1
|
Boll EJ, Lopez DV, Terne M, Hessing S, Parschat K, Jensen SR. Human milk oligosaccharides differentially support gut barrier integrity and enhance Th1 and Th17 cell effector responses in vitro. Front Immunol 2024; 15:1359499. [PMID: 38510254 PMCID: PMC10950922 DOI: 10.3389/fimmu.2024.1359499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Human milk oligosaccharides (HMOs) can modulate the intestinal barrier and regulate immune cells to favor the maturation of the infant intestinal tract and immune system, but the precise functions of individual HMOs are unclear. To determine the structure-dependent effects of individual HMOs (representing different structural classes) on the intestinal epithelium as well as innate and adaptive immune cells, we assessed fucosylated (2'FL and 3FL), sialylated (3'SL and 6'SL) and neutral non-fucosylated (LNT and LNT2) HMOs for their ability to support intestinal barrier integrity, to stimulate the secretion of chemokines from intestinal epithelial cells, and to modulate cytokine release from LPS-activated dendritic cells (DCs), M1 macrophages (MØs), and co-cultures with naïve CD4+ T cells. The fucosylated and neutral non-fucosylated HMOs increased barrier integrity and protected the barrier following an inflammatory insult but exerted minimal immunomodulatory activity. The sialylated HMOs enhanced the secretion of CXCL10, CCL20 and CXCL8 from intestinal epithelial cells, promoted the secretion of several cytokines (including IL-10, IL-12p70 and IL-23) from LPS-activated DCs and M1 MØs, and increased the secretion of IFN-γ and IL-17A from CD4+ T cells primed by LPS-activated DCs and MØs while reducing the secretion of IL-13. Thus, 3'SL and 6'SL supported Th1 and Th17 responses while reducing Th2 responses. Collectively, our data show that HMOs exert structure-dependent effects on the intestinal epithelium and possess immunomodulatory properties that confer benefits to infants and possibly also later in life.
Collapse
Affiliation(s)
| | | | - Mandy Terne
- Chr. Hansen A/S, Applied HMOs, Hoersholm, Denmark
| | - Sara Hessing
- Chr. Hansen A/S, Applied HMOs, Hoersholm, Denmark
| | | | | |
Collapse
|
2
|
Zuurveld M, Ayechu-Muruzabal V, Folkerts G, Garssen J, van‘t Land B, Willemsen LEM. Specific Human Milk Oligosaccharides Differentially Promote Th1 and Regulatory Responses in a CpG-Activated Epithelial/Immune Cell Coculture. Biomolecules 2023; 13:biom13020263. [PMID: 36830632 PMCID: PMC9953370 DOI: 10.3390/biom13020263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Proper early life immune development creates a basis for a healthy and resilient immune system, which balances immune tolerance and activation. Deviations in neonatal immune maturation can have life-long effects, such as development of allergic diseases. Evidence suggests that human milk oligosaccharides (HMOS) possess immunomodulatory properties essential for neonatal immune maturation. To understand the immunomodulatory properties of enzymatic or bacterial produced HMOS, the effects of five HMOS (2'FL, 3FL, 3'SL, 6'SL and LNnT), present in human milk have been studied. A PBMC immune model, the IEC barrier model and IEC/PBMC transwell coculture models were used, representing critical steps in mucosal immune development. HMOS were applied to IEC cocultured with activated PBMC. In the presence of CpG, 2'FL and 3FL enhanced IFNγ (p < 0.01), IL10 (p < 0.0001) and galectin-9 (p < 0.001) secretion when added to IEC; 2'FL and 3FL decreased Th2 cell development while 3FL enhanced Treg polarization (p < 0.05). IEC were required for this 3FL mediated Treg polarization, which was not explained by epithelial-derived galectin-9, TGFβ nor retinoic acid secretion. The most pronounced immunomodulatory effects, linking to enhanced type 1 and regulatory mediator secretion, were observed for 2'FL and 3FL. Future studies are needed to further understand the complex interplay between HMO and early life mucosal immune development.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (M.Z.); (L.E.M.W.)
| | - Veronica Ayechu-Muruzabal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
| | - Belinda van‘t Land
- Danone Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (M.Z.); (L.E.M.W.)
| |
Collapse
|
3
|
Mukherjee R, Somovilla VJ, Chiodo F, Bruijns S, Pieters RJ, Garssen J, van Kooyk Y, Kraneveld AD, van Bergenhenegouwen J. Human Milk Oligosaccharide 2'-Fucosyllactose Inhibits Ligand Binding to C-Type Lectin DC-SIGN but Not to Langerin. Int J Mol Sci 2022; 23:ijms232314745. [PMID: 36499067 PMCID: PMC9737664 DOI: 10.3390/ijms232314745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Human milk oligosaccharides (HMOs) and their most abundant component, 2'-Fucosyllactose (2'-FL), are known to be immunomodulatory. Previously, it was shown that HMOs and 2'-FL bind to the C-type lectin receptor DC-SIGN. Here we show, using a ligand-receptor competition assay, that a whole mixture of HMOs from pooled human milk (HMOS) and 2'-FL inhibit the binding of the carbohydrate-binding receptor DC-SIGN to its prototypical ligands, fucose and the oligosaccharide Lewis-B, (Leb) in a dose-dependent way. Interestingly, such inhibition by HMOS and 2'-FL was not detected for another C-type lectin, langerin, which is evolutionarily similar to DC-SIGN. The cell-ligand competition assay using DC-SIGN expressing cells confirmed that 2'-FL inhibits the binding of DC-SIGN to Leb. Molecular dynamic (MD) simulations show that 2'-FL exists in a preorganized bioactive conformation before binding to DC-SIGN and this conformation is retained after binding to DC-SIGN. Leb has more flexible conformations and utilizes two binding modes, which operate one at a time via its two fucoses to bind to DC-SIGN. Our hypothesis is that 2'-FL may have a reduced entropic penalty due to its preorganized state, compared to Leb, and it has a lower binding enthalpy, suggesting a better binding to DC-SIGN. Thus, due to the better binding to DC-SIGN, 2'-FL may replace Leb from its binding pocket in DC-SIGN. The MD simulations also showed that 2'-FL does not bind to langerin. Our studies confirm 2'-FL as a specific ligand for DC-SIGN and suggest that 2'-FL can replace other DC-SIGN ligands from its binding pocket during the ligand-receptor interactions in possible immunomodulatory processes.
Collapse
Affiliation(s)
- Reshmi Mukherjee
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
- Division of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
- Correspondence: (R.M.); (A.D.K.); Tel.: +31-686-088-526 (R.M.); +31-30-2534-509 (A.D.K.)
| | - Victor J. Somovilla
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Infection and Immunity Research Institute, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Sven Bruijns
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Infection and Immunity Research Institute, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Roland J. Pieters
- Division of Chemical Biology and Drug Discovery, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Infection and Immunity Research Institute, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
- Correspondence: (R.M.); (A.D.K.); Tel.: +31-686-088-526 (R.M.); +31-30-2534-509 (A.D.K.)
| | - Jeroen van Bergenhenegouwen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
4
|
Zuurveld M, Kiliaan PC, van Grinsven SE, Folkerts G, Garssen J, van't Land B, Willemsen LE. Ovalbumin-Induced Epithelial Activation Directs Monocyte-Derived Dendritic Cells to Instruct Type 2 Inflammation in T Cells Which Is Differentially Modulated by 2'-Fucosyllactose and 3-Fucosyllactose. J Innate Immun 2022; 15:222-239. [PMID: 36215948 PMCID: PMC10643896 DOI: 10.1159/000526528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Allergic sensitization starts with epithelial cell activation driving dendritic cells (DCs) to instruct T helper 2 (Th2) cell polarization. Food allergens trigger intestinal epithelial cell (IEC) activation. Human milk oligosaccharides may temper the allergic phenotype by shaping mucosal immune responses.We investigated in vitro mucosal immune development after allergen exposure by combining ovalbumin (OVA)-preexposed IEC with monocyte-derived DCs (OVA-IEC-DCs) and subsequent coculture of OVA-IEC-DCs with Th cells. IECs were additionally preincubated with 2'FL or 3FL.OVA activation increased IEC cytokine secretion. OVA-IEC-DCs instructed both IL13 (p < 0.05) and IFNγ (p < 0.05) secretion from Th cells. 2'FL and 3FL permitted OVA-induced epithelial activation, but 2'FL-OVA-IEC-DCs boosted inflammatory and regulatory T-cell development. 3FL-OVA-IEC lowered IL12p70 and IL23 in DCs and suppressed IL13 (p < 0.005) in T cells, while enhancing IL17 (p < 0.001) and IL10 (p < 0.005).These results show that OVA drives Th2- and Th1-type immune responses via activation of IECs in this model. 2'FL and 3FL differentially affect OVA-IEC-driven immune effects. 2'FL boosted overall T-cell OVA-IEC immunity via DC enhancing inflammatory and regulatory responses. 3FL-OVA-IEC-DCs silenced IL13, shifting the balance towards IL17 and IL10.This model demonstrates the contribution of IEC to OVA Th2-type immunity. 2'FL and 3FL modulate the OVA-induced activation in this novel model to study allergic sensitization.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Pien C.J. Kiliaan
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sophie E.L. van Grinsven
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Danone Nutricia Research, Utrecht, The Netherlands
| | - Belinda van't Land
- Danone Nutricia Research, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linette E.M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Wang J, Chen MS, Wang RS, Hu JQ, Liu S, Wang YYF, Xing XL, Zhang BW, Liu JM, Wang S. Current Advances in Structure-Function Relationships and Dose-Dependent Effects of Human Milk Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6328-6353. [PMID: 35593935 DOI: 10.1021/acs.jafc.2c01365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
HMOs (human milk oligosaccharides) are the third most important nutrient in breast milk. As complex glycans, HMOs play an important role in regulating neonatal intestinal immunity, resisting viral and bacterial infections, displaying anti-inflammatory characteristics, and promoting brain development. Although there have been some previous reports of HMOs, a detailed literature review summarizing the structure-activity relationships and dose-dependent effects of HMOs is lacking. Hence, after introducing the structures and synthetic pathways of HMOs, this review summarizes and categorizes identified structure-function relationships of HMOs. Differential mechanisms of different structural HMOs utilization by microorganisms are summarized. This review also emphasizes the recent advances in the interactions between different health benefits and the variance of dosage effect based on in vitro cell tests, animal experiments, and human intervention studies. The potential relationships between the chemical structure, the dosage selection, and the physiological properties of HMOs as functional foods are vital for further understanding of HMOs and their future applications.
Collapse
Affiliation(s)
- Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Meng-Shan Chen
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Rui-Shan Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Jia-Qiang Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Shuang Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Yuan-Yi-Fei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Xiao-Long Xing
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Bo-Wei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
6
|
Rousseaux A, Brosseau C, Le Gall S, Piloquet H, Barbarot S, Bodinier M. Human Milk Oligosaccharides: Their Effects on the Host and Their Potential as Therapeutic Agents. Front Immunol 2021; 12:680911. [PMID: 34108974 PMCID: PMC8180913 DOI: 10.3389/fimmu.2021.680911] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Breastmilk is known to be very important for infants because it provides nutrients and immunological compounds. Among these compounds, human milk oligosaccharides (HMOs) represent the third most important component of breastmilk after lipids and lactose. Several experiments demonstrated the beneficial effects of these components on the microbiota, the immune system and epithelial barriers, which are three major biological systems. Indeed, HMOs induce bacterial colonization in the intestinal tract, which is beneficial for health. The gut bacteria can act directly and indirectly on the immune system by stimulating innate immunity and controlling inflammatory reactions and by inducing an adaptive immune response and a tolerogenic environment. In parallel, HMOs directly strengthen the intestinal epithelial barrier, protecting the host against pathogens. Here, we review the molecular mechanisms of HMOs in these different compartments and highlight their potential use as new therapeutic agents, especially in allergy prevention.
Collapse
Affiliation(s)
- Anaïs Rousseaux
- INRAE, Biopolyméres Interactions Assemblages, Nantes, France
| | - Carole Brosseau
- INRAE, Biopolyméres Interactions Assemblages, Nantes, France
| | - Sophie Le Gall
- INRAE, Biopolyméres Interactions Assemblages, Nantes, France.,INRAE, Bioressources: Imagerie, Biochimie & Structure, Nantes, France
| | - Hugues Piloquet
- Centre Hospitalier Universitaire Nantes, UMR1280 PhAN, Nantes, France
| | | | - Marie Bodinier
- INRAE, Biopolyméres Interactions Assemblages, Nantes, France
| |
Collapse
|
7
|
In Love with Shaping You-Influential Factors on the Breast Milk Content of Human Milk Oligosaccharides and Their Decisive Roles for Neonatal Development. Nutrients 2020; 12:nu12113568. [PMID: 33233832 PMCID: PMC7699834 DOI: 10.3390/nu12113568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are structurally versatile sugar molecules constituting the third major group of soluble components in human breast milk. Based on the disaccharide lactose, the mammary glands of future and lactating mothers produce a few hundreds of different HMOs implicating that their overall anabolism utilizes rather high amounts of energy. At first sight, it therefore seems contradictory that these sugars are indigestible for infants raising the question of why such an energy-intensive molecular class evolved. However, in-depth analysis of their molecular modes of action reveals that Mother Nature created HMOs for neonatal development, protection and promotion of health. This is not solely facilitated by HMOs in their indigestible form but also by catabolites that are generated by microbial metabolism in the neonatal gut additionally qualifying HMOs as natural prebiotics. This narrative review elucidates factors influencing the HMO composition as well as physiological roles of HMOs on their way through the infant body and within the gut, where a major portion of HMOs faces microbial catabolism. Concurrently, this work summarizes in vitro, preclinical and observational as well as interventional clinical studies that analyzed potential health effects that have been demonstrated by or were related to either human milk-derived or synthetic HMOs or HMO fractions.
Collapse
|
8
|
Pujari R, Banerjee G. Impact of prebiotics on immune response: from the bench to the clinic. Immunol Cell Biol 2020; 99:255-273. [PMID: 32996638 DOI: 10.1111/imcb.12409] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/31/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Several preclinical and clinical studies have shown the immunomodulatory role exerted by prebiotics in regulating the immune response. In this review, we describe the mechanistic and clinical studies that decipher the cell signaling pathways implicated in the process. Prebiotic fibers are conventionally known to serve as substrate for probiotic commensal bacteria that release of short-chain fatty acids in the intestinal tract along with several other metabolites. Subsequently, they then act on the local as well as the systemic immune cells and the gut-associated epithelial cells, primarily through G-protein-coupled receptor-mediated pathways. However, other pathways including histone deacetylase inhibition and inflammasome pathway have also been implicated in regulating the immunomodulatory effect. The prebiotics can also induce a microbiota-independent effect by directly acting on the gut-associated epithelial and innate immune cells through the Toll-like receptors. The cumulative effect results in the maintenance of the epithelial barrier integrity and modulation of innate immunity through secretion of pro- and anti-inflammatory cytokines, switches in macrophage polarization and function, neutrophil recruitment and migration, dendritic cell and regulatory T-cell differentiation. Extending these in vitro and ex vivo observations, some prebiotics have been well investigated, with successful human and animal trials demonstrating the association between gut microbes and immunity biomarkers leading to improvement in health endpoints across populations. This review discusses scientific insights into the association between prebiotics, innate immunity and gut microbiome from in vitro to human oral intervention.
Collapse
Affiliation(s)
- Radha Pujari
- Innovation Centre, Tata Chemicals Ltd, Pune, Maharashtra, India
| | - Gautam Banerjee
- Innovation Centre, Tata Chemicals Ltd, Pune, Maharashtra, India
| |
Collapse
|
9
|
Zuurveld M, van Witzenburg NP, Garssen J, Folkerts G, Stahl B, van't Land B, Willemsen LEM. Immunomodulation by Human Milk Oligosaccharides: The Potential Role in Prevention of Allergic Diseases. Front Immunol 2020; 11:801. [PMID: 32457747 PMCID: PMC7221186 DOI: 10.3389/fimmu.2020.00801] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence and incidence of allergic diseases is rising and these diseases have become the most common chronic diseases during childhood in Westernized countries. Early life forms a critical window predisposing for health or disease. Therefore, this can also be a window of opportunity for allergy prevention. Postnatally the gut needs to mature, and the microbiome is built which further drives the training of infant's immune system. Immunomodulatory components in breastmilk protect the infant in this crucial period by; providing nutrients that contain substrates for the microbiome, supporting intestinal barrier function, protecting against pathogenic infections, enhancing immune development and facilitating immune tolerance. The presence of a diverse human milk oligosaccharide (HMOS) mixture, containing several types of functional groups, points to engagement in several mechanisms related to immune and microbiome maturation in the infant's gastrointestinal tract. In recent years, several pathways impacted by HMOS have been elucidated, including their capacity to; fortify the microbiome composition, enhance production of short chain fatty acids, bind directly to pathogens and interact directly with the intestinal epithelium and immune cells. The exact mechanisms underlying the immune protective effects have not been fully elucidated yet. We hypothesize that HMOS may be involved in and can be utilized to provide protection from developing allergic diseases at a young age. In this review, we highlight several pathways involved in the immunomodulatory effects of HMOS and the potential role in prevention of allergic diseases. Recent studies have proposed possible mechanisms through which HMOS may contribute, either directly or indirectly, via microbiome modification, to induce oral tolerance. Future research should focus on the identification of specific pathways by which individual HMOS structures exert protective actions and thereby contribute to the capacity of the authentic HMOS mixture in early life allergy prevention.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Nikita P. van Witzenburg
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Bernd Stahl
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Global Centre of Excellence Human Milk Research and Analytical Sciences, Danone Nutricia Research B.V., Utrecht, Netherlands
- Division of Chemical Biology and Drug Discovery, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Belinda van't Land
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Prebiotics: Mechanisms and Preventive Effects in Allergy. Nutrients 2019; 11:nu11081841. [PMID: 31398959 PMCID: PMC6722770 DOI: 10.3390/nu11081841] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Allergic diseases now affect over 30% of individuals in many communities, particularly young children, underscoring the need for effective prevention strategies in early life. These allergic conditions have been linked to environmental and lifestyle changes driving the dysfunction of three interdependent biological systems: microbiota, epithelial barrier and immune system. While this is multifactorial, dietary changes are of particular interest in the altered establishment and maturation of the microbiome, including the associated profile of metabolites that modulate immune development and barrier function. Prebiotics are non-digestible food ingredients that beneficially influence the health of the host by 1) acting as a fermentable substrate for some specific commensal host bacteria leading to the release of short-chain fatty acids in the gut intestinal tract influencing many molecular and cellular processes; 2) acting directly on several compartments and specifically on different patterns of cells (epithelial and immune cells). Nutrients with prebiotic properties are therefore of central interest in allergy prevention for their potential to promote a more tolerogenic environment through these multiple pathways. Both observational studies and experimental models lend further credence to this hypothesis. In this review, we describe both the mechanisms and the therapeutic evidence from preclinical and clinical studies exploring the role of prebiotics in allergy prevention.
Collapse
|
11
|
Boix-Amorós A, Collado MC, Van't Land B, Calvert A, Le Doare K, Garssen J, Hanna H, Khaleva E, Peroni DG, Geddes DT, Kozyrskyj AL, Warner JO, Munblit D. Reviewing the evidence on breast milk composition and immunological outcomes. Nutr Rev 2019; 77:541-556. [PMID: 31111150 DOI: 10.1093/nutrit/nuz019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A large number of biologically active components have been found in human milk (HM), and in both human and animal models, studies have provided some evidence suggesting that HM composition can be altered by maternal exposures, subsequently influencing health outcomes for the breastfed child. Evidence varies from the research studies on whether breastfeeding protects the offspring from noncommunicable diseases, including those associated with immunological dysfunction. It has been hypothesized that the conflicting evidence results from HM composition variations, which contain many immune active molecules, oligosaccharides, lactoferrin, and lysozyme in differing concentrations, along with a diverse microbiome. Determining the components that influence infant health outcomes in terms of both short- and long-term sequelae is complicated by a lack of understanding of the environmental factors that modify HM constituents and thereby offspring outcomes. Variations in HM immune and microbial composition (and the differing infantile responses) may in part explain the controversies that are evidenced in studies that aim to evaluate the prevalence of allergy by prolonged and exclusive breastfeeding. HM is a "mixture" of immune active factors, oligosaccharides, and microbes, which all may influence early immunological outcomes. This comprehensive review provides an in-depth overview of existing evidence on the studied relationships between maternal exposures, HM composition, vaccine responses, and immunological outcomes.
Collapse
Affiliation(s)
- Alba Boix-Amorós
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
| | - Belinda Van't Land
- Department of Immunology, Danone Nutricia Research, Utrecht, the Netherlands
- Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Anna Calvert
- Paediatric Infectious Diseases Research Group, St George's University of London, London, United Kingdom
| | - Kirsty Le Doare
- Paediatric Infectious Diseases Research Group, St George's University of London, London, United Kingdom
- Imperial College London, London, United Kingdom
- Public Health England, Porton Down, United Kingdom, and the MRC Unit, Fajara, Gambia
| | - Johan Garssen
- Department of Immunology, Danone Nutricia Research, Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Ekaterina Khaleva
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
- University of Southampton, Southampton, UK
| | - Diego G Peroni
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - Donna T Geddes
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
- School of Molecular Sciences, the University of Western Australia, Perth, Australia
| | - Anita L Kozyrskyj
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
- Department of Pediatrics, Department of Obstetrics & Gynecology, Faculty of Medicine & Dentistry, School of Public Health, University of Alberta, Alberta, Canada
| | - John O Warner
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
- Imperial College London, London, United Kingdom
- National Institute for Health Research, Collaboration for Leadership in Applied Health Research and Care for NW London, London, United Kingdom
| | - Daniel Munblit
- In-VIVO Global Network, an affiliate of the World Universities Network (WUN), New York, New York, United States
- Imperial College London, London, United Kingdom
- Department of Pediatrics, Sechenov University, Moscow, Russia, and the Solov'ev Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| |
Collapse
|
12
|
McKeen S, Young W, Fraser K, Roy NC, McNabb WC. Glycan Utilisation and Function in the Microbiome of Weaning Infants. Microorganisms 2019; 7:microorganisms7070190. [PMID: 31277402 PMCID: PMC6681113 DOI: 10.3390/microorganisms7070190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Glycans are present exogenously in the diet, expressed and secreted endogenously by host cells, and produced by microbes. All of these processes result in them being available to the gut microbiome, firmly placing glycans at the interface of diet–microbe–host interactions. The most dramatic shift in dietary sources of glycans occurs during the transition from the milk-based neonatal diet to the diverse omnivorous adult diet, and this has profound effects on the composition of the gut microbiome, gene expression by microbes and host cells, mucin composition, and immune development from innate towards adaptive responses. Understanding the glycan-mediated interactions occurring during this transitional window may inform dietary recommendations to support gut and immune development during a vulnerable age. This review aims to summarise the current state of knowledge on dietary glycan mediated changes that may occur in the infant gut microbiome and immune system during weaning.
Collapse
Affiliation(s)
- Starin McKeen
- Food Nutrition & Health, AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston north 4442, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Wayne Young
- Food Nutrition & Health, AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston north 4442, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Karl Fraser
- Food Nutrition & Health, AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston north 4442, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health, AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston north 4442, New Zealand
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand.
| |
Collapse
|
13
|
Grabinger T, Glaus Garzon JF, Hausmann M, Geirnaert A, Lacroix C, Hennet T. Alleviation of Intestinal Inflammation by Oral Supplementation With 2-Fucosyllactose in Mice. Front Microbiol 2019; 10:1385. [PMID: 31275292 PMCID: PMC6593069 DOI: 10.3389/fmicb.2019.01385] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022] Open
Abstract
Milk oligosaccharides exert a prebiotic action that contributes to the development of the infant gut microbiota during lactation. Given that milk oligosaccharides remain intact after passage through stomach and small intestine, they can potentially influence the composition of the gut microbiota when ingested as dietary supplements after weaning. To address the regulatory effects of specific oligosaccharides in colitis linked to the microbiota composition, we have supplemented interleukin-10 null (Il10 -/-) mice with four fucosylated and sialylated oligosaccharides. We found that oral supplementation with 2-fucosyllactose significantly decreased the severity of colitis as displayed by reduced inflammatory marker expression, histological and diarrhea scores, an increased epithelial integrity and less pronounced colon shortening. Oral supplementation with 2-fucosyllactose led to a marked expansion of the commensal Ruminococcus gnavus, which was accompanied by an enhanced cecal concentration of propionate. Decreased activation of immune cells by R. gnavus was confirmed by reconstitution of antibiotic-treated Il10 -/- mice and by stimulation of dendritic cells in vitro. This study demonstrates that post-weaning administration of specific oligosaccharides can shift the composition of the gut microbiota to lessen chronic inflammation as observed in Il10 -/- mice. The expansion of R. gnavus sets a positive microbial environment at the cost of pro-inflammatory Gram-negative bacteria, thereby lowering intestinal inflammation.
Collapse
Affiliation(s)
- Thomas Grabinger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich - University of Zurich, Zurich, Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|