Deng
- Department of Biology, Clarkson University, Potsdam, NY, United States of America
| | - Eric Hillpot
- Department of Biology, Clarkson University, Potsdam, NY, United States of America
| | - Sumona Mondal
- Department of Mathematics, Clarkson University, Potsdam, NY, United States of America
| | - Kamal K Khurana
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Craig D Woodworth
- Department of Biology, Clarkson University, Potsdam, NY, United States of America.
| |
Collapse
|