1
|
Halim A, Al-Qadi N, Kenyon E, Conner KN, Mondal SK, Medarova Z, Moore A. Inhibition of miR-10b treats metastatic breast cancer by targeting stem cell-like properties. Oncotarget 2024; 15:591-606. [PMID: 39189967 PMCID: PMC11348941 DOI: 10.18632/oncotarget.28641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Despite advances in breast cancer screening and treatment, prognosis for metastatic disease remains dismal at 30% five-year survival. This is due, in large, to the failure of current therapeutics to target properties unique to metastatic cells. One of the drivers of metastasis is miR-10b, a small noncoding RNA implicated in cancer cell invasion, migration, viability, and proliferation. We have developed a nanodrug, termed MN-anti-miR10b, that delivers anti-miR-10b antisense oligomers to cancer cells. In mouse models of metastatic triple-negative breast cancer, MN-anti-miR10b has been shown to prevent onset of metastasis and eliminate existing metastases in combination with chemotherapy, even after treatment has been stopped. Recent studies have implicated miR-10b in conferring stem cell-like properties onto cancer cells, such as chemoresistance. In this study, we show transcriptional evidence that inhibition of miR-10b with MN-anti-miR10b activates developmental processes in cancer cells and that stem-like cancer cells have increased miR-10b expression. We then demonstrate that treatment of breast cancer cells with MN-anti-miR10b reduces their stemness, confirming that these properties make metastatic cells susceptible to the nanodrug actions. Collectively, these findings indicate that inhibition of miR-10b functions to impair breast cancer cell stemness, positioning MN-anti-miR10b as an effective treatment option for stem-like breast cancer subtypes.
Collapse
Affiliation(s)
- Alan Halim
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| | - Nasreen Al-Qadi
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Kayla N. Conner
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI 48824, USA
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Sujan Kumar Mondal
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Abdallah M, Aziz IH, Alsammarraie AZ. Assessment of miRNA-10b Expression Levels as a Potential Precursor to Metastasis in Localized and Locally Advanced/Metastatic Breast Cancer among Iraqi Patients. Int J Breast Cancer 2024; 2024:2408355. [PMID: 38450330 PMCID: PMC10917482 DOI: 10.1155/2024/2408355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 03/08/2024] Open
Abstract
Breast cancer (BC) stands as the most prevalent form of carcinoma among women, ranking as the second leading cause of cancer-related mortality in the female population. The objective of this study is to assess the expression of miR-10b and determine its diagnostic and prognostic significance in breast cancer patients across various disease stages. The investigation was carried out in Baghdad at the Oncology Teaching Hospital within Baghdad Medical City and the Oncology Unit at Al-Yarmouk Teaching Hospital. A total of 150 samples were included and divided into two groups: the blood group consisting of 90 samples (including control subjects, localized BC patients, and those with metastatic and locally advanced BC) and the tissue group comprising 60 samples (representing both benign and malignant BC cases). The study spanned from March 2022 to January 2023, with patients' ages ranging from 24 to 75 years. The primary focus of this investigation was to identify the gene expression of miRNA-10b in all sample types. This was achieved by measuring gene expression levels and normalizing them to the level of a housekeeping gene (U6), and quantification was carried out considering the ΔCt value and the fold change method (2-ΔΔCt). The results revealed an upregulated fold expression of miRNA-10b, particularly in locally advanced and metastatic BC, where the expression was significantly higher compared to the other groups, with a fold expression of 1.770 ± 0.1070. In localized breast cancer, the fold expression was 1.624 ± 0.064, and in malignant tissue, it measured 1.546 ± 0.06754, all relative to apparently healthy control subjects. In summary, our research provides compelling evidence supporting the classification of miRNA-10b as an oncogenic factor in BC. The central involvement of miRNA-10b in the tumorigenic processes of BC highlights its reference for developing novel targeted therapeutic interventions and detection biomarkers for BC treatment. Notably, elevated expression of miRNA-10b was observed in BC tissues, correlating with an unfavorable distant metastasis-free survival outcome.
Collapse
Affiliation(s)
- Mays Abdallah
- Institute of Genetic Engineering and Biotechnology, University of Baghdad, Baghdad, Iraq
| | - Ismail H. Aziz
- Institute of Genetic Engineering and Biotechnology, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
3
|
Savan NA, Saavedra PV, Halim A, Yuzbasiyan-Gurkan V, Wang P, Yoo B, Kiupel M, Sempere L, Medarova Z, Moore A. Case report: MicroRNA-10b as a therapeutic target in feline metastatic mammary carcinoma and its implications for human clinical trials. Front Oncol 2022; 12:959630. [PMID: 36387245 PMCID: PMC9643803 DOI: 10.3389/fonc.2022.959630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Ninety percent of deaths from cancer are caused by metastasis. miRNAs are critical players in biological processes such as proliferation, metastasis, apoptosis, and self-renewal. We and others have previously demonstrated that miRNA-10b promotes metastatic cell migration and invasion. Importantly, we also showed that miR-10b is a critical driver of metastatic cell viability and proliferation. To treat established metastases by inhibiting miR-10b, we utilized a therapeutic, termed MN-anti-miR10b, composed of anti-miR-10b antagomirs, conjugated to iron oxide nanoparticles, that serve as delivery vehicles to tumor cells in vivo and a magnetic resonance imaging (MRI) reporter. In our previous studies using murine models of metastatic breast cancer, we demonstrated the effectiveness of MN-anti-miR10b in preventing and eliminating existing metastases. With an outlook toward clinical translation of our therapeutic, here we report studies in large animals (companion cats) with spontaneous feline mammary carcinoma (FMC). We first investigated the expression and tissue localization of miR-10b in feline tumors and metastases and showed remarkable similarity to these features in humans. Next, in the first case study involving this therapeutic we intravenously dosed an FMC patient with MN-anti-miR10b and demonstrated its delivery to the metastatic lesions using MRI. We also showed the initial safety profile of the therapeutic and demonstrated significant change in miR-10b expression and its target HOXD10 after dosing. Our results provide support for using companion animals for further MN-anti-miR10b development as a therapy and serve as a guide for future clinical trials in human patients.
Collapse
Affiliation(s)
- N. Anna Savan
- Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Paulo Vilar Saavedra
- Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Alan Halim
- Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Vilma Yuzbasiyan-Gurkan
- Microbiology and Molecular Genetics and Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Byunghee Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Matti Kiupel
- Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Lorenzo Sempere
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Zdravka Medarova
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Transcode Therapeutics Inc., Boston, MA, United States
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
Elgeshy KM, Abdel Wahab AHA. The Role, Significance, and Association of MicroRNA-10a/b in Physiology of Cancer. Microrna 2022; 11:118-138. [PMID: 35616665 DOI: 10.2174/2211536611666220523104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the translation of mRNA and protein, mainly at the posttranscriptional level. Global expression profiling of miRNAs has demonstrated a broad spectrum of aberrations that correlated with several diseases, and miRNA- 10a and miRNA-10b were the first examined miRNAs to be involved in abnormal activities upon dysregulation, including many types of cancers and progressive diseases. It is expected that the same miRNAs behave inconsistently within different types of cancer. This review aims to provide a set of information about our updated understanding of miRNA-10a and miRNA-10b and their clinical significance, molecular targets, current research gaps, and possible future applications of such potent regulators.
Collapse
Affiliation(s)
- Khaled M Elgeshy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | | |
Collapse
|
5
|
Diagnostic, grading and prognostic role of a restricted miRNAs signature in primary and metastatic brain tumours. Discussion on their therapeutic perspectives. Mol Genet Genomics 2022; 297:357-371. [PMID: 35064290 DOI: 10.1007/s00438-021-01851-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
At present, brain tumours remain one of the "hard-to-treat" malignancies with minimal improvement in patients' survival. Recently, miRNAs have been shown to correlate with oncogenesis and metastasis and have been investigated as potential biomarkers for diagnosis, prognosis and therapy prediction in different brain malignancies. The aim of the current study was to select an accurate and affordable brain tumour detection and grading approach. In the present study, we analysed the applicability of a restricted miRNA signature that could differentiate among patients with primary as well as metastatic brain tumours. Fresh tumour tissues were collected from Bulgarian patients (n = 38), including high-grade gliomas (n = 23), low-grade gliomas (n = 10) and brain metastases (n = 5) from lung cancer. Total RNAs enriched with microRNAs were isolated and differentially expressed miRNAs were analyzed by RT-qPCR using TaqMan Advanced miRNA assay. We selected a signature of miR-21, miR-10b, miR-7, miR-491 that showed good diagnostic potential in high-grade gliomas, low-grade gliomas and brain metastases compared with normal brain tissues. Our results showed that miR-10b could reliably differentiate brain metastases from high-grade gliomas, while miR-491 could distinguish low-grade from high-grade gliomas and brain metastases from low-grade gliomas. We observed that miR-21 and miR-7 correlated with disease recurrence, survival status and the Karnofsky Performance Status. The selected signature of miR-7, miR-21, miR-10b and miR-491 could be used as a highly accurate diagnostic, grading and prognostic biomarker in differentiating various types of brain tumours. Our data suggest that the 4-miRNAs signature could be further analysed for predicting treatment response and for future miRs-based targeted therapy. The ongoing studies on miRs-based targeted therapy related to our selected miRNA signature are also reviewed.
Collapse
|
6
|
Role of non-coding RNAs in tumor progression and metastasis in pancreatic cancer. Cancer Metastasis Rev 2021; 40:761-776. [PMID: 34591242 PMCID: PMC8556175 DOI: 10.1007/s10555-021-09995-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer with an overall 5-year survival rate of less than 10%. The 1-year survival rate of patients with locally advanced or metastatic disease is abysmal. The aggressive nature of cancer cells, hypovascularization, extensive desmoplastic stroma, and immunosuppressive tumor microenvironment (TME) endows PDAC tumors with multiple mechanisms of drug resistance. With no obvious genetic mutation(s) driving tumor progression or metastatic transition, the challenges for understanding the biological mechanism(s) of these processes are paramount. A better understanding of the molecular and cellular mechanisms of these processes could lead to new diagnostic tools for patient management and new targets for therapeutic intervention. microRNAs (miRNAs) are an evolutionarily conserved gene class of short non-coding regulatory RNAs. miRNAs are an extensive regulatory layer that controls gene expression at the posttranscriptional level. This review focuses on preclinical models that functionally dissect miRNA activity in tumor progression or metastatic processes in PDAC. Collectively, these studies suggest an influence of miRNAs and RNA-RNA networks in the processes of epithelial to mesenchymal cell transition and cancer cell stemness. At a cell-type level, some miRNAs mainly influence cancer cell–intrinsic processes and pathways, whereas other miRNAs predominantly act in distinct cellular compartments of the TME to regulate fibroblast and immune cell functions and/or influence other cell types’ function via cell-to-cell communications by transfer of extracellular vesicles. At a molecular level, the influence of miRNA-mediated regulation often converges in core signaling pathways, including TGF-β, JAK/STAT, PI3K/AKT, and NF-κB.
Collapse
|
7
|
Inoue J, Inazawa J. Cancer-associated miRNAs and their therapeutic potential. J Hum Genet 2021; 66:937-945. [PMID: 34088973 DOI: 10.1038/s10038-021-00938-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
MicroRNA (miRNA; miR) is a functionally small non-coding RNA and can negatively regulate gene expression by directly binding to the target gene. Some miRNAs are closely involved in the development and progression of cancer and are abnormally expressed in many cancer types. Therefore, control of the expression of cancer-associated miRNAs is expected as a next-generation drug modality to treat advanced types of cancers with high unmet medical needs. Indeed, miRNA therapeutics, which are based on the functional inhibition of oncogenic miRNA (OncomiR) using antisense oligonucleotides (anti-miR) and the replacement via the introduction of a synthetic miRNA mimic for tumor suppressive miRNA (TS-miR), have been developed. In this review, we summarize cancer-associated miRNAs related to various cancer pathologies and their clinical application to miRNA therapeutics for cancer.
Collapse
Affiliation(s)
- Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,Bioresource Research Center, TMDU, Tokyo, Japan.
| |
Collapse
|
8
|
MiRNA10b-directed nanotherapy effectively targets brain metastases from breast cancer. Sci Rep 2021; 11:2844. [PMID: 33531596 PMCID: PMC7854676 DOI: 10.1038/s41598-021-82528-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
RNA interference represents one of the most appealing therapeutic modalities for cancer because of its potency, versatility, and modularity. Because the mechanism is catalytic and affects the expression of disease-causing antigens at the post-transcriptional level, only small amounts of therapeutic need to be delivered to the target in order to exert a robust therapeutic effect. RNA interference is also advantageous over other treatment modalities, such as monoclonal antibodies or small molecules, because it has a much broader array of druggable targets. Finally, the complementarity of the genetic code gives us the opportunity to design RNAi therapeutics using computational, rational approaches. Previously, we developed and tested an RNAi-targeted therapeutic, termed MN-anti-miR10b, which was designed to inhibit the critical driver of metastasis and metastatic colonization, miRNA-10b. We showed in animal models of metastatic breast cancer that MN-anti-miR10b accumulated into tumors and metastases in the lymph nodes, lungs, and bone, following simple intravenous injection. We also found that treatment incorporating MN-anti-miR10b was effective at inhibiting the emergence of metastases and could regress already established metastases in the lymph nodes, lungs, and bone. In the present study, we extend the application of MN-anti-miR10b to a model of breast cancer metastatic to the brain. We demonstrate delivery to the metastatic lesions and obtain evidence of a therapeutic effect manifested as inhibition of metastatic progression. This investigation represents an additional step towards translating similar RNAi-targeted therapeutics for the systemic treatment of metastatic disease.
Collapse
|
9
|
Yoo B, Meka N, Sheedy P, Billig AM, Pantazopoulos P, Medarova Z. MicroRNA-710 regulates multiple pathways of carcinogenesis in murine metastatic breast cancer. PLoS One 2019; 14:e0226356. [PMID: 31834924 PMCID: PMC6910689 DOI: 10.1371/journal.pone.0226356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/25/2019] [Indexed: 11/18/2022] Open
Abstract
Prior research has shown that critical differences between non-metastatic and metastatic tumor cells are at the level of microRNA. Consequently, harnessing these molecules for the treatment of metastatic cancer could have significant clinical impact. In the present study, we set out to identify metastasis-specific microRNAs which drive metastatic colonization of distant organs. Using a murine model of metastatic breast cancer, we employed a directed approach in which we screened for microRNAs that are differentially expressed between the primary tumors and metastatic lesions but concordantly expressed in all of the metastatic lesions irrespective of the tissue that is colonized. Of the identified targets, we focused on miR-710, which was consistently and significantly downregulated in the metastatic lesions relative to the primary tumors. The level of downregulation was independent of the distant organ that is involved, suggesting that miR-710 plays a fundamental role in metastatic colonization. Computational target prediction suggested a pleiotropic role for miR-710 in apoptosis, migration and invasion, and stemness. Using a previously validated oligonucleotide delivery system, we introduced miR-710 mimics into 4T1 metastatic breast adenocarcinoma cells and assessed the resultant phenotypic effects. We demonstrated significant inhibition of cell viability, migration, and invasion. We also showed that the treatment profoundly enhanced cell senescence, reduced stemness, and influenced markers of epithelial to mesenchymal transition, as evidenced by enhanced E-cadherin and reduced vimentin expression. This knowledge represents a first step towards harnessing a similar approach to discover novel microRNA targets with therapeutic potential in metastasis.
Collapse
Affiliation(s)
- Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (BY); (ZM)
| | - Nikhil Meka
- College of Arts and Science, New York University, NY, United States of America
| | - Patrick Sheedy
- Department of Health Sciences, CaNCURE Program, Northeastern University, Boston, MA
| | - Ann-Marie Billig
- Department of Health Sciences, CaNCURE Program, Northeastern University, Boston, MA
| | - Pamela Pantazopoulos
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (BY); (ZM)
| |
Collapse
|
10
|
Hu G, Shi Y, Zhao X, Gao D, Qu L, Chen L, Zhao K, Du J, Xu W. CBFβ/RUNX3-miR10b-TIAM1 molecular axis inhibits proliferation, migration, and invasion of gastric cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3185-3196. [PMID: 31934163 PMCID: PMC6949817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors of the digestive system. A deeper understanding of the mechanism of proliferation and metastasis is needed to improve patient survival. T cell lymphoma invasion and metastasis 1 (TIAM1) has been proven to play an essential role in the proliferation and metastasis of GC. The aim of this study was to explore the relevant upstream regulatory mechanism of TIAM1. Bioinformatic analysis, RT-qPCR, and dual luciferase reporter assays were used to predict and validate microRNAs that target the TIAM1 gene. Among eleven predicted microRNAs, eight (miR-10b-5p, miR-589-3p, miR-651-3p, miR-335-3p, miR-653-5p, miR-373-3p, miR-372-3p, and miR-205-3p) affected TIAM1 expression; and only miR-10b-5p regulated TIAM1 expression by directly binding to the 3'-UTR of TIAM1 mRNA. miR-10b-5p levels were determined in both normal and cancerous tissues retrieved from GC patients. We observed that by targeting TIAM1 expression, miR-10b-5p inhibited the proliferation, migration, and invasion of GC cells. To verify our observations, we evaluated the participation of runt-related transcription factor 3 (RUNX3), a known regulator of microRNA expression and tumor suppressor. Tumor-suppressor RUNX3 combined with core-binding factor subunit beta (CBFβ) upregulated miR-10b-5p and suppressed GC. In conclusion, we identified a CBFβ/RUNX3-miR10b-TIAM1 molecular axis that inhibits GC progression and metastasis and may provide suitable treatment targets for GC.
Collapse
Affiliation(s)
- Gaofeng Hu
- Department of The Clinical Laboratory, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Yanfen Shi
- Department of Pathology, China-Japan Friendship HospitalBeijing, China
| | - Xu Zhao
- Department of Hepatology, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Dandan Gao
- Department of The Clinical Laboratory, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Linlin Qu
- Department of The Clinical Laboratory, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Lijun Chen
- Department of The Clinical Laboratory, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Ke Zhao
- Institite for Virology and AIDS Research, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Juan Du
- Institite for Virology and AIDS Research, The First Hospital of Jilin UniversityChangchun, Jilin, China
| | - Wei Xu
- Department of The Clinical Laboratory, The First Hospital of Jilin UniversityChangchun, Jilin, China
| |
Collapse
|