1
|
Feszak S, Feszak IJ, Kluźniak W, Wokołorczyk D, Stempa K, Gliniewicz K, Uciński J, Huzarski T, Dębniak T, Gronwald J, Lubiński J, Narod SA, Cybulski C. BRCA1 and BRCA2 Mutations in Polish Women with Ductal Carcinoma In Situ. Cancers (Basel) 2025; 17:613. [PMID: 40002208 PMCID: PMC11853394 DOI: 10.3390/cancers17040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Ductal carcinoma in situ (DCIS) is the most common non-invasive form of breast cancer. It is not clear to what extent DCIS is a part of the hereditary breast/ovarian cancer syndrome caused by BRCA1/2 mutations. Therefore, we investigated the association of BRCA1/2 mutations in patients with DCIS and assessed their impact on survival. Methods: We studied 564 Polish women with DCIS for six alleles in BRCA1 (c.181T>G, c.5266dupC, c.4035delA, c.3700_3704del5, c.68_69del and c.5251C>T) and four in BRCA2 (c.658_659del, c.3847_3848del, c.5946del and c.7913_7917del). To investigate the association of BRCA1/2 founder mutations with DCIS risk, we tested 4702 controls as a reference. To analyze survival, mutation carriers were followed for an average of 110 months. Results: A BRCA1 mutation was present in seven (1.24%) cases and in twenty-two (0.47%) controls (OR = 3.27, 95%CI 1.36 to 7.87, p = 0.01). A BRCA2 mutation was present in eight (1.42%) cases versus six (0.13%) controls (OR = 11.3, 95%CI 3.9 to 32.6, p < 0.0001). Three of the fifteen cases with BRCA1/2 mutations developed invasive ipsilateral or contralateral breast cancer, on average 6 years from the diagnosis of DCIS. There were no deaths reported among the 15 mutation carriers with DCIS. Conclusions: DCIS is a part of the hereditary breast/ovarian cancer syndrome caused by BRCA1/2 mutations. Women with DCIS should receive genetic counseling and testing for BRCA1/2 mutations. BRCA1/2 mutations may predispose women to a better DCIS prognosis, but further studies are needed.
Collapse
Affiliation(s)
- Sylwia Feszak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (I.J.F.); (W.K.); (D.W.); (K.S.); (K.G.); (J.U.); (T.H.); (T.D.); (J.G.); (J.L.)
- Department of Pediatrics, Pediatric Oncology, and Immunology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Igor Jarosław Feszak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (I.J.F.); (W.K.); (D.W.); (K.S.); (K.G.); (J.U.); (T.H.); (T.D.); (J.G.); (J.L.)
- Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland
| | - Wojciech Kluźniak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (I.J.F.); (W.K.); (D.W.); (K.S.); (K.G.); (J.U.); (T.H.); (T.D.); (J.G.); (J.L.)
| | - Dominika Wokołorczyk
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (I.J.F.); (W.K.); (D.W.); (K.S.); (K.G.); (J.U.); (T.H.); (T.D.); (J.G.); (J.L.)
| | - Klaudia Stempa
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (I.J.F.); (W.K.); (D.W.); (K.S.); (K.G.); (J.U.); (T.H.); (T.D.); (J.G.); (J.L.)
| | - Katarzyna Gliniewicz
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (I.J.F.); (W.K.); (D.W.); (K.S.); (K.G.); (J.U.); (T.H.); (T.D.); (J.G.); (J.L.)
| | - Jan Uciński
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (I.J.F.); (W.K.); (D.W.); (K.S.); (K.G.); (J.U.); (T.H.); (T.D.); (J.G.); (J.L.)
| | - Tomasz Huzarski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (I.J.F.); (W.K.); (D.W.); (K.S.); (K.G.); (J.U.); (T.H.); (T.D.); (J.G.); (J.L.)
- Department of Clinical Genetics and Pathology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Tadeusz Dębniak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (I.J.F.); (W.K.); (D.W.); (K.S.); (K.G.); (J.U.); (T.H.); (T.D.); (J.G.); (J.L.)
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (I.J.F.); (W.K.); (D.W.); (K.S.); (K.G.); (J.U.); (T.H.); (T.D.); (J.G.); (J.L.)
| | - Jan Lubiński
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (I.J.F.); (W.K.); (D.W.); (K.S.); (K.G.); (J.U.); (T.H.); (T.D.); (J.G.); (J.L.)
| | - Steven A. Narod
- Women’s College Research Institute, Women’s College Hospital, Toronto, ON M5S 1B2, Canada;
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (I.J.F.); (W.K.); (D.W.); (K.S.); (K.G.); (J.U.); (T.H.); (T.D.); (J.G.); (J.L.)
| |
Collapse
|
2
|
Shumilova S, Danishevich A, Nikolaev S, Krasnov G, Ikonnikova A, Isaeva D, Surzhikov S, Zasedatelev A, Bodunova N, Nasedkina T. High- and Moderate-Risk Variants Among Breast Cancer Patients and Healthy Donors Enrolled in Multigene Panel Testing in a Population of Central Russia. Int J Mol Sci 2024; 25:12640. [PMID: 39684352 PMCID: PMC11641773 DOI: 10.3390/ijms252312640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Assessments of breast cancer (BC) risk in carriers of pathogenic variants identified by gene panel testing in different populations are highly in demand worldwide. We performed target sequencing of 78 genes involved in DNA repair in 860 females with BC and 520 age- and family history-matched controls from Central Russia. Among BC patients, 562/860 (65.3%) were aged 50 years or less at the time of diagnosis. In total, 190/860 (22%) BC patients were carriers of 198 pathogenic/likely pathogenic (P/LP) variants in 30 genes, while among controls, 32/520 (6.2%) carriers of P/LP variants in 17 genes were identified. The odds ratio [95% confidence interval] was 16.3 [4.0-66.7] for BRCA1; 12.0 [2.9-45.9] for BRCA2; and 7.3 [0.9-56.7] for ATM (p < 0.05). Previously undescribed BRCA1/2, ATM, and PALB2 variants, as well as novel recurrent mutations, were identified. The contribution to BC susceptibility of truncating variants in the genes BARD1, RAD50, RAD51C, NBEAL1 (p. E1155*), and XRCC2 (p. P32fs) was evaluated. The BLM, NBN, and MUTYH genes did not demonstrate associations with BC risk. Finding deleterious mutations in BC patients is important for diagnosis and management; in controls, it opens up the possibility of prevention and early diagnostics.
Collapse
Affiliation(s)
- Syuykum Shumilova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Anastasia Danishevich
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Anna Ikonnikova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Darya Isaeva
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Sergei Surzhikov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Alexander Zasedatelev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Natalia Bodunova
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| |
Collapse
|
3
|
Lebedeva A, Veselovsky E, Kavun A, Belova E, Grigoreva T, Orlov P, Subbotovskaya A, Shipunov M, Mashkov O, Bilalov F, Shatalov P, Kaprin A, Shegai P, Diuzhev Z, Migiaev O, Vytnova N, Mileyko V, Ivanov M. Untapped Potential of Poly(ADP-Ribose) Polymerase Inhibitors: Lessons Learned From the Real-World Clinical Homologous Recombination Repair Mutation Testing. World J Oncol 2024; 15:562-578. [PMID: 38993246 PMCID: PMC11236374 DOI: 10.14740/wjon1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 07/13/2024] Open
Abstract
Background Testing for homologous recombination deficiency (HRD) mutations is pivotal to assess individual risk, to proact preventive measures in healthy carriers and to tailor treatments for cancer patients. Increasing prominence of poly(ADP-ribose) polymerase (PARP) inhibitors with remarkable impact on molecular-selected patient survival across diverse nosologies, ingrains testing for BRCA genes and beyond in clinical practice. Nevertheless, testing strategies remain a question of debate. While several pathogenic BRCA1/2 gene variants have been described as founder pathogenic mutations frequently found in patients from Russia, other homologous recombination repair (HRR) genes have not been sufficiently explored. In this study, we present real-world data of routine HRR gene testing in Russia. Methods We evaluated clinical and sequencing data from cancer patients who had germline/somatic next-generation sequencing (NGS) HRR gene testing in Russia (BRCA1/2/ATM/CHEK2, or 15 HRR genes). The primary objectives of this study were to evaluate the frequency of BRCA1/2 and non-BRCA gene mutations in real-world unselected patients from Russia, and to determine whether testing beyond BRCA1/2 is feasible. Results Data of 2,032 patients were collected from February 2021 to February 2023. Most had breast (n = 715, 35.2%), ovarian (n = 259, 12.7%), pancreatic (n = 85, 4.2%), or prostate cancer (n = 58, 2.9%). We observed 586 variants of uncertain significance (VUS) and 372 deleterious variants (DVs) across 487 patients, with 17.6% HRR-mutation positivity. HRR testing identified 120 (11.8%) BRCA1/2-positive, and 172 (16.9%) HRR-positive patients. With 51 DVs identified in 242 formalin-fixed paraffin-embedded (FFPE), testing for variant origin clarification was required in one case (0.4%). Most BRCA1/2 germline variants were DV (121 DVs, 26 VUS); in non-BRCA1/2 genes, VUS were ubiquitous (53 DVs, 132 VUS). In silico prediction identified additional 4.9% HRR and 1.2% BRCA1/2/ATM/CHEK2 mutation patients. Conclusions Our study represents one of the first reports about the incidence of DV and VUS in HRR genes, including genes beyond BRCA1/2, identified in cancer patients from Russia, assessed by NGS. In silico predictions of the observed HRR gene variants suggest that non-BRCA gene testing is likely to result in higher frequency of patients who are candidates for PARP inhibitor therapy. Continuing sequencing efforts should clarify interpretation of frequently observed non-BRCA VUS.
Collapse
Affiliation(s)
- Alexandra Lebedeva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Egor Veselovsky
- OncoAtlas LLC, Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Orlov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Anna Subbotovskaya
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Maksim Shipunov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Oleg Mashkov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Fanil Bilalov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Peter Shatalov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Andrey Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Peter Shegai
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | | | | | | | - Vladislav Mileyko
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
4
|
Grigore LG, Radoi VE, Serban A, Mihai AD, Stoica I. The Molecular Detection of Germline Mutations in the BRCA1 and BRCA2 Genes Associated with Breast and Ovarian Cancer in a Romanian Cohort of 616 Patients. Curr Issues Mol Biol 2024; 46:4630-4645. [PMID: 38785549 PMCID: PMC11119367 DOI: 10.3390/cimb46050281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The objective of this study was to identify and classify the spectrum of mutations found in the BRCA1 and BRCA2 genes associated with breast and ovarian cancer in female patients in Romania. Germline BRCA1 and BRCA2 mutations were investigated in a cohort of 616 female patients using NGS and/or MLPA methods followed by software-based data analysis and classification according to international guidelines. Out of the 616 female patients included in this study, we found that 482 patients (78.2%) did not have any mutation present in the two genes investigated; 69 patients (11.2%) had a BRCA1 mutation, 34 (5.5%) had a BRCA2 mutation, and 31 (5%) presented different type of mutations with uncertain clinical significance, moderate risk or a large mutation in the BRCA1 gene. Our investigation indicates the most common mutations in the BRCA1 and BRCA2 genes, associated with breast and ovarian cancer in the Romanian population. Our results also bring more data in support of the frequency of the c.5266 mutation in the BRCA1 gene, acknowledged in the literature as a founder mutation in Eastern Europe. We consider that the results of our study will provide necessary data regarding BRCA1 and BRCA2 mutations that would help to create a genetic database for the Romanian population.
Collapse
Affiliation(s)
- Liliana-Georgiana Grigore
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
- Personal Genetics, 010987 Bucharest, Romania
| | - Viorica-Elena Radoi
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | | | | | - Ileana Stoica
- Department of Genetics, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| |
Collapse
|
5
|
Tuncer SB, Celik B, Erciyas SK, Erdogan OS, Gültaslar BK, Odemis DA, Avsar M, Sen F, Saip PM, Yazici H. Germline mutational variants of Turkish ovarian cancer patients suspected of Hereditary Breast and Ovarian Cancer (HBOC) by next-generation sequencing. Pathol Res Pract 2024; 254:155075. [PMID: 38219492 DOI: 10.1016/j.prp.2023.155075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) syndrome is characterized by an increased risk of developing breast cancer (BC) and ovarian cancer (OC) due to inherited genetic mutations. Understanding the genetic variants associated with HBOC is crucial for identifying individuals at high risk and implementing appropriate preventive measures. The study included 630 Turkish OC patients with confirmed diagnostic criteria of The National Comprehensive Cancer Network (NCCN) concerning HBOC. Genomic DNA was extracted from peripheral blood samples, and targeted Next-generation sequencing (NGS) was performed. Bioinformatics analysis and variant interpretation were conducted to identify pathogenic variants (PVs). Our analysis revealed a spectrum of germline pathogenic variants associated with HBOC in Turkish OC patients. Notably, several pathogenic variants in BRCA1, BRCA2, and other DNA repair genes were identified. Specifically, we observed germline PVs in 130 individuals, accounting for 20.63% of the total cohort. 76 distinct PVs in genes, BRCA1 (40 PVs), BRCA2 (29 PVs), ATM (1 PV), CHEK2 (2 PVs), ERCC2 (1 PV), MUTYH (1 PV), RAD51C (1 PV), and TP53 (1PV) and also, two different PVs (i.e., c.135-2 A>G p.? in BRCA1 and c.6466_6469delTCTC in BRCA2) were detected in a 34-year-old OC patient. In conclusion, our study contributes to a better understanding of the genetic variants underlying HBOC in Turkish OC patients. These findings provide valuable insights into the genetic architecture of HBOC in the Turkish population and shed light on the potential contribution of specific germline PVs to the increased risk of OC.
Collapse
Affiliation(s)
- Seref Bugra Tuncer
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye.
| | - Betul Celik
- Erzincan Binali Yıldırım University, Department of Molecular Biology, Erzincan, Türkiye
| | - Seda Kilic Erciyas
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Busra Kurt Gültaslar
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Demet Akdeniz Odemis
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Mukaddes Avsar
- Health Services Vocational of Higher Education, T.C. Istanbul Aydın University, Istanbul, Türkiye
| | - Fatma Sen
- Clinic of Medical Oncology, Avrasya Hospital, Istanbul, Türkiye
| | - Pınar Mualla Saip
- Department of Medical Oncology, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Hulya Yazici
- Istanbul Arel University, Arel Medical Faculty, Department of Medical Biology and Genetics, Istanbul, Türkiye
| |
Collapse
|
6
|
Sokolenko AP, Bakaeva EK, Venina AR, Kuligina ES, Romanko AA, Aleksakhina SN, Belysheva YV, Belogubova EV, Stepanov IA, Zaitseva OA, Yatsuk OS, Togo AV, Khamgokov ZM, Kadyrova AO, Pirmagomedov AS, Bolieva MB, Epkhiev AA, Tsutsaev AK, Chakhieva MD, Khabrieva KM, Khabriev IM, Murachuev MA, Buttaeva BN, Baboshkina LS, Bayramkulova FI, Katchiev IR, Alieva LK, Raskin GA, Orlov SV, Khachmamuk ZK, Levonyan KR, Gichko DM, Kirtbaya DV, Degtyariov AM, Sultanova LV, Musayeva HS, Belyaev AM, Imyanitov EN. Ethnicity-specific BRCA1, BRCA2, PALB2, and ATM pathogenic alleles in breast and ovarian cancer patients from the North Caucasus. Breast Cancer Res Treat 2024; 203:307-315. [PMID: 37851290 DOI: 10.1007/s10549-023-07135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Mountain areas of the North Caucasus host several large ethnic communities that have preserved their national identity over the centuries. METHODS This study involved high-grade serous ovarian cancer (HGSOC) and breast cancer (BC) patients from Dagestan (HGSOC: 37; BC: 198), Kabardino-Balkaria (HGSOC: 68; BC: 155), North Ossetia (HGSOC: 51; BC: 104), Chechnya (HGSOC: 68; BC: 79), Ingushetia (HGSOC: 19; BC: 103), Karachay-Cherkessia (HGSOC: 13; BC: 47), and several Armenian settlements (HGSOC: 16; BC: 101). The group of BC patients was enriched by young-onset and/or family history-positive and/or bilateral and/or receptor triple-negative cases. The entire coding region of BRCA1, BRCA2, PALB2, and ATM genes was analyzed by next-generation sequencing. RESULTS A significant contribution of BRCA1/2 pathogenic variants (PVs) to HGSOC and BC development was observed across all North Caucasus regions (HGSOC: 19-39%; BC: 6-13%). Founder alleles were identified in all ethnic groups studied, e.g., BRCA1 c.3629_3630delAG in Chechens, BRCA2 c.6341delC in North Ossetians, BRCA2 c.5351dupA in Ingush, and BRCA1 c.2907_2910delTAAA in Karachays. Some BRCA1/2 alleles, particularly BRCA2 c.9895C > T, were shared by several nationalities. ATM PVs were detected in 14 patients, with c.1673delG and c.8876_8879delACTG alleles occurring twice each. PALB2 heterozygosity was observed in 5 subjects, with one variant seen in 2 unrelated women. CONCLUSION This study adds to the evidence for the global-wide contribution of BRCA1/2 genes to HGSOC and BC morbidity, although the spectrum of their PVs is a subject of ethnicity-specific variations. The data on founder BRCA1/2 alleles may be considered when adjusting the BRCA1/2 testing procedure to the ethnic origin of patients.
Collapse
Affiliation(s)
- Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758.
- St. Petersburg Pediatric Medical University, St. Petersburg, Russia.
| | - Elvina Kh Bakaeva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Aigul R Venina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Ekaterina Sh Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Alexandr A Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Yana V Belysheva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Evgeniya V Belogubova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Ilya A Stepanov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Olga A Zaitseva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Olga S Yatsuk
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Alexandr V Togo
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Zaur M Khamgokov
- Republican Cancer Center, The Kabardino-Balkarian Republic, Nalchik, Russia
| | - Azinat O Kadyrova
- Republican Cancer Center, The Kabardino-Balkarian Republic, Nalchik, Russia
| | | | - Marina B Bolieva
- Republican Cancer Center, The Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | - Alexandr A Epkhiev
- Republican Cancer Center, The Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | - Aslan K Tsutsaev
- Republican Cancer Center, The Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | | | | | - Idris M Khabriev
- Republican Cancer Center, The Republic of Ingushetia, Pliyevo, Russia
| | - Mirza A Murachuev
- Republican Cancer Center, The Republic of Dagestan, Makhachkala, Russia
| | - Bella N Buttaeva
- Republican Bureau of Pathology, The Republic of Dagestan, Makhachkala, Russia
| | - Liliya S Baboshkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | | | - Islam R Katchiev
- Republican Cancer Center, The Karachay-Cherkess Republic, Cherkessk, Russia
| | - Lina Kh Alieva
- Republican Cancer Center, The Karachay-Cherkess Republic, Cherkessk, Russia
| | - Grigory A Raskin
- Dr. Sergey Berezin Medical Institute of Biological Systems, St. Petersburg, Russia
| | - Sergey V Orlov
- I.P. Pavlov St.-Petersburg State Medical University, St. Petersburg, Russia
| | | | | | | | | | | | | | - Hedi S Musayeva
- Republican Cancer Center, Grozny, The Chechen Republic, Russia
| | - Alexey M Belyaev
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Leningradskaya, 68, Pesochny-2, St. Petersburg, Russia, 197758
- St. Petersburg Pediatric Medical University, St. Petersburg, Russia
| |
Collapse
|
7
|
Kechin A, Boyarskikh U, Borobova V, Khrapov E, Subbotin S, Filipenko M. BRACNAC: A BRCA1 and BRCA2 Copy Number Alteration Caller from Next-Generation Sequencing Data. Int J Mol Sci 2023; 24:16630. [PMID: 38068953 PMCID: PMC10706169 DOI: 10.3390/ijms242316630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Detecting copy number variations (CNVs) and alterations (CNAs) in the BRCA1 and BRCA2 genes is essential for testing patients for targeted therapy applicability. However, the available bioinformatics tools were initially designed for identifying CNVs/CNAs in whole-genome or -exome (WES) NGS data or targeted NGS data without adaptation to the BRCA1/2 genes. Most of these tools were tested on sample cohorts of limited size, with their use restricted to specific library preparation kits or sequencing platforms. We developed BRACNAC, a new tool for detecting CNVs and CNAs in the BRCA1 and BRCA2 genes in NGS data of different origin. The underlying mechanism of this tool involves various coverage normalization steps complemented by CNV probability evaluation. We estimated the sensitivity and specificity of our tool to be 100% and 94%, respectively, with an area under the curve (AUC) of 94%. The estimation was performed using the NGS data obtained from 213 ovarian and prostate cancer samples tested with in-house and commercially available library preparation kits and additionally using multiplex ligation-dependent probe amplification (MLPA) (12 CNV-positive samples). Using freely available WES and targeted NGS data from other research groups, we demonstrated that BRACNAC could also be used for these two types of data, with an AUC of up to 99.9%. In addition, we determined the limitations of the tool in terms of the minimum number of samples per NGS run (≥20 samples) and the minimum expected percentage of CNV-negative samples (≥80%). We expect that our findings will improve the efficacy of BRCA1/2 diagnostics. BRACNAC is freely available at the GitHub server.
Collapse
Affiliation(s)
- Andrey Kechin
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ulyana Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Viktoriya Borobova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Evgeniy Khrapov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Sergey Subbotin
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Ahmad O, Sutter C, Hirsch S, Pfister SM, Schaaf CP. BRCA1/2 potential founder variants in the Jordanian population: an opportunity for a customized screening panel. Hered Cancer Clin Pract 2023; 21:11. [PMID: 37400873 DOI: 10.1186/s13053-023-00256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
A founder variant is a genetic alteration, that is inherited from a common ancestor together with a surrounding chromosomal segment, and is observed at a high frequency in a defined population. This founder effect occurs as a consequence of long-standing inbreeding of isolated populations. For high-risk cancer predisposition genes, such as BRCA1/2, the identification of founder variants in a certain population could help designing customized cost-effective cancer screening panels. This advantage has been best utilized in designing a customized breast cancer BRCA screening panel for the Ashkenazi Jews (AJ) population, composed of the three BRCA founder variants which account for approximately 90% of identified BRCA alterations. Indeed, the high prevalence of pathogenic BRCA1/2 variants among AJ (~ 2%) has additionally contributed to make population-based screening cost-effective in comparison to family-history-based screening. In Jordan there are multiple demographic characteristics supporting the proposal of a founder effect. A high consanguinity rate of ~ 57% in the nineties of the last century and ~ 30% more recently is a prominent factor, in addition to inbreeding which is often practiced by different sub-populations of the country.This review explains the concept of founder effect, then applies it to analyze published Jordanian BRCA variants, and concludes that nine pathogenic (P) and likely pathogenic (LP) BRCA2 variants together with one pathogenic BRCA1 variant are potential founder variants. Together they make up 43% and 55% of all identified BRCA1/2 alterations in the two largest studied cohorts of young patients and high-risk patients respectively. These variants were identified based on being recurrent and either specific to ethnic groups or being novel. In addition, the report highlights the required testing methodologies to validate these findings, and proposes a health economic evaluation model to test cost-effectiveness of a population-based customized BRCA screening panel for the Jordanian population. The aim of this report is to highlight the potential utilization of founder variants in establishing customized cancer predisposition services, in order to encourage more population-based genomic studies in Jordan and similar populations.
Collapse
Affiliation(s)
- Olfat Ahmad
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
- University of Oxford, Oxford, UK
- King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Christian Sutter
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Steffen Hirsch
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian P Schaaf
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
9
|
Gajda-Walczak A, Potęga A, Kowalczyk A, Sek S, Zięba S, Kowalik A, Kudelski A, Nowicka AM. New, fast and cheap prediction tests for BRCA1 gene mutations identification in clinical samples. Sci Rep 2023; 13:7316. [PMID: 37147448 PMCID: PMC10163215 DOI: 10.1038/s41598-023-34588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023] Open
Abstract
Despite significant progress in cancer therapy, cancer is still the second cause of mortality in the world. The necessity to make quick therapeutic decisions forces the development of procedures allowing to obtain a reliable result in a quick and unambiguous manner. Currently, detecting predictive mutations, including BRCA1, is the basis for effectively treating advanced breast cancer. Here, we present new insight on gene mutation detection. We propose a cheap BRCA1 mutation detection tests based on the surface plasmon resonance (SPR) or quartz crystal microbalance with energy dissipation (QCM-D) response changes recorded during a hybridization process of an oligonucleotide molecular probe with DNA fragments, with and without the BRCA1 mutation. The changes in the morphology of the formed DNA layer caused by the presence of the mutation were confirmed by atomic force microscopy. The unique property of the developed SPR and QCM tests is really short time of analysis: ca. 6 min for SPR and ca. 25 min for QCM. The proposed tests have been verified on 22 different DNA extracted from blood leukocytes collected from cancer patients: 17 samples from patients with various BRCA1 gene mutation variants including deletion, insertion and missense single-nucleotide and 5 samples from patients without any BRCA1 mutation. Our test is a response to the need of medical diagnostics for a quick, unambiguous test to identify mutations of the BRCA1 gene, including missense single-nucleotide (SNPs).
Collapse
Affiliation(s)
| | - Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., 80-233, Gdańsk, Poland
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., 02-093, Warsaw, Poland
| | - Slawomir Sek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101 Str., 02-089, Warsaw, Poland
| | - Sebastian Zięba
- Molecular Diagnostics, Holy Cross Cancer Center, Stefana Artwińskiego 3 Str., 25-734, Kielce, Poland
| | - Artur Kowalik
- Molecular Diagnostics, Holy Cross Cancer Center, Stefana Artwińskiego 3 Str., 25-734, Kielce, Poland
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7 Str., 25-406, Kielce, Poland
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., 02-093, Warsaw, Poland
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., 02-093, Warsaw, Poland.
| |
Collapse
|
10
|
Kechin A, Boyarskikh U, Barinov A, Tanas A, Kazakova S, Zhevlova A, Khrapov E, Subbotin S, Mishukova O, Kekeeva T, Demidova I, Filipenko M. A spectrum of BRCA1 and BRCA2 germline deleterious variants in ovarian cancer in Russia. Breast Cancer Res Treat 2023; 197:387-395. [PMID: 36367610 DOI: 10.1007/s10549-022-06782-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE Pathogenic variants (PVs) in BRCA1 and BRCA2 genes are essential biomarkers of an increased breast and ovarian cancer risk and tumor sensitivity to poly ADP ribose polymerase inhibitors. In Russia, eight PVs were thought to be the most common, among which BRCA1 c.5266dup is the most frequently identified one. METHODS We show the distribution of BRCA1/2 PVs identified with quantitative PCR and targeted next-generation sequencing in 1399 ovarian cancer patients recruited into the study from 72 Russian regions in 2015-2021. RESULTS The most abundant PVs were c.5266dup (41.0%), c.4035del (7.0%), c.1961del (6.3%), c.181 T > G (5.2%), c.3756_3759del (1.8%), c.3700_3704del (1.5%), and c.68_69del (1.5%), all found in BRCA1 and known to be recurrent in Russia. Several other frequent PVs were identified: c.5152 + 1G > T (1.2%), c.1687C > T (1.0%), c.4689C > G (0.9%), c.1510del (0.6%), c.2285_2286del (0.6%) in the BRCA1 gene; and c.5286 T > G (1.2%), c.2808_2811del (0.8%), c.3847_3848del (0.8%), c.658_659del (0.7%), c.7879A > T (0.6%), in the BRCA2 gene. For the most common PV in the BRCA2 gene c.5286 T > G, we suggested that it arose about 700 years ago and is a new founder mutation. CONCLUSION This study extends our knowledge about the BRCA1 and BRCA2 pathogenic variants variability.
Collapse
Affiliation(s)
- Andrey Kechin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Ulyana Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alexey Barinov
- Moscow City Oncology Hospital No 62 of the Moscow Health Department, Istra, 143423, Russia
| | - Alexander Tanas
- Research Centre for Medical Genetics, Moscow, 115522, Russia
| | | | | | - Evgeniy Khrapov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Sergey Subbotin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga Mishukova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Tatiana Kekeeva
- Research Centre for Medical Genetics, Moscow, 115522, Russia
| | - Irina Demidova
- Moscow City Oncology Hospital No 62 of the Moscow Health Department, Istra, 143423, Russia
| | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
11
|
Doraczynska-Kowalik A, Michalowska D, Matkowski R, Czykalko E, Blomka D, Semeniuk M, Abrahamowska M, Janus-Szymanska G, Mlynarczykowska P, Szynglarewicz B, Pawlak I, Maciejczyk A, Laczmanska I. Detection of BRCA1/2 pathogenic variants in patients with breast and/or ovarian cancer and their families. Analysis of 3,458 cases from Lower Silesia (Poland) according to the diagnostic algorithm of the National Cancer Control Programme. Front Genet 2022; 13:941375. [PMID: 36171877 PMCID: PMC9510890 DOI: 10.3389/fgene.2022.941375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Breast and ovarian cancers are among the most common malignancies in the female population, with approximately 5–10% of cases being hereditary. BRCA1 and BRCA2 with other homologous recombination genes are the most tested genes in hereditary breast and ovarian cancer (HBOC) patients. As next-generation sequencing (NGS) has become a standard and popular technique, such as for HBOC, it has greatly simplified and accelerated molecular diagnosis of cancer. The study group included 3,458 HBOC patients or their relatives from Lower Silesia (Poland) (a voivodeship located in south-west Poland inhabited by 2.9 million people). All patients were tested according to the recommendations from the National Cancer Control Programme of the Ministry of Health for the years 2018–21. We tested 3,400 patients for recurrent pathogenic variants for the Polish population: five BRCA1 founder variants (c.5266dup, c.181T>G, c.4035del, c.3700_3704del, and c.68_69del), two PALB2 variants (c.509_510del, c.172_175del) and three CHEK2 variants [c.1100del, c.444+1G>A, g.27417113-27422508del (del5395)]. Next 260 patients from the study group were chosen for the BRCA1/2 NGS panel, and additionally selected marker pathogenic variants were tested using Sanger sequencing and MLPA methods in 45 and 13 individuals, respectively. The analysis of BRCA1/2 in the 3,458 patients with HBOC or their relatives revealed 144 carriers of 37 different pathogenic variants (22 in BRCA1 and 15 in BRCA2). Among all detected variants, 71.53% constituted founder pathogenic BRCA1 variants. Our study has revealed that for the Lower Silesian population, the first-line BRCA1/2 molecular test may be limited to only three variants in BRCA1—c.5266dup, c.181T>G, and c.4035del—but the aim should be to provide a full screening test of HBOC critical genes. The key and still growing role of molecular diagnostics of neoplasms, which includes HBOC, is undeniable. Therefore, it is necessary to provide complete and optimal therapeutic and prophylactic algorithms in line with current medical knowledge.
Collapse
Affiliation(s)
- Anna Doraczynska-Kowalik
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Rafal Matkowski,
| | - Dagmara Michalowska
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
- *Correspondence: Rafal Matkowski,
| | - Rafal Matkowski
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
- Department of Oncology, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Rafal Matkowski,
| | - Ewelina Czykalko
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
| | - Dorota Blomka
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
| | - Mariola Semeniuk
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
| | | | - Gabriela Janus-Szymanska
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | | | - Bartlomiej Szynglarewicz
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
- Department of Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Ireneusz Pawlak
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
| | - Adam Maciejczyk
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
- Department of Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Izabela Laczmanska
- Lower Silesian Oncology, Pulmonology and Hematology Center, Wroclaw, Poland
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
12
|
Jankowski M, Daca-Roszak P, Obracht-Prondzyński C, Płoski R, Lipska-Ziętkiewicz BS, Ziętkiewicz E. Genetic diversity in Kashubs: the regional increase in the frequency of several disease-causing variants. J Appl Genet 2022; 63:691-701. [PMID: 35971028 PMCID: PMC9637066 DOI: 10.1007/s13353-022-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022]
Abstract
Differential distribution of genetic variants’ frequency among human populations is caused by the genetic drift in isolated populations, historical migrations, and demography. Some of these variants are identical by descent and represent founder mutations, which — if pathogenic in nature — lead to the increased frequency of otherwise rare diseases. The detection of the increased regional prevalence of pathogenic variants may shed light on the historical processes that affected studied populations and can help to develop effective screening and diagnostic strategies as a part of personalized medicine. Here, we discuss the specific genetic diversity in Kashubs, the minority group living in northern Poland, reflected in the biased distribution of some of the repetitively found disease-causing variants. These include the following: (1) c.662A > G (p.Asp221Gly) in LDLR, causing heterozygous familial hypercholesterolemia; (2) c.3700_3704del in BRCA1, associated with hereditary breast and ovarian cancer syndrome; (3) c.1528G > C (p.Glu510Gln) in HADHA, seen in long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) deficiency, and (4) c.1032delT in NPHS2, associated with steroid-resistant nephrotic syndrome.
Collapse
Affiliation(s)
- Maciej Jankowski
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Beata S Lipska-Ziętkiewicz
- Clinical Genetics Unit, Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland. .,Centre for Rare Diseases, Medical University of Gdansk, Gdansk, Poland.
| | - Ewa Ziętkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
13
|
Zhang Y, Wu H, Yu Z, Li L, Zhang J, Liang X, Huang Q. Germline variants profiling of BRCA1 and BRCA2 in Chinese Hakka breast and ovarian cancer patients. BMC Cancer 2022; 22:842. [PMID: 35918668 PMCID: PMC9347172 DOI: 10.1186/s12885-022-09943-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/25/2022] [Indexed: 12/26/2022] Open
Abstract
Objective To investigate the prevalence and spectrum of BRCA1 and BRCA2 mutations in Chinese Hakka patients with breast and ovarian cancer. Methods A total of 1,664 breast or ovarian cancer patients were enrolled for genetic testing at our hospital. Germline mutations of the BRCA gene were analysed by next-generation sequencing, including the coding regions and exon intron boundary regions. Results The 1,664 patients included 1,415 (85.04%) breast cancer patients and 245 (14.72%) ovarian cancer patients, while four (0.24%) patients had both the breast and ovarian cancers. A total of 151 variants, including 71 BRCA1 variants and 80 BRCA2 variants, were detected in the 234 (14.06%) patients. The 151 variants included 58 pathogenic variants, 8 likely pathogenic variants, and 85 variants of unknown significance (VUS). A total of 56.25% (18/32) and 65.38% (17/26) of pathogenic variants (likely pathogenic variants are not included) were distributed in exon 14 of BRCA1 and exon 11 of BRCA2, respectively. The most common pathogenic variants among this Hakka population are c.2635G > T (p.Glu879*) (n = 7) in the BRCA1 gene and c.5164_5165del (p.Ser1722Tyrfs*4) (n = 7) in the BRCA2 gene among the Hakka population. A hotspot mutation in the Chinese population, the BRCA1 c.5470_5477del variant was not found in this Hakka population. The prevalence and spectrum of variants in the BRCA genes in the Hakka patients are different from that in other ethnic groups. Conclusions The most common pathogenic variant in this population is c.2635G > T in the BRCA1 gene, and c.5164_5165delAG in the BRCA2 gene in this population. The prevalence and spectrum of variants in the BRCA1 and BRCA2 genes in the Hakka patients from southern China are different from those in other ethnic groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09943-0.
Collapse
Affiliation(s)
- Yunuo Zhang
- Department of Medical Oncology, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China
| | - Heming Wu
- Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Zhikang Yu
- Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China.,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Liang Li
- Department of Medical Oncology, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China
| | - Jinhong Zhang
- Department of Medical Oncology, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China
| | - Xinhong Liang
- Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China.,Radiology department, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Qingyan Huang
- Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, No 63 Huangtang Road, Meijiang District, Meizhou, 514031, People's Republic of China. .,Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China. .,Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.
| |
Collapse
|
14
|
Tran VT, Nguyen ST, Pham XD, Phan TH, Nguyen VC, Nguyen HT, Nguyen HP, Doan PTT, Le TA, Nguyen BT, Jasmine TX, Nguyen DS, Nguyen HDL, Nguyen NM, Do DX, Tran VU, Nguyen HHT, Le MP, Nguyen YN, Do TTT, Truong DK, Tang HS, Phan MD, Nguyen HN, Giang H, Tu LN. Pathogenic Variant Profile of Hereditary Cancer Syndromes in a Vietnamese Cohort. Front Oncol 2022; 11:789659. [PMID: 35070997 PMCID: PMC8767154 DOI: 10.3389/fonc.2021.789659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Background Hereditary cancer syndromes (HCS) are responsible for 5-10% of cancer cases. Genetic testing to identify pathogenic variants associated with cancer predisposition has not been routinely available in Vietnam. Consequently, the prevalence and genetic landscape of HCS remain unknown. Methods 1165 Vietnamese individuals enrolled in genetic testing at our laboratory in 2020. We performed analysis of germline mutations in 17 high- and moderate- penetrance genes associated with HCS by next generation sequencing. Results A total of 41 pathogenic variants in 11 genes were detected in 3.2% individuals. The carrier frequency was 4.2% in people with family or personal history of cancer and 2.6% in those without history. The percentage of mutation carriers for hereditary colorectal cancer syndromes was 1.3% and for hereditary breast and ovarian cancer syndrome was 1.6%. BRCA1 and BRCA2 mutations were the most prevalent with the positive rate of 1.3% in the general cohort and 5.1% in breast or ovarian cancer patients. Most of BRCA1 mutations located at the BRCA C-terminus domains and the top recurrent mutation was NM_007294.3:c.5251C>T (p.Arg1751Ter). One novel variant NM_000038.6(APC):c.6665C>A (p.Pro2222His) was found in a breast cancer patient with a strong family history of cancer. A case study of hereditary cancer syndrome was illustrated to highlight the importance of genetic testing. Conclusion This is the first largest analysis of carrier frequency and mutation spectrum of HCS in Vietnam. The findings demonstrate the clinical significance of multigene panel testing to identify carriers and their at-risk relatives for better cancer surveillance and management strategies.
Collapse
Affiliation(s)
| | - Sao Trung Nguyen
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | | | | | - Huu Thinh Nguyen
- University Medical Center Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huu Phuc Nguyen
- University Medical Center Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Phuong Thao Thi Doan
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | | | | | - Duy Sinh Nguyen
- Department of Oncology, Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hong-Dang Luu Nguyen
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Ngoc Mai Nguyen
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Duy Xuan Do
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Vu Uyen Tran
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Hue Hanh Thi Nguyen
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Minh Phong Le
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Yen Nhi Nguyen
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | | | | | - Hung Sang Tang
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Minh-Duy Phan
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Hoai-Nghia Nguyen
- University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoa Giang
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Lan N Tu
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
McNevin CS, Cadoo K, Baird AM, Murchan P, Sheils O, McDermott R, Finn S. Pathogenic BRCA Variants as Biomarkers for Risk in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13225697. [PMID: 34830851 PMCID: PMC8616097 DOI: 10.3390/cancers13225697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Historically, the treatment of prostate cancer was a blanket approach for all. Prostate cancer has not benefitted from targeted treatments based on specific tumour characteristics (ie. Particular genetic or molecular patterns) the way other cancers have. This is important as studies have shown that prostate cancer patients with certain errors in their genes, such as BRCA2 or BRCA1, are more likely to have worse disease and poorer outcome. These patients can be treated successfully with a group of drugs called ‘PARP inhibitors’. This paper examines the prognostic, clinical and therapeutic role of BRCA2/BRCA1 mutations across the evolution of PCa. The impact of the inclusion of BRCA genes on genetic screening will also be outlined. Abstract Studies have demonstrated that men with Prostate Cancer (PCa) harboring BRCA2/BRCA1 genetic aberrations, are more likely to have worse disease and a poorer prognosis. A mutation in BRCA2 is known to confer the highest risk of PCa for men (8.6 fold in men ≤65 years) making BRCA genes a conceivable genomic biomarker for risk in PCa. These genes have attracted a lot of research attention however their role in the clinical assessment and treatment of PCa remains complex. Multiple studies have been published examining the relationship between prostate cancer and BRCA mutations. Here BRCA mutations are explored specifically as a biomarker for risk in PCa. It is in this context, we examined the prognostic, clinical and therapeutic role of BRCA2/BRCA1 mutations across the evolution of PCa. The impact of the inclusion of BRCA genes on genetic screening will also be outlined.
Collapse
Affiliation(s)
- Ciara S. McNevin
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland; (C.S.M.); (P.M.)
- Department of Medical Oncology, St. James Hospital, D08 NHY1 Dublin, Ireland;
| | - Karen Cadoo
- Department of Medical Oncology, St. James Hospital, D08 NHY1 Dublin, Ireland;
- School of Medicine, Trinity Translational Medicine Institute, St. James Hospital, D08 W9RT Dublin, Ireland; (A.-M.B.); (O.S.)
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, St. James Hospital, D08 W9RT Dublin, Ireland; (A.-M.B.); (O.S.)
| | - Pierre Murchan
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland; (C.S.M.); (P.M.)
- Science Foundation Ireland Centre for Research Training in Genomics Data Science, School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, H91 TK33 Galway, Ireland
| | - Orla Sheils
- School of Medicine, Trinity Translational Medicine Institute, St. James Hospital, D08 W9RT Dublin, Ireland; (A.-M.B.); (O.S.)
| | - Ray McDermott
- Department of Medical Oncology, Tallaght University Hospital, D24 NR0A Dublin, Ireland;
- Department of Medical Oncology, St. Vincent’s University Hospital, D04 YN26 Dublin, Ireland
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland; (C.S.M.); (P.M.)
- Department of Medical Oncology, St. James Hospital, D08 NHY1 Dublin, Ireland;
- Correspondence:
| |
Collapse
|
16
|
Kedzierawski P, Macek P, Ciepiela I, Kowalik A, Gozdz S. Evaluation of Complete Pathological Regression after Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients with BRCA1 Founder Mutation Aided Bayesian A/B Testing Approach. Diagnostics (Basel) 2021; 11:diagnostics11071144. [PMID: 34201809 PMCID: PMC8306462 DOI: 10.3390/diagnostics11071144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the probability of pathologic complete regression (pCR) by the BRCA1 gene mutation status in patients with triple-negative breast cancer (TNBC) treated with neoadjuvant chemotherapy. The study involved 143 women (mean age 55.4 ± 13.1 years) with TNBC. The BRCA1 mutation was observed in 17% of the subjects. The most commonly used (85.3%) chemotherapy regimen was four cycles of adriamycine and cyclophosphamide followed by 12 cycles of paclitaxel (4AC + 12T). The differences between clinico-pathological factors by BRCA1 status were estimated. Odds ratios and 95% confidence intervals for pCR vs. non-pCR were calculated using logistic regression. The probability distribution of pCR based on BRCA1 status was estimated using beta distributions. The presence of T3-T4 tumours, cancer in stages II and III, lymphovascular invasion, and the use of chemotherapy schedules other than 4AC + 12T significantly decreased the odds of pCR. It was established that there was a 20% chance that pCR in patients with the BRCA1 mutation was 50% or more times as frequent than in patients without the mutation. Thus, the BRCA1 mutation can be a predictive factor for pCR in patients with TNBC.
Collapse
Affiliation(s)
- Piotr Kedzierawski
- Department of Oncology, Institute of Health Sciences, Collegium Medicum, Jan Kochanowski University, 25-713 Kielce, Poland; (P.M.); (S.G.)
- Radiotherapy Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland;
- Correspondence:
| | - Pawel Macek
- Department of Oncology, Institute of Health Sciences, Collegium Medicum, Jan Kochanowski University, 25-713 Kielce, Poland; (P.M.); (S.G.)
- Department of Epidemiology and Cancer Control, Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Izabela Ciepiela
- Radiotherapy Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland;
| | - Artur Kowalik
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland;
- Department of Molecular Diagnostics, Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Stanislaw Gozdz
- Department of Oncology, Institute of Health Sciences, Collegium Medicum, Jan Kochanowski University, 25-713 Kielce, Poland; (P.M.); (S.G.)
- Clinical Oncology Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland
| |
Collapse
|
17
|
BRCA1/2 Mutation Detection in the Tumor Tissue from Selected Polish Patients with Breast Cancer Using Next Generation Sequencing. Genes (Basel) 2021; 12:genes12040519. [PMID: 33918338 PMCID: PMC8065856 DOI: 10.3390/genes12040519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Although, in the mutated BRCA detected in the Polish population of patients with breast cancer, there is a large percentage of recurrent pathogenic variants, an increasing need for the assessment of rare BRCA1/2 variants using NGS can be observed. (2) Methods: We studied 75 selected patients with breast cancer (negative for the presence of 5 mutations tested in the Polish population in the prophylactic National Cancer Control Program). DNA extracted from the cancer tissue of these patients was used to prepare a library and to sequence all coding regions of the BRCA1/2 genes. (3) Results: We detected nine pathogenic variants in 8 out of 75 selected patients (10.7%). We identified one somatic and eight germline variants. We also used different bioinformatic NGS software programs to analyze NGS FASTQ files and established that tertiary analysis performed with different tools was more likely to give the same outcome if we analyzed files received from secondary analysis using the same method. (4) Conclusions: Our study emphasizes (i) the importance of an NGS validation process with a bioinformatic procedure included; (ii) the importance of screening both somatic and germline pathogenic variants; (iii) the urgent need to identify additional susceptible genes in order to explain the high percentage of non-BRCA-related hereditary cases of breast cancer.
Collapse
|
18
|
Loza P, Irmejs A, Daneberga Z, Miklasevics E, Berga-Svitina E, Subatniece S, Maksimenko J, Trofimovics G, Tauvena E, Ukleikins S, Gardovskis J. A novel frequent BRCA1 recurrent variant c.5117G > A (p.Gly1206Glu) identified after 20 years of BRCA1/2 research in the Baltic region: cohort study and literature review. Hered Cancer Clin Pract 2021; 19:11. [PMID: 33468216 PMCID: PMC7814703 DOI: 10.1186/s13053-021-00168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023] Open
Abstract
Background Several recent studies in the Baltic region have found extended spectrum of pathogenic variants (PV) of the BRCA1/2 genes. The aim of current study is to analyze the spectrum of the BRCA1/2 PV in population of Latvia and to compare common PV between populations of the Baltic region. Methods We present a cohort of 9543 unrelated individuals including ones with cancer and unaffected individuals from population of Latvia, who were tested for three most common BRCA1 founder PV. In second line testing, 164 founder negative high-risk individuals were tested for PV of the BRCA1/2 using next generation sequencing (NGS). Local spectrum of the BRCA1/2 PV was compared with the Baltic region by performing a literature review. Results Founder PV c.5266dupC, c.4035delA or c.181 T > G was detected in 369/9543 (3.9%) cases. Other BRCA1/2 PV were found in 44/164 (26.8%) of NGS cases. Four recurrent BRCA1 variants c.5117G > A (p.Gly1706Glu), c.4675G > A (p.Glu1559Lys), c.5503C > T (p.Arg1835*) and c.1961delA (p.Lys654fs) were detected in 18/44 (41.0%), 5/44 (11.4%), 2/44 (4.5%) and 2/44 (4.5%) cases respectively. Additionally, 11 BRCA1 PV and six BRCA2 PV were each found in single family. Conclusions By combining three studies by our group of the same cohort in Latvia, frequency of the BRCA1/2 PV for unselected breast and ovarian cancer cases is 241/5060 (4.8%) and 162/1067 (15.2%) respectively. The frequency of three “historical” founder PV is up to 87.0% (369/424). Other non-founder PV contribute to at least 13.0% (55/424) and this proportion probably will rise by increasing numbers of the BRCA1/2 sequencing. In relative numbers, c.5117G > A is currently the third most frequent PV of the BRCA1 in population of Latvia, overcoming previously known third most common founder variant c.181 T > G. In addition to three BRCA1 founder PV, a total of five recurrent BRCA1 and two recurrent BRCA2 PV have been reported in population of Latvia so far. Many of the BRCA1/2 PV reported in Latvia are shared among other populations of the Baltic region.
Collapse
Affiliation(s)
- P Loza
- Riga Stradins University, Institute of Oncology, Riga, Latvia. .,Pauls Stradins Clinical University Hospital, Riga, Latvia.
| | - A Irmejs
- Riga Stradins University, Institute of Oncology, Riga, Latvia
| | - Z Daneberga
- Riga Stradins University, Institute of Oncology, Riga, Latvia
| | - E Miklasevics
- Riga Stradins University, Institute of Oncology, Riga, Latvia
| | - E Berga-Svitina
- Riga Stradins University, Institute of Oncology, Riga, Latvia
| | - S Subatniece
- Riga Stradins University, Institute of Oncology, Riga, Latvia
| | - J Maksimenko
- Riga Stradins University, Institute of Oncology, Riga, Latvia
| | - G Trofimovics
- Department of Surgery, Riga Stradins University, Riga, Latvia
| | - E Tauvena
- Department of Surgery, Riga Stradins University, Riga, Latvia
| | - S Ukleikins
- Department of Surgery, Riga Stradins University, Riga, Latvia
| | - J Gardovskis
- Department of Surgery, Riga Stradins University, Riga, Latvia
| |
Collapse
|
19
|
Genetic testing in Poland and Ukraine: should comprehensive germline testing of BRCA1 and BRCA2 be recommended for women with breast and ovarian cancer? Genet Res (Camb) 2020; 102:e6. [PMID: 32772980 PMCID: PMC7443769 DOI: 10.1017/s0016672320000075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose To characterize the spectrum of BRCA1 and BRCA2 pathogenic germline variants in women from south-west Poland and west Ukraine affected with breast or ovarian cancer. Testing in women at high risk of breast and ovarian cancer in these regions is currently mainly limited to founder mutations. Methods Unrelated women affected with breast and/or ovarian cancer from Poland (n = 337) and Ukraine (n = 123) were screened by targeted sequencing. Excluded from targeted sequencing were 34 Polish women who had previously been identified as carrying a founder mutation in BRCA1. No prior testing had been conducted among the Ukrainian women. Thus, this study screened BRCA1 and BRCA2 in the germline DNA of 426 women in total. Results We identified 31 and 18 women as carriers of pathogenic/likely pathogenic (P/LP) genetic variants in BRCA1 and BRCA2, respectively. We observed five BRCA1 and eight BRCA2 P/LP variants (13/337, 3.9%) in the Polish women. Combined with the 34/337 (10.1%) founder variants identified prior to this study, the overall P/LP variant frequency in the Polish women was thus 14% (47/337). Among the Ukrainian women, 16/123 (13%) women were identified as carrying a founder mutation and 20/123 (16.3%) were found to carry non-founder P/LP variants (10 in BRCA1 and 10 in BRCA2). Conclusions These results indicate that genetic testing in women at high risk of breast and ovarian cancer in Poland and Ukraine should not be limited to founder mutations. Extended testing will enhance risk stratification and management for these women and their families.
Collapse
|
20
|
Sokolenko AP, Sokolova TN, Ni VI, Preobrazhenskaya EV, Iyevleva AG, Aleksakhina SN, Romanko AA, Bessonov AA, Gorodnova TV, Anisimova EI, Savonevich EL, Bizin IV, Stepanov IA, Krivorotko PV, Berlev IV, Belyaev AM, Togo AV, Imyanitov EN. Frequency and spectrum of founder and non-founder BRCA1 and BRCA2 mutations in a large series of Russian breast cancer and ovarian cancer patients. Breast Cancer Res Treat 2020; 184:229-235. [PMID: 32776218 DOI: 10.1007/s10549-020-05827-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The spectrum of BRCA1 and BRCA2 mutations in Slavic countries is characterized by a high prevalence of founder alleles. METHODS We analyzed a large data set of Russian breast cancer (BC) and ovarian cancer (OC) patients, who were subjected to founder mutation tests or full-length BRCA1 and BRCA2 analysis. RESULTS The most commonly applied test, which included four founder mutations (BRCA1: 5382insC, 4153delA, 185delAG; BRCA2: 6174delT), identified BRCA1 or BRCA2 heterozygosity in 399/8533 (4.7%) consecutive BC patients, 230/2317 (9.9%) OC patients, and 30/118 (25.4%) women with a combination of BC and OC. The addition of another four recurrent BRCA1 mutations to the test (BRCA1 C61G, 2080delA, 3819del5, 3875del4) resulted in evident increase in the number of identified mutation carriers (BC: 16/993 (1.6%); OC: 34/1289 (2.6%); BC + OC: 2/39 (5.1%)). Full-length sequencing of the entire BRCA1 and BRCA2 coding region was applied to 785 women, very most of whom demonstrated clinical signs of BRCA-driven disease, but turned out negative for all described above founder alleles. This analysis revealed additional BRCA1 or BRCA2 mutation carriers in 54/282 (19.1%) BC, 50/472 (10.6%) OC, and 13/31 (42%) BC + OC patients. The analysis of frequencies of founder and "rare" BRCA1 and BRCA2 pathogenic alleles across various clinical subgroups (BC vs. OC vs. BC + OC; family history positive vs. negative; young vs. late-onset; none vs. single vs. multiple clinical indicators of BRCA1- or BRCA2-associated disease) revealed that comprehensive BRCA1 and BRCA2 analysis increased more than twice the number of identified mutation carriers in all categories of the examined women. CONCLUSION Full-length BRCA1 and BRCA2 sequencing is strongly advised to Slavic subjects, who have medical indications for BRCA1 and BRCA2 testing but are negative for recurrent BRCA1 and BRCA2 mutations.
Collapse
Affiliation(s)
- Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia. .,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg, Russia.
| | - Tatiana N Sokolova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical and Chemical Medicine, Moscow, Russia
| | - Valeria I Ni
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - Elena V Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical and Chemical Medicine, Moscow, Russia
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical and Chemical Medicine, Moscow, Russia
| | - Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical and Chemical Medicine, Moscow, Russia
| | - Alexandr A Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg, Russia
| | - Alexandr A Bessonov
- Department of Mammology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - Tatiana V Gorodnova
- Department of Oncogynecology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | | | - Elena L Savonevich
- Department of Obstetrics and Gynecology, Grodno State Medical University, Grodno, Belarus
| | - Ilya V Bizin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - Ilya A Stepanov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - Petr V Krivorotko
- Department of Mammology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - Igor V Berlev
- Department of Oncogynecology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia
| | - Alexey M Belyaev
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia.,Department of Oncology, I.I. Mechnikov North-Western Medical University, Saint-Petersburg, Russia
| | - Alexandr V Togo
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical and Chemical Medicine, Moscow, Russia
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, Saint-Petersburg, Russia.,Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg, Russia.,Department of Oncology, I.I. Mechnikov North-Western Medical University, Saint-Petersburg, Russia
| |
Collapse
|
21
|
Vu HA, Phu ND, Khuong LT, Hoa PH, Nhu BTH, Nhan VT, Thanh LQ, Sinh ND, Chi HT, Quan ND, Binh NT. Recurrent BRCA1 Mutation, but no BRCA2 Mutation, in Vietnamese Patients with Ovarian Carcinoma Detected with Next Generation Sequencing. Asian Pac J Cancer Prev 2020; 21:2331-2335. [PMID: 32856862 PMCID: PMC7771942 DOI: 10.31557/apjcp.2020.21.8.2331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Identification of germline and somatic BRCA1/2 mutations in ovarian cancer is important for genetic counseling and treatment decision making with poly ADP ribose polymerase inhibitors. Unfortunately, data on the frequency of BRCA1/2 mutations in Vietnamese patients are scare. Methods: We aim to explore the occurrence of BRCA1/2 mutations in 101 Vietnamese patients with ovarian cancer including serous (n = 58), endometrioid (n = 14), mucinous (n = 24), and clear cell (n = 5) carcinomas. BRCA1/2 mutations were detected from formalin-fixed parafin-embedded tumor samples using the OncomineTM BRCA Research Assay on Personal Genome Machine Platform with Ion Reporter Software for sequencing data analysis. The presence of pathogenic mutations was confirmed by Sanger sequencing. Results: We found no BRCA2 mutation in the entire cohort. Four types of pathogenic mutations in BRCA1 (Ser454Ter, Gln541Ter, Arg1751Ter, and Gln1779AsnfsTer14) were detected in 8 unrelated patients (7.9%) belonging to serous and endometrioid carcinoma groups. Except for the c.1360_1361delAG (Ser454Ter) mutation in BRCA1 exon 11 that was somatic, the other mutations in exons 11, 20, and 22 were germline. Interestingly, the recurrent Arg1751Ter mutation in BRCA1 exon 20 appeared in 4 patients, suggesting that this is a founder mutation in Vietnamese patients. Conclusion: Mutational analysis of tumor tissue using next generation sequencing allowed the detection of both germline and somatic BRCA1/2 mutations.
Collapse
Affiliation(s)
- Hoang Anh Vu
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ngo Dai Phu
- University of Science - Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Le Thai Khuong
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | | | | | | | - Nguyen Duy Sinh
- Vinmec Central Park International Hospital, Ho Chi Minh City, Vietnam
| | - Hoang Thanh Chi
- Mekophar Chemical Pharmaceutical Joint Stock Company, Ho Chi Minh City, Vietnam
| | - Nguyen Dang Quan
- Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
22
|
Siraj AK, Bu R, Iqbal K, Siraj N, Al-Haqawi W, Al-Badawi IA, Parvathareddy SK, Masoodi T, Tulbah A, Al-Dayel F, Al-Kuraya KS. Prevalence, spectrum, and founder effect of BRCA1 and BRCA2 mutations in epithelial ovarian cancer from the Middle East. Hum Mutat 2019; 40:729-733. [PMID: 30825404 DOI: 10.1002/humu.23736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
Germline mutations in breast cancer susceptibility gene 1 and 2 have previously been estimated to contribute to 13-18% of all epithelial ovarian cancer (EOC). To characterize the prevalence and effect of BRCA1 and BRCA2 mutations in Middle Eastern EOC patients, BRCA mutation screening was performed in 407 unselected ovarian cancer patients using targeted capture and/or Sanger sequencing. A total of 19 different pathogenic variants (PVs) were identified in 50 (12.3%) women. Nine PVs were recurrent accounting for 80% of cases with PVs (40/50) in the entire cohort. Founder mutation analysis revealed only two mutations (c.4136_4137delCT and c.1140dupG) sharing the same haplotypes thus representing founder mutations in the Middle Eastern population. Identification of the mutation spectrum, prevalence, and founder effect in Middle Eastern population facilitates genetic counseling, risk assessment, and development of a cost-effective screening strategy.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Kaleem Iqbal
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nabil Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Wael Al-Haqawi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ismail A Al-Badawi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tariq Masoodi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Asma Tulbah
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Moes-Sosnowska J, Rzepecka IK, Chodzynska J, Dansonka-Mieszkowska A, Szafron LM, Balabas A, Lotocka R, Sobiczewski P, Kupryjanczyk J. Clinical importance of FANCD2, BRIP1, BRCA1, BRCA2 and FANCF expression in ovarian carcinomas. Cancer Biol Ther 2019; 20:843-854. [PMID: 30822218 PMCID: PMC6606037 DOI: 10.1080/15384047.2019.1579955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE DNA repair pathways are potential targets of molecular therapy in cancer patients. The FANCD2, BRIP1, BRCA1/2, and FANCF genes are involved in homologous recombination DNA repair, which implicates their possible role in cell response to DNA-damaging agents. We evaluated a clinical significance of pre-treatment expression of these genes at mRNA level in 99 primary, advanced-stage ovarian carcinomas from patients, who later received taxane-platinum (TP) or platinum-cyclophosphamide (PC) treatment. METHODS Gene expression was determined with the use of Real-Time PCR. The BRCA2 and BRIP1 gene sequence was investigated with the use of SSCP, dHPLC, and PCR-sequencing. RESULTS Increased FANCD2 expression occurred to be a negative prognostic factor for all patients (PC+TP:HR 3.85, p = 0.0003 for the risk of recurrence; HR 1.96, p = 0.02 for the risk of death), and this association was even stronger in the TP-treated group (HR 6.7, p = 0.0002 and HR 2.33, p = 0.01, respectively). Elevated BRIP1 expression was the only unfavorable molecular factor in the PC-treated patients (HR 8.37, p = 0.02 for the risk of recurrence). Additionally, an increased FANCD2 and BRCA1/2 expression levels were associated with poor ovarian cancer outcome in either TP53-positive or -negative subgroups of the TP-treated patients, however these groups were small. Sequence analysis identified one protein truncating variant (1/99) in BRCA2 and no mutations (0/56) in BRIP1. CONCLUSIONS Our study shows for the first time that FANCD2 overexpression is a strong negative prognostic factor in ovarian cancer, particularly in patients treated with TP regimen. Moreover, increased mRNA level of the BRIP1 is a negative prognostic factor in the PC-treated patients. Next, changes in the BRCA2 and BRIP1 genes are rare and together with other analyzed FA genes considered as homologous recombination deficiency may not affect the expression level of analyzed genes.
Collapse
Affiliation(s)
- Joanna Moes-Sosnowska
- a Department of Immunology , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Iwona K Rzepecka
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Joanna Chodzynska
- c Laboratory of Bioinformatics and Biostatistics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Agnieszka Dansonka-Mieszkowska
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Lukasz M Szafron
- a Department of Immunology , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Aneta Balabas
- d Department of Genetics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Renata Lotocka
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Piotr Sobiczewski
- e Department of Gynecologic Oncology , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Jolanta Kupryjanczyk
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| |
Collapse
|