1
|
Pavan-Guimaraes J, Devos L, Lascaris B, de Meijer VE, Monbaliu D, Jochmans I, Pulitano C, Porte RJ, Martins PN. Long-Term Liver Machine Perfusion Preservation: A Review of Recent Advances, Benefits and Logistics. Artif Organs 2025; 49:339-352. [PMID: 39895504 DOI: 10.1111/aor.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND The global shortage of suitable donor livers for transplantation has prompted efforts to expand the donor pool by using extended criteria donors. Machine preservation technology has shown promise in optimizing graft preservation and improving logistics. Additionally, it holds potential for organ repair, regeneration, therapeutic applications during extended preservation periods, and enhancing organ allocation. METHODS We conducted a comprehensive literature review using PubMed, Embase, and Web of Science databases. All studies published between January 1, 2022, and February 7, 2024, that described machine perfusion preservation of livers for more than 24 h were eligible for inclusion. The findings were synthesized in a narrative review format to highlight key benefits and advancements. RESULTS We identified eleven studies from multiple research groups, employing various techniques, devices, and preservation durations. Perfusion durations ranged from 1 to 13 days, with notable variations in protocols for long-term preservation beyond 24 h. Viability was assessed during perfusion only. No livers were transplanted. Among the reviewed studies, the introduction of a dialysis system emerged as the most effective strategy for managing waste accumulation during long-term liver perfusion. Differences were also observed in hemodynamics, oxygenation, organ chambers, supplemental regimens, and glycemic control. CONCLUSION Over the past two years, substantial progress has been made in refining protocols for long-term liver machine perfusion, with significant advancements in waste management, enabling successful multi-day perfusions. While these developments are promising, further research is necessary to standardize and optimize long-term perfusion protocols, establishing a reliable platform for both organ preservation and therapeutic applications.
Collapse
Affiliation(s)
| | - Lene Devos
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
| | - Bianca Lascaris
- Section of HPB Surgery and Liver Transplantation, UMCG Comprehensive Transplant Center, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Section of HPB Surgery and Liver Transplantation, UMCG Comprehensive Transplant Center, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Ina Jochmans
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Carlo Pulitano
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Robert J Porte
- Division of HPB and Transplant Surgery, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paulo N Martins
- Department of Surgery, Transplant Institute, University of Oklahoma, Oklahoma City, Oklahoma, USA
| |
Collapse
|
2
|
Broere R, Luijmes SH, de Jonge J, Porte RJ. Graft repair during machine perfusion: a current overview of strategies. Curr Opin Organ Transplant 2024; 29:248-254. [PMID: 38726753 PMCID: PMC11224572 DOI: 10.1097/mot.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
PURPOSE OF REVIEW With changing donor characteristics (advanced age, obesity), an increase in the use of extended criteria donor (ECD) livers in liver transplantation is seen. Machine perfusion allows graft viability assessment, but still many donor livers are considered nontransplantable. Besides being used as graft viability assessment tool, ex situ machine perfusion offers a platform for therapeutic strategies to ameliorate grafts prior to transplantation. This review describes the current landscape of graft repair during machine perfusion. RECENT FINDINGS Explored anti-inflammatory therapies, including inflammasome inhibitors, hemoabsorption, and cellular therapies mitigate the inflammatory response and improve hepatic function. Cholangiocyte organoids show promise in repairing the damaged biliary tree. Defatting during normothermic machine perfusion shows a reduction of steatosis and improved hepatobiliary function compared to nontreated livers. Uptake of RNA interference therapies during machine perfusion paves the way for an additional treatment modality. SUMMARY The possibility to repair injured donor livers during ex situ machine perfusion might increase the utilization of ECD-livers. Application of defatting agents is currently explored in clinical trials, whereas other therapeutics require further research or optimization before entering clinical research.
Collapse
Affiliation(s)
- Roberto Broere
- Department of Surgery, Division of Hepato-Pancreato- Biliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
3
|
Scatton O, Turco C, Savier E, Pelissié J, Legallais C, Sakka M, Aoudjehane L, Wendum D, Migliazza J, Spiritelli S, Conti F, Goumard C. Preclinical validation of a customized circuit for ex situ uninterrupted cold-to-warm prolonged perfusion of the liver. Artif Organs 2024; 48:876-890. [PMID: 38553992 DOI: 10.1111/aor.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 07/23/2024]
Abstract
CONTEXT Clinical adoption of ex situ liver perfusion is growing. While hypothermic perfusion protects against ischemia-reperfusion injury in marginal grafts, normothermic perfusion enables organ viability assessment and therefore selection of borderline grafts. The combination of hypothermic and normothermic perfusion, known as "cold-to-warm," may be the optimal sequence for organ preservation, but is difficult to achieve with most commercial perfusion systems. We developed an adaptable customized circuit allowing uninterrupted "cold-to-warm" perfusion and conducted preclinical studies on healthy porcine livers and discarded human livers to demonstrate the circuit's efficacy. METHODS In collaboration with bioengineers, we developed a customized circuit that adapts to extracorporeal circulation consoles used in cardiovascular surgery and includes a proprietary reservoir enabling easy perfusate change without interrupting perfusion. This preclinical study was conducted on porcine and human livers. Perfusion parameters (pressures, flows, oxygenation) and organ viability were monitored. RESULTS The customized circuit was adapted to a LivaNova S5® console, and the perfusions were flow-driven with real-time pressure monitoring. Ten porcine liver and 12 discarded human liver perfusions were performed during 14 to 18 h and 7 to 25 h, respectively. No hyperpressure was observed (porcine and human portal pressure 2-6 and 2-8 mm Hg; arterial pressure 10-65 and 20-65 mm Hg, respectively). No severe histological tissue injury was observed (Suzuki score ≤ 3 at the end of perfusion). Seven (70%) porcine livers and five (42%) human livers met the UK viability criteria. CONCLUSION The customized circuit and system design enables smooth uninterrupted "cold-to-warm" perfusion not present in current commercial perfusion systems.
Collapse
Affiliation(s)
- Olivier Scatton
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Célia Turco
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
- Liver Transplantation Unit, Department of Digestive and Oncologic Surgery, University Hospital of Besançon, Besançon, France
| | - Eric Savier
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Jérôme Pelissié
- Department of Extracorporeal Perfusion and Vascular Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cécile Legallais
- Department of Metabolic Biochemistry, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Medhi Sakka
- Department of Metabolic Biochemistry, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lynda Aoudjehane
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Dominique Wendum
- Department of Pathology, Saint-Antoine Hospital (AP-HP), Paris, France
| | - John Migliazza
- Department of Discovery, Research and Development, LivaNova PLC, London, UK
| | - Sandra Spiritelli
- Department of Discovery, Research and Development, LivaNova PLC, London, UK
| | - Filomena Conti
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
- Department of Medical Liver Transplantation, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France
| | - Claire Goumard
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Abbas SH, Ceresa CDL, Hodson L, Nasralla D, Watson CJE, Mergental H, Coussios C, Kaloyirou F, Brusby K, Mora A, Thomas H, Kounali D, Keen K, Pollok JM, Gaurav R, Iype S, Jassem W, Perera MTP, Hakeem AR, Knight S, Friend PJ. Defatting of donor transplant livers during normothermic perfusion-a randomised clinical trial: study protocol for the DeFat study. Trials 2024; 25:386. [PMID: 38886851 PMCID: PMC11181618 DOI: 10.1186/s13063-024-08189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Liver disease is the third leading cause of premature death in the UK. Transplantation is the only successful treatment for end-stage liver disease but is limited by a shortage of suitable donor organs. As a result, up to 20% of patients on liver transplant waiting lists die before receiving a transplant. A third of donated livers are not suitable for transplant, often due to steatosis. Hepatic steatosis, which affects 33% of the UK population, is strongly associated with obesity, an increasing problem in the potential donor pool. We have recently tested defatting interventions during normothermic machine perfusion (NMP) in discarded steatotic human livers that were not transplanted. A combination of therapies including forskolin (NKH477) and L-carnitine to defat liver cells and lipoprotein apheresis filtration were investigated. These interventions resulted in functional improvement during perfusion and reduced the intrahepatocellular triglyceride (IHTG) content. We hypothesise that defatting during NMP will allow more steatotic livers to be transplanted with improved outcomes. METHODS In the proposed multi-centre clinical trial, we will randomly assign 60 livers from donors with a high-risk of hepatic steatosis to either NMP alone or NMP with defatting interventions. We aim to test the safety and feasibility of the defatting intervention and will explore efficacy by comparing ex-situ and post-reperfusion liver function between the groups. The primary endpoint will be the proportion of livers that achieve predefined functional criteria during perfusion which indicate potential suitability for transplantation. These criteria reflect hepatic metabolism and injury and include lactate clearance, perfusate pH, glucose metabolism, bile composition, vascular flows and transaminase levels. Clinical secondary endpoints will include proportion of livers transplanted in the two arms, graft function; cell-free DNA (cfDNA) at follow-up visits; patient and graft survival; hospital and ITU stay; evidence of ischemia-reperfusion injury (IRI); non-anastomotic biliary strictures and recurrence of steatosis (determined on MRI at 6 months). DISCUSSION This study explores ex-situ pharmacological optimisation of steatotic donor livers during NMP. If the intervention proves effective, it will allow the safe transplantation of livers that are currently very likely to be discarded, thereby reducing waiting list deaths. TRIAL REGISTRATION ISRCTN ISRCTN14957538. Registered in October 2022.
Collapse
Affiliation(s)
- Syed Hussain Abbas
- Nuffield Department of Surgical Sciences, University of Oxford, The Churchill Hospital, Oxford, OX3 7LJ, UK.
| | - Carlo D L Ceresa
- Royal Free London NHS Foundation Trust, The Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, The Churchill Hospital, Oxford, OX3 7LJ, UK
| | - David Nasralla
- Royal Free London NHS Foundation Trust, The Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Christopher J E Watson
- Department of Surgery, Addenbrooke's Hospital, Hills Road, University of Cambridge, Box 202, Cambridge, CB2 2QQ, UK
| | - Hynek Mergental
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2TH, UK
- TransMedics Inc, 200 Minuteman Road, Andover, MA, 01810, USA
| | - Constantin Coussios
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | - Ana Mora
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0BB, UK
| | - Helen Thomas
- NHS Blood and Transplant Clinical Trials Unit, Fox Den Road, Stoke Gifford, Bristol, BS34 8RR, UK
| | - Daphne Kounali
- Oxford Clinical Trials Research Unit (OCTRU), Centre for Statistics in Medicine (CSM), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Medical Sciences Division, The Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Katie Keen
- NHSBT CTU, Long Road, Cambridge, CB2 0PT, UK
| | - Joerg-Matthias Pollok
- Royal Free London NHS Foundation Trust, The Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Rohit Gaurav
- Department of Surgery, Addenbrooke's Hospital, Hills Road, University of Cambridge, Box 202, Cambridge, CB2 2QQ, UK
| | - Satheesh Iype
- Royal Free London NHS Foundation Trust, The Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Wayel Jassem
- Kings College Hospital, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
| | - M Thamara Pr Perera
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - Abdul Rahman Hakeem
- Kings College Hospital, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
- St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Beckett Street, Leeds, LS9 7TF, UK
| | - Simon Knight
- Nuffield Department of Surgical Sciences, University of Oxford, The Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Peter J Friend
- Nuffield Department of Surgical Sciences, University of Oxford, The Churchill Hospital, Oxford, OX3 7LJ, UK
| |
Collapse
|
5
|
Abbas SH, Ceresa CDL, Pollok JM. Steatotic Donor Transplant Livers: Preservation Strategies to Mitigate against Ischaemia-Reperfusion Injury. Int J Mol Sci 2024; 25:4648. [PMID: 38731866 PMCID: PMC11083584 DOI: 10.3390/ijms25094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.
Collapse
Affiliation(s)
- Syed Hussain Abbas
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK;
| | - Carlo Domenico Lorenzo Ceresa
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
| | - Joerg-Matthias Pollok
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
- Division of Surgery & Interventional Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
6
|
Li SX, Chen L, Li MQ, Lv GY. Pharmacological agents for defatting livers by normothermic machine perfusion. Artif Organs 2022. [PMID: 36514256 DOI: 10.1111/aor.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ex-vivo normothermic machine perfusion (NMP) preserves the liver metabolism at 37°C and has rapidly developed as a promising approach for assessing the viability and improving the performance of organs from expanded criteria donors, including fatty liver grafts. NMP is an effective method for defatting fatty livers when combined with pharmaceutical therapies. Pharmacological agents have been shown to facilitate liver defatting by NMP. OBSERVATIONS This systematic review summarizes available pharmacological therapies for liver defatting, with a particular emphasis on defatting agents that can be employed clinically as defatting components during liver NMP as an ex vivo translational paradigm. CONCLUSION NMP provides an opportunity for organ treatment and can be used as a defatting platform in the future with defatting agents. Nagrath's cocktail is the most commonly used defatting cocktail in NMP; however, its carcinogenic components may limit its clinical application. Thus, the combination of a defatting cocktail with a new clinically applicable component, for example, a polyphenolic natural compound, may be a novel pharmacological option.
Collapse
Affiliation(s)
- Shu-Xuan Li
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Jilin, China
| | - Lanlan Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Jilin, China
| | - Ming-Qian Li
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Jilin, China
| | - Guo-Yue Lv
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Jilin, China
| |
Collapse
|
7
|
Young EN, Dogan M, Watkins C, Bajwa A, Eason JD, Kuscu C, Kuscu C. A Review of Defatting Strategies for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms231911805. [PMID: 36233107 PMCID: PMC9569609 DOI: 10.3390/ijms231911805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease is a huge cause of chronic liver failure around the world. This condition has become more prevalent as rates of metabolic syndrome, type 2 diabetes, and obesity have also escalated. The unfortunate outcome for many people is liver cirrhosis that warrants transplantation or being unable to receive a transplant since many livers are discarded due to high levels of steatosis. Over the past several years, however, a great deal of work has gone into understanding the pathophysiology of this disease as well as possible treatment options. This review summarizes various defatting strategies including in vitro use of pharmacologic agents, machine perfusion of extracted livers, and genomic approaches targeting specific proteins. The goal of the field is to reduce the number of necessary transplants and expand the pool of organs available for use.
Collapse
|
8
|
Goumard C, Turco C, Sakka M, Aoudjehane L, Lesnik P, Savier E, Conti F, Scatton O. Ex-Vivo Pharmacological Defatting of the Liver: A Review. J Clin Med 2021; 10:jcm10061253. [PMID: 33803539 PMCID: PMC8002874 DOI: 10.3390/jcm10061253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
The ongoing organ shortage has forced transplant teams to develop alternate sources of liver grafts. In this setting, ex-situ machine perfusion has rapidly developed as a promising tool to assess viability and improve the function of organs from extended criteria donors, including fatty liver grafts. In particular, normothermic machine perfusion represents a powerful tool to test a liver in full 37 °C metabolism and add pharmacological corrections whenever needed. In this context, many pharmacological agents and therapeutics have been tested to induce liver defatting on normothermic machine perfusion with promising results even on human organs. This systematic review makes a comprehensive synthesis on existing pharmacological therapies for liver defatting, with special focus on normothermic liver machine perfusion as an experimental ex-vivo translational model.
Collapse
Affiliation(s)
- Claire Goumard
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hopitaux de Paris, 75013 Paris, France; (C.T.); (E.S.); (O.S.)
- Sorbonne Université, Centre de Recherche Saint Antoine, INSERM UMRS-938, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France; (L.A.); (F.C.)
- Correspondence:
| | - Célia Turco
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hopitaux de Paris, 75013 Paris, France; (C.T.); (E.S.); (O.S.)
- Sorbonne Université, Centre de Recherche Saint Antoine, INSERM UMRS-938, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France; (L.A.); (F.C.)
| | - Mehdi Sakka
- Department of Metabolic Biochemistry, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique- Hopitaux de Paris, 75013 Paris, France;
| | - Lynda Aoudjehane
- Sorbonne Université, Centre de Recherche Saint Antoine, INSERM UMRS-938, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France; (L.A.); (F.C.)
| | - Philippe Lesnik
- Sorbonne Université, INSERM UMRS-1166, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France;
| | - Eric Savier
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hopitaux de Paris, 75013 Paris, France; (C.T.); (E.S.); (O.S.)
- Sorbonne Université, Centre de Recherche Saint Antoine, INSERM UMRS-938, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France; (L.A.); (F.C.)
| | - Filomena Conti
- Sorbonne Université, Centre de Recherche Saint Antoine, INSERM UMRS-938, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France; (L.A.); (F.C.)
| | - Olivier Scatton
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hopitaux de Paris, 75013 Paris, France; (C.T.); (E.S.); (O.S.)
- Sorbonne Université, Centre de Recherche Saint Antoine, INSERM UMRS-938, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France; (L.A.); (F.C.)
| |
Collapse
|
9
|
Mazilescu LI, Selzner M, Selzner N. Defatting strategies in the current era of liver steatosis. JHEP Rep 2021; 3:100265. [PMID: 34027337 PMCID: PMC8121960 DOI: 10.1016/j.jhepr.2021.100265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/25/2022] Open
Abstract
Liver steatosis is emerging as a major cause of chronic liver disease worldwide, mainly due to the increasing rate of obesity, type 2 diabetes, and metabolic syndrome. Because of the increased incidence of liver steatosis, many organs are currently declined for transplantation despite high demand and waiting list mortality. Defatting strategies have recently emerged as a means of rapidly reducing liver steatosis to expand the pool of available organs. This review summarises advances in defatting strategies in experimental and human models of liver steatosis over the last 20 years.
Collapse
Key Words
- GDNF, glial cell-line derived neurotrophic factor
- HFD, high-fat diet
- HIEC, hepatic endothelial cells
- HOPE, hypothermic machine perfusion
- LDs, lipid droplets
- Macrosteatosis
- NAFL, non-alcoholic fatty liver
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- NEsLP, normothermic ex situ machine perfusion
- PHHs, primary human hepatocytes
- PPAR, peroxisome proliferator-activated receptor
- PXR, pregnane X receptor
- SCS, static cold storage
- SRS, steatosis reduction supplements
- TG, triglyceride
- ischemia-reperfusion injury
- liver transplantation
- machine perfusion
Collapse
Affiliation(s)
- Laura Ioana Mazilescu
- Ajmera Transplant Program, Toronto General Hospital, Ontario, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Markus Selzner
- Ajmera Transplant Program, Toronto General Hospital, Ontario, Canada
| | - Nazia Selzner
- Ajmera Transplant Program, Toronto General Hospital, Ontario, Canada
- Corresponding author. Address: Multi-Organ Transplant Program, Toronto General Hospital, 585 University Avenue, 11 PMB-178 Toronto, ON, Canada M5G 2N2.
| |
Collapse
|
10
|
Zhong Y, Yu JS, Wang X, Binas B, Yoo HH. Chemical-based primary human hepatocyte monolayer culture for the study of drug metabolism and hepatotoxicity: Comparison with the spheroid model. FASEB J 2021; 35:e21379. [PMID: 33566373 DOI: 10.1096/fj.202001629rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023]
Abstract
Traditionally cultured monolayers of primary human hepatocytes (PHHs) deteriorate within days and thereby become unsuitable for drug-related studies. PHH spheroids (3D PHHs) maintain liver functions for weeks, but are considerably more demanding. Recently, a chemical-based approach (5C PHHs) succeeded in long-term culture of hepatocyte monolayers, but it remains unclear whether the drug-related functions are preserved. To clarify this, we compared the 5C and 3D PHHs in terms of gene expression analysis, proteomic analysis, functionality (basal and induced activities of representative CYP450 enzymes and urea and albumin secretions), survival in culture, and sensitivity to representative drugs. In all comparisons, which spanned culture durations of up to 4 weeks, the 5C PHHs performed at least as well as the 3D PHHs. Hence, the novel 5C PHH monolayer format combines the convenience of the traditional monolayer format with the functionality and maintainability of the spheroid format. Our results suggest that 5C PHH monolayers can be used more conveniently and efficiently for high-throughput drug screening, preclinical drug safety evaluations, and mechanistic studies.
Collapse
Affiliation(s)
- Yixiang Zhong
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea.,Department of Molecular & Life Science, Hanyang University, Ansan, Republic of Korea
| | - Jun Sang Yu
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Xiaoqiong Wang
- Department of Molecular & Life Science, Hanyang University, Ansan, Republic of Korea
| | - Bert Binas
- Department of Molecular & Life Science, Hanyang University, Ansan, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
11
|
Raigani S, Carroll C, Griffith S, Pendexter C, Rosales I, Deirawan H, Beydoun R, Yarmush M, Uygun K, Yeh H. Improvement of steatotic rat liver function with a defatting cocktail during ex situ normothermic machine perfusion is not directly related to liver fat content. PLoS One 2020; 15:e0232886. [PMID: 32396553 PMCID: PMC7217452 DOI: 10.1371/journal.pone.0232886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
There is a significant organ shortage in the field of liver transplantation, partly due to a high discard rate of steatotic livers from donors. These organs are known to function poorly if transplanted but make up a significant portion of the available pool of donated livers. This study demonstrates the ability to improve the function of steatotic rat livers using a combination of ex situ machine perfusion and a "defatting" drug cocktail. After 6 hours of perfusion, defatted livers demonstrated lower perfusate lactate levels and improved bile quality as demonstrated by higher bile bicarbonate and lower bile lactate. Furthermore, defatting was associated with decreased gene expression of pro-inflammatory cytokines and increased expression of enzymes involved in mitochondrial fatty acid oxidation. Rehabilitation of marginal or discarded steatotic livers using machine perfusion and tailored drug therapy can significantly increase the supply of donor livers for transplantation.
Collapse
Affiliation(s)
- Siavash Raigani
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Cailah Carroll
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Stephanie Griffith
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Casie Pendexter
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Ivy Rosales
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Hany Deirawan
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Rafic Beydoun
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Martin Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Korkut Uygun
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Aoudjehane L, Gautheron J, Le Goff W, Goumard C, Gilaizeau J, Nget CS, Savier E, Atif M, Lesnik P, Morichon R, Chrétien Y, Calmus Y, Scatton O, Housset C, Conti F. Novel defatting strategies reduce lipid accumulation in primary human culture models of liver steatosis. Dis Model Mech 2020; 13:dmm042663. [PMID: 32094147 PMCID: PMC7197711 DOI: 10.1242/dmm.042663] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Normothermic perfusion provides a means to rescue steatotic liver grafts, including by pharmacological defatting. In this study, we tested the potential of new drug combinations to trigger defatting in three human culture models, primary hepatocytes with induced steatosis, primary hepatocytes isolated from steatotic liver, and precision-cut liver slices (PCLS) of steatotic liver. Forskolin, L-carnitine and a PPARα agonist were all combined with rapamycin, an immunosuppressant that induces autophagy, in a D-FAT cocktail. D-FAT was tested alone or in combination with necrosulfonamide, an inhibitor of mixed lineage kinase domain like pseudokinase involved in necroptosis. Within 24 h, in all three models, D-FAT induced a decrease in triglyceride content by 30%, attributable to an upregulation of genes involved in free fatty acid β-oxidation and autophagy, and a downregulation of those involved in lipogenesis. Defatting was accompanied by a decrease in endoplasmic reticulum stress and in the production of reactive oxygen species. The addition of necrosulfonamide increased the efficacy of defatting by 8%-12% in PCLS, with a trend towards increased autophagy. In conclusion, culture models, notably PCLS, are insightful to design strategies for liver graft rescue. Defatting can be rapidly achieved by combinations of drugs targeting mitochondrial oxidative metabolism, macro-autophagy and lipogenesis.
Collapse
Affiliation(s)
- Lynda Aoudjehane
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris 75012, France
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris 75013, France
| | - Jérémie Gautheron
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris 75012, France
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris 75013, France
| | - Wilfried Le Goff
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris 75012, France
| | - Claire Goumard
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris 75012, France
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris 75013, France
- Department of Hepatobiliary and Liver Transplantation Surgery, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France
| | - Julia Gilaizeau
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris 75012, France
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris 75013, France
| | - Chan Sonavine Nget
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris 75012, France
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris 75013, France
| | - Eric Savier
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris 75012, France
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris 75013, France
- Department of Hepatobiliary and Liver Transplantation Surgery, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France
| | - Muhammad Atif
- Centre d'immunologie et maladies infectieuses, Sorbonne Université, INSERM, U1135, Paris 75013, France
| | - Philippe Lesnik
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris 75012, France
| | - Romain Morichon
- Production et Analyse des données en Sciences de la vie et en Santé (PASS), Sorbonne Université, INSERM, UMS 37, Paris 75013, France
| | - Yves Chrétien
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris 75012, France
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris 75013, France
| | - Yvon Calmus
- Department of Medical Liver Transplantation, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France
| | - Olivier Scatton
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris 75012, France
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris 75013, France
- Department of Hepatobiliary and Liver Transplantation Surgery, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France
| | - Chantal Housset
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris 75012, France
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris 75013, France
- Department of Hepatology, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75012, France
| | - Filomena Conti
- Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris 75012, France
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris 75013, France
- Department of Medical Liver Transplantation, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75013, France
| |
Collapse
|
13
|
Dengu F, Abbas SH, Ebeling G, Nasralla D. Normothermic Machine Perfusion (NMP) of the Liver as a Platform for Therapeutic Interventions during Ex-Vivo Liver Preservation: A Review. J Clin Med 2020; 9:jcm9041046. [PMID: 32272760 PMCID: PMC7231144 DOI: 10.3390/jcm9041046] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Liver transplantation is increasingly dependent on the use of extended criteria donors (ECD) to increase the organ donor pool and address rising demand. This has necessitated the adoption of innovative technologies and strategies to protect these higher-risk grafts from the deleterious effects of traditional preservation and ischaemia reperfusion injury (IRI). The advent of normothermic machine perfusion (NMP) and rapid growth in the clinical adoption of this technology has accelerated efforts to utilise NMP as a platform for therapeutic intervention to optimise donor livers. In this review we will explore the emerging preclinical data related to ameliorating the effects of IRI, protecting the microcirculation and reducing the immunogenicity of donor organs during NMP. Exploiting the window of opportunity afforded by NMP, whereby the liver can be continuously supported and functionally assessed while therapies are directly delivered during the preservation period, has clear logistical and theoretical advantages over current preservation methods. The clinical translation of many of the therapeutic agents and strategies we will describe is becoming more feasible with widespread adaptation of NMP devices and rapid advances in molecular biology and gene therapy, which have substantially improved the performance of these agents. The delivery of novel therapeutics during NMP represents one of the new frontiers in transplantation research and offers real potential for successfully tackling fundamental challenges in transplantation such as IRI.
Collapse
Affiliation(s)
- Fungai Dengu
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK; (S.H.A.); (G.E.); (D.N.)
- Correspondence:
| | - Syed Hussain Abbas
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK; (S.H.A.); (G.E.); (D.N.)
| | - Georg Ebeling
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK; (S.H.A.); (G.E.); (D.N.)
| | - David Nasralla
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK; (S.H.A.); (G.E.); (D.N.)
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond St, Hampstead, London NW3 2QG, UK
| |
Collapse
|
14
|
Czigany Z, Lurje I, Schmelzle M, Schöning W, Öllinger R, Raschzok N, Sauer IM, Tacke F, Strnad P, Trautwein C, Neumann UP, Fronek J, Mehrabi A, Pratschke J, Schlegel A, Lurje G. Ischemia-Reperfusion Injury in Marginal Liver Grafts and the Role of Hypothermic Machine Perfusion: Molecular Mechanisms and Clinical Implications. J Clin Med 2020; 9:E846. [PMID: 32244972 PMCID: PMC7141496 DOI: 10.3390/jcm9030846] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) constitutes a significant source of morbidity and mortality after orthotopic liver transplantation (OLT). The allograft is metabolically impaired during warm and cold ischemia and is further damaged by a paradox reperfusion injury after revascularization and reoxygenation. Short-term and long-term complications including post-reperfusion syndrome, delayed graft function, and immune activation have been associated with IRI. Due to the current critical organ shortage, extended criteria grafts are increasingly considered for transplantation, however, with an elevated risk to develop significant features of IRI. In recent years, ex vivo machine perfusion (MP) of the donor liver has witnessed significant advancements. Here, we describe the concept of hypothermic (oxygenated) machine perfusion (HMP/HOPE) approaches and highlight which allografts may benefit from this technology. This review also summarizes clinical applications and the main aspects of ongoing randomized controlled trials on hypothermic perfusion. The mechanistic aspects of IRI and hypothermic MP-which include tissue energy replenishment, optimization of mitochondrial function, and the reduction of oxidative and inflammatory damage following reperfusion-will be comprehensively discussed within the context of current preclinical and clinical evidence. Finally, we highlight novel trends and future perspectives in the field of hypothermic MP in the context of recent findings of basic and translational research.
Collapse
Affiliation(s)
- Zoltan Czigany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (Z.C.); (U.P.N.)
| | - Isabella Lurje
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Moritz Schmelzle
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Robert Öllinger
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Pavel Strnad
- Department of Gastroenterology, Metabolic Disorders and Intensive Care, University Hospital RWTH Aachen, 52074 Aachen, Germany; (P.S.); (C.T.)
| | - Christian Trautwein
- Department of Gastroenterology, Metabolic Disorders and Intensive Care, University Hospital RWTH Aachen, 52074 Aachen, Germany; (P.S.); (C.T.)
| | - Ulf Peter Neumann
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (Z.C.); (U.P.N.)
| | - Jiri Fronek
- Department of Transplant Surgery, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic;
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| | - Andrea Schlegel
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK;
| | - Georg Lurje
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany; (Z.C.); (U.P.N.)
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum—Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (M.S.); (W.S.); (R.Ö.); (N.R.); (I.M.S.); (J.P.)
| |
Collapse
|
15
|
Buchwald JE, Xu J, Bozorgzadeh A, Martins PN. Therapeutics administered during ex vivo liver machine perfusion: An overview. World J Transplant 2020; 10:1-14. [PMID: 32110510 PMCID: PMC7031625 DOI: 10.5500/wjt.v10.i1.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/26/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Although the use of extended criteria donors has increased the pool of available livers for transplant, it has also introduced the need to develop improved methods of protection against ischemia-reperfusion injury (IRI), as these "marginal" organs are particularly vulnerable to IRI during the process of procurement, preservation, surgery, and post-transplantation. In this review, we explore the current basic science research investigating therapeutics administered during ex vivo liver machine perfusion aimed at mitigating the effects of IRI in the liver transplantation process. These various categories of therapeutics are utilized during the perfusion process and include invoking the RNA interference pathway, utilizing defatting cocktails, and administering classes of agents such as vasodilators, anti-inflammatory drugs, human liver stem cell-derived extracellular vesicles, and δ-opioid agonists in order to reduce the damage of IRI. Ex vivo machine perfusion is an attractive alternative to static cold storage due to its ability to continuously perfuse the organ, effectively deliver substrates and oxygen required for cellular metabolism, therapeutically administer pharmacological or cytoprotective agents, and continuously monitor organ viability during perfusion. The use of administered therapeutics during machine liver perfusion has demonstrated promising results in basic science studies. While novel therapeutic approaches to combat IRI are being developed through basic science research, their use in clinical medicine and treatment in patients for liver transplantation has yet to be explored.
Collapse
Affiliation(s)
- Julianna E Buchwald
- Division of Transplantation, Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Jing Xu
- Division of Transplantation, Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Adel Bozorgzadeh
- Division of Transplantation, Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Paulo N Martins
- Division of Transplantation, Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01655, United States
| |
Collapse
|
16
|
Boteon YL, Attard J, Boteon APCS, Wallace L, Reynolds G, Hubscher S, Mirza DF, Mergental H, Bhogal RH, Afford SC. Manipulation of Lipid Metabolism During Normothermic Machine Perfusion: Effect of Defatting Therapies on Donor Liver Functional Recovery. Liver Transpl 2019; 25:1007-1022. [PMID: 30821045 PMCID: PMC6618030 DOI: 10.1002/lt.25439] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Strategies to increase the use of steatotic donor livers are required to tackle the mortality on the transplant waiting list. We aimed to test the efficacy of pharmacological enhancement of the lipid metabolism of human livers during ex situ normothermic machine perfusion to promote defatting and improve the functional recovery of the organs. Because of steatosis, 10 livers were discarded and were allocated either to a defatting group that had the perfusate supplemented with a combination of drugs to enhance lipid metabolism or to a control group that received perfusion fluid with vehicle only. Steatosis was assessed using tissue homogenate and histological analyses. Markers for lipid oxidation and solubilization, oxidative injury, inflammation, and biliary function were evaluated by enzyme-linked immunosorbent assay, immunohistochemistry, and in-gel protein detection. Treatment reduced tissue triglycerides by 38% and macrovesicular steatosis by 40% over 6 hours. This effect was driven by increased solubility of the triglycerides (P = 0.04), and mitochondrial oxidation as assessed by increased ketogenesis (P = 0.008) and adenosine triphosphate synthesis (P = 0.01) were associated with increased levels of the enzymes acyl-coenzyme A oxidase 1, carnitine palmitoyltransferase 1A, and acetyl-coenzyme A synthetase. Concomitantly, defatted livers exhibited enhanced metabolic functional parameters such as urea production (P = 0.03), lower vascular resistance, lower release of alanine aminotransferase (P = 0.049), and higher bile production (P = 0.008) with a higher bile pH (P = 0.03). The treatment down-regulated the expression of markers for oxidative injury as well as activation of immune cells (CD14; CD11b) and reduced the release of inflammatory cytokines in the perfusate (tumor necrosis factor α; interleukin 1β). In conclusion, pharmacological enhancement of intracellular lipid metabolism during normothermic machine perfusion decreased the lipid content of human livers within 6 hours. It also improved the intracellular metabolic support to the organs, leading to successful functional recovery and decreased expression of markers of reperfusion injury.
Collapse
Affiliation(s)
- Yuri L. Boteon
- Liver UnitQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Joseph Attard
- Liver UnitQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Amanda P. C. S. Boteon
- Liver UnitQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
| | - Lorraine Wallace
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Gary Reynolds
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Stefan Hubscher
- Liver UnitQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Department of Cellular PathologyQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
| | - Darius F. Mirza
- Liver UnitQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Hynek Mergental
- Liver UnitQueen Elizabeth Hospital, University Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Ricky H. Bhogal
- The Royal Marsden, Department of Academic SurgeryFulham RoadChelseaLondon
| | - Simon C. Afford
- National Institute for Health Research Birmingham Biomedical Research CentreUniversity Hospitals Birmingham National Health Service Foundation TrustBirminghamUnited Kingdom
- Centre for Liver and Gastrointestinal ResearchInstitute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
17
|
Raigani S, Markmann JF, Yeh H. Rehabilitation of Discarded Steatotic Livers Using Ex Situ Normothermic Machine Perfusion: A Future Source of Livers for Transplantation. Liver Transpl 2019; 25:991-992. [PMID: 31077626 DOI: 10.1002/lt.25490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Siavash Raigani
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - James F Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Tchilikidi KY. Liver graft preservation methods during cold ischemia phase and normothermic machine perfusion. World J Gastrointest Surg 2019; 11:126-142. [PMID: 31057698 PMCID: PMC6478595 DOI: 10.4240/wjgs.v11.i3.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023] Open
Abstract
The growing demand for donor organs requires measures to expand donor pool. Those include extended criteria donors, such as elderly people, steatotic livers, donation after cardiac death, etc. Static cold storage to reduce metabolic requirements developed by Collins in late 1960s is the mainstay and the golden standard for donated organ protection. Hypothermic machine perfusion provides dynamic organ preservation at 4°C with protracted infusion of metabolic substrates to the graft during the ex vivo period. It has been used instead of static cold storage or after it as short perfusion in transplant center. Normothermic machine perfusion (NMP) delivers oxygen, and nutrition at physiological temperature mimicking regular environment in order to support cellular function. This would minimize effects of ischemia/reperfusion injury. Potentially, NMP may help to estimate graft functionality before implantation into a recipient. Clinical studies demonstrated at least its non-inferiority or better outcomes vs static cold storage. Regular grafts donated after brain death could be safely preserved with convenient static cold storage. Except for prolonged ischemia time where hypothermic machine perfusion started in transplant center could be estimated to provide possible positive reconditioning effect. Use of hypothermic machine perfusion in regular donation instead of static cold storage or in extended criteria donors requires further investigation. Multicenter randomized clinical trial supposed to be completed in December 2021. Extended criteria donors need additional measures for graft storage and assessment until its implantation. NMP is actively evaluating promising method for this purpose. Future studies are necessary for precise estimation and confirmation to issue clinical practice recommendations.
Collapse
|