1
|
Cools T, Wilson KS, Li D, Vancsok C, Mulot B, Leclerc A, Kok J, Haapakoski M, Bertelsen MF, Ochs A, Girling SJ, Zhou Y, Li R, Vanhaecke L, Wauters J. Development and validation of a versatile non-invasive urinary steroidomics method for wildlife biomonitoring. Talanta 2024; 273:125924. [PMID: 38518717 DOI: 10.1016/j.talanta.2024.125924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Wildlife conservation is often challenged by a lack of knowledge about the reproduction biology and adaptability of endangered species. Although monitoring steroids and related molecules can increase this knowledge, the applicability of current techniques (e.g. immunoassays) is hampered by species-specific steroid metabolism and the requisite to avoid invasive sampling. This study presents a validated steroidomics method for the (un)targeted screening of a wide range of sex and stress steroids and related molecules in urine using ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). In total, 50 steroids (conjugated and non-conjugated androgens, estrogens, progestogens and glucocorticoids) and 6 prostaglandins could be uniquely detected. A total of 45 out of 56 compounds demonstrated a detection limit below 0.01 ng μL-1. Excellent linearity (R2 > 0.99), precision (CV < 20 %), and recovery (80-120 %) were observed for 46, 41, and 39 compounds, respectively. Untargeted screening of pooled giant panda and human samples yielded 9691 and 8366 features with CV < 30 %, from which 84.1 % and 83.0 %, respectively, also demonstrated excellent linearity (R2 > 0.90). The biological validity of the method was investigated on male and female giant panda urine (n = 20), as well as pooled human samples (n = 10). A total of 24 different steroids were detected with clear qualitative and quantitative differences between human and giant panda samples. Furthermore, expected differences were revealed between female giant panda samples from different reproductive phases. In contrast to traditional biomonitoring techniques, the developed steroidomics method was able to screen a wide range of compounds and provide information on the putative identities of metabolites potentially important for reproductive monitoring in giant pandas. These results illustrate the advancements steroidomics brings to the field of wildlife biomonitoring in the pursuit to better understand the biology of endangered species.
Collapse
Affiliation(s)
- Tom Cools
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium; Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Kirsten S Wilson
- MRC Centre for Reproductive Health, University of Edinburgh, 4-5 Little France Drive, Edinburgh, Scotland, United Kingdom
| | - Desheng Li
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Centre for Giant Panda (CCRCGP), People's Republic of China
| | - Catherine Vancsok
- Pairi Daiza Foundation - Pairi Daiza, Domaine de Cambron, 7940, Brugelette, Belgium
| | - Baptiste Mulot
- ZooParc de Beauval and Beauval Nature, Avenue du Blanc, 41110, Saint-Aignan, France
| | - Antoine Leclerc
- ZooParc de Beauval and Beauval Nature, Avenue du Blanc, 41110, Saint-Aignan, France
| | - José Kok
- Ouwehands Dierenpark Rhenen, Grebbeweg 111, 3911, AV Rhenen, the Netherlands
| | - Marko Haapakoski
- Ähtärin Eläinpuisto OY, Karhunkierros 150, FI-63700, Ähtäri, Finland; Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, Sirkkamäentie 220, FI-44300, Konnevesi, Finland
| | | | - Andreas Ochs
- Berlin Zoo, Hardenbergplatz 8, 10787, Berlin, Germany
| | - Simon J Girling
- Royal Zoological Society of Scotland, 134 Corstorphine Road, Edinburgh, Scotland, United Kingdom
| | - Yingmin Zhou
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Centre for Giant Panda (CCRCGP), People's Republic of China
| | - Rengui Li
- Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Centre for Giant Panda (CCRCGP), People's Republic of China
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium; Institute for Global Food Security, School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, United Kingdom.
| | - Jella Wauters
- Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium; Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| |
Collapse
|
2
|
Cloteau C, Dervilly G, Kaabia Z, Bagilet F, Delcourt V, Loup B, Guitton Y, Royer AL, Monteau F, Garcia P, Ma P, Le Bizec B, Bailly-Chouriberry L. FROM A NON-TARGETED METABOLOMICS APPROACH TO A TARGETED BIOMARKERS STRATEGY TO HIGHLIGHT TESTOSTERONE ABUSE IN EQUINE. ILLUSTRATION OF A METHODOLOGICAL TRANSFER BETWEEN PLATFORMS AND LABORATORIES. Drug Test Anal 2022; 14:864-878. [PMID: 35001538 DOI: 10.1002/dta.3221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 11/09/2022]
Abstract
In order to overcome the challenge associated with the screening of Anabolic-Androgenic Steroids (AAS) abuses in animal competitions, a non-targeted LC-HRMS based metabolomics approach was implemented on equine urine samples to highlight potential biomarkers associated with the administration of such compounds, using testosterone esters as model steroids. A statistical model relying on 4 potential biomarkers intensity could be defined to predict the status of the samples. With a routine application perspective, the monitoring of the highlighted potential biomarkers was first transferred into high-throughput LC-SRM. The model's performances and robustness of the approach were preserved and providing a first demonstration of metabolomics-based biomarkers integration within a targeted workflow using common benchtop MS instrumentation. In addition, with a view to the widespread implementation of such biomarker-based tools, we have transferred the method to a second laboratory with similar instrumentation. This proof of concept allows the development and application of biomarker-based strategies to meet current doping control needs.
Collapse
Affiliation(s)
- C Cloteau
- ONIRIS, INRAE, LABERCA, Nantes, France.,Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | | | - Z Kaabia
- Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | - F Bagilet
- Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | - V Delcourt
- Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | - B Loup
- Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | - Y Guitton
- ONIRIS, INRAE, LABERCA, Nantes, France
| | - A L Royer
- ONIRIS, INRAE, LABERCA, Nantes, France
| | - F Monteau
- ONIRIS, INRAE, LABERCA, Nantes, France
| | - P Garcia
- Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | - Popot Ma
- Laboratoire des Courses Hippiques (GIE-LCH), Verrières le Buisson, France
| | | | | |
Collapse
|
3
|
Wirobski G, Range F, Schaebs FS, Palme R, Deschner T, Marshall-Pescini S. Endocrine changes related to dog domestication: Comparing urinary cortisol and oxytocin in hand-raised, pack-living dogs and wolves. Horm Behav 2021; 128:104901. [PMID: 33245878 DOI: 10.1016/j.yhbeh.2020.104901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/02/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Dogs are exceptionally well adapted to life close to humans, and alterations in their endocrine system during the domestication process may be an underlying mechanism. In particular, it has been suggested that low circulating cortisol concentrations in conjunction with simultaneously high oxytocin concentrations may have resulted in dogs' increased docility ('selection for tameness' hypothesis) and heightened propensity to interact and form relationships with humans ('hypersociability' hypothesis) compared to wolves. To investigate this, we analyzed cortisol and oxytocin metabolite concentrations from urine samples of hand-raised, pack-living domestic dogs and their non-domestic relatives, grey wolves. Based on the hypotheses outlined above, we predicted lower cortisol but higher oxytocin concentrations in dogs than wolves. In contrast to our prediction, we found higher cortisol concentrations in dogs than wolves. However, oxytocin concentrations were higher in dogs compared to wolves although the effect was relatively small. Indeed, male dogs had the highest oxytocin concentrations while female dogs' oxytocin concentrations were comparable to wolves'. Feeding status, reproductive phase, and conspecific social interactions also significantly affected cortisol and oxytocin concentrations. Furthermore, we compared two methods of correcting for variable water content of urine samples. We discuss our results in light of physiological and behavioral changes during domestication and highlight the importance of accounting for confounding variables in future studies.
Collapse
Affiliation(s)
- G Wirobski
- Domestication Lab, Wolf Science Center, Konrad-Lorenz-Institute for Ethology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - F Range
- Domestication Lab, Wolf Science Center, Konrad-Lorenz-Institute for Ethology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - F S Schaebs
- University of Leipzig, ZLS, Prager Str. 34, 04317 Leipzig, Germany.
| | - R Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - T Deschner
- Endocrinology Lab, Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - S Marshall-Pescini
- Domestication Lab, Wolf Science Center, Konrad-Lorenz-Institute for Ethology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
4
|
Higham JP, Stahl-Hennig C, Heistermann M. Urinary suPAR: a non-invasive biomarker of infection and tissue inflammation for use in studies of large free-ranging mammals. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191825. [PMID: 32257339 PMCID: PMC7062102 DOI: 10.1098/rsos.191825] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/17/2020] [Indexed: 06/11/2023]
Abstract
Studies of large free-ranging mammals incorporating physiological measurements typically require the collection of urine or faecal samples, due to ethical and practical concerns over trapping or darting animals. However, there is a dearth of validated biomarkers of immune activation and inflammation that can be measured non-invasively. We here evaluate the utility of urinary measurements of the soluble form of the urokinase plasminogen activator receptor (suPAR), for use as a health marker in studies of wild large mammals. We investigate how urinary suPAR concentrations change in response to viral infection and surgical trauma (inflammation), comparing it to the measurement of a marker of cellular immune activation, urinary neopterin (uNEO), in captive rhesus macaques. We then test the field utility of urinary suPAR, assessing the effects of soil and faecal contamination, sunlight, storage at different temperatures, freeze-thaw cycles, and lyophilization. We find that suPAR concentrations rise markedly in response to both infection and surgery-associated inflammation, unlike uNEO concentrations, which only rise in response to the former. Our field validation demonstrates that urinary suPAR is reasonably robust to many of the issues associated with field collection, sample processing, and storage, as long as samples can be stored in a freezer. Urinary suPAR is thus a promising biomarker applicable for monitoring various aspects of health in wild primates and potentially also other large mammals.
Collapse
Affiliation(s)
- James P. Higham
- Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA
| | - Christiane Stahl-Hennig
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen 37077, Germany
| |
Collapse
|
5
|
Urinary estrogens as a non-invasive biomarker of viable pregnancy in the giant panda (Ailuropoda melanoleuca). Sci Rep 2019; 9:12772. [PMID: 31484972 PMCID: PMC6726647 DOI: 10.1038/s41598-019-49288-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 08/21/2019] [Indexed: 11/09/2022] Open
Abstract
Female giant pandas show complex reproductive traits, being seasonally monoestrus, displaying a variable length embryonic diapause and exhibiting pseudopregnancy. Currently, there is no confirmatory non-invasive biomarker of blastocyst implantation or pregnancy. This study aimed to monitor urinary estrogens across gestation in pregnancy (n = 4), pseudopregnancy (n = 4) and non-birth cycles (n = 5) in the giant panda. A pregnancy-specific profile of estrogens corrected for urinary specific gravity was identified during the gestation period. Pregnant females showed increasing concentrations of estrogens for 29 days until birth, no increase was observed during pseudopregnancy and the two profiles were distinguishable from each other for the final 2 weeks of the cycle suggesting the estrogens are of placental origin. This allowed a nomogram, starting at a known fixed point during the cycle, to be created and tested with cycles of known outcome, and cycles which were inseminated but did not result in a birth. Non-birth profiles showed deviations from that of pregnancy. We believe these deviations indicate the point of failure of the placenta to support a developing cub. Non-invasive longitudinal monitoring of estrogen concentrations therefore has the potential to be developed as a panda pregnancy test to predict viable cub development.
Collapse
|