1
|
Nateghi S, Rezayof A, Kouhkan F, Delphi L, Davisaraei YB, Rostami F, Tirgar F, Sepehri H. Growth of the prefrontal cortical glioblastoma altered cognitive and emotional behaviors via mediating miRNAs and GABA-A receptor signaling pathways in rats. Brain Res Bull 2025; 221:111227. [PMID: 39875028 DOI: 10.1016/j.brainresbull.2025.111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
The present study investigated the impact of GABAergic signaling and miRNA expression on glioblastoma multiforme (GBM) growth within the medial prefrontal cortex (mPFC) and its associated cognitive and emotional impairments. The implantation of C6 cells into the mPFC induced GBM in this brain region (referred to as the mPFC-GBM) in male Wistar rats via stereotaxic surgery, as confirmed by Magnetic Resonance Imaging (MRI), and Hematoxylin and Eosin (H&E) staining. Repeated microinjections of muscimol, a potent GABAA receptor agonist, directly into the mPFC-GBM (1 µg/rat/2.5 μl) following tumor induction decreased tumor volume and weight, resulting in an increased survival rate. Conversely, a higher dose of muscimol (6 µg/rat/2.5 μl) increased tumor size and reduced survival. Behavioral alterations induced by GBM, including anxiety-like responses, exploratory behaviors, locomotor activity, and memory formation, were assessed using anxiety-like behavior task, the hole-board test, and the novel object recognition test. Muscimol treatment dose-dependently affected these behaviors in the animals with the mPFC-GBM, bringing their performance with that of the sham group at the dose of 1 µg/rat/2.5 μl. Changes in specific miRNAs expressions, including miR-208, -290-295, -345, -743 and -802 were associated with the growth of the mPFC-GBM under muscimol treatment. These findings suggest that GBM growth into the mPFC profoundly impacts cognitive and emotional behaviors which can be improved by muscimol treatment. Considering that the expression levels of targeted miRNAs could be influenced by the growth of the mPFC-GBM, both with or without muscimol treatment, these non-coding RNAs might serve as potential biomarkers for GBM.
Collapse
Affiliation(s)
- Sepide Nateghi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Yavar Bagheri Davisaraei
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Rostami
- Stem Cell Technology Research Center (STRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Tirgar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addictions Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Houri Sepehri
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Aminizadeh S, Moslemizadeh AH, Sheibani S, Sedighi-Khovidak Z, Roholamini Z, Jafarinejad-Farsangi S, Kheirandish R, Sheibani V, Bashiri H. Preventive effect of MitoQ supplementation and endurance training on glioblastoma and its consequences: TLR4/CREB/ NF-κβ /IL-1β pathway and behaviors. Int Immunopharmacol 2025; 145:113756. [PMID: 39662270 DOI: 10.1016/j.intimp.2024.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVE The present study investigated the preventive effect of MitoQ supplementation and endurance training (ET) on the TLR4/CREB/ NF-κβ signaling pathway, antioxidant indices, and behaviors in C6-induced glioblastoma (GBM) in rats. METHODS 60 male Wistar rats were randomly divided into five groups (n = 12); Sham, Tumor, MitoQ, ET, and MitoQ + ET. Rats in the training groups performed endurance training (5 days per week), and MitoQ at the dose of 250 µM/L daily was administered in drinking water for 8 weeks. At the end of the protocol, all groups except the sham group received 1*106 tumor cells /10 µl culture medium. Two weeks after tumor induction, behavioral tests were performed, and then brain tissue was collected for the histopathology, measurement of antioxidant and inflammatory factors, TLR4, NF-κB proteins, and TLR4, NF-κβ, CREB, IL-1ß, TNF-a, IL-10, Bax, Bcl-2, and Caspase-3 gene expression. RESULTS The increased level of TLR4 and NF-κβ protein expression in GBM rats decreased in the treatment groups. Gene expression of TLR4, NF-κβ, CREB, TNF-a, IL-10, and Bcl-2 increased in the tumor groups, and treatment groups decreased TLR4, NF-κB, Bcl-2, and CREB. In addition, social behaviors, balance, and memory were impaired in the tumor group, which combination group could improve these behaviors. CONCLUSION In sum, the preventive effects of MitoQ as a beneficial immune reactive agent and exercise training in rats with C6-induced glioblastoma may be mediated via modulating oxidative stress, inflammatory factors, and down-regulation of the expression of TLR4.
Collapse
Affiliation(s)
- Soheil Aminizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sara Sheibani
- Department of Behavioral and Molecular Neurobiology, Regensburg Center for Neuroscience, University of Regensburg, Regensburg, Germany
| | - Zahra Sedighi-Khovidak
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zahrasadat Roholamini
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Reza Kheirandish
- Department of Pathology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Vaghf A, Sadegh M, Khansarinejad B, Mondanizadeh M. MicroRNA-124-3p targets Sp1 transcription factor to regulate glioma progression in rats. Gene 2024; 930:148858. [PMID: 39153708 DOI: 10.1016/j.gene.2024.148858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Gliomas are the most prevalent malignancies of the central nervous system (CNS). Downregulation of microRNA‑124 (miR‑124) has been identified in glioma; however, its biological functions in glioma are not yet fully understood. Specificity protein 1 (SP1) is a type of transcription factor that is involved in cancer progression. In this study, we examined the targeting of Sp1 mRNA by miR-124-3p in a rat glioma model. After confirming and selecting the binding of Sp1 to miR-124 with the help of bioinformatics methods, adult male Wistar rats were used to induce glioma by microinjection of 1 × 106 C6 cells into the striatum area of brain. The rats were divided into 3 groups; intact, sham and glioma groups. The presence of glioma was confirmed 21 days after implantation through histological analysis. The expression levels of miR-124 and SP1 genes in the experimental groups were examined using quantitative real-time polymerase chain reaction (qRT-PCR). Our data showed that the expression of miR-124 was significantly downregulated in glioma group compared to the sham and intact group, while the expression of SP1 was significantly upregulated. We found that the expression levels of miR-124 and Sp1 were decreased and increased in C6 cell line compared to the normal brain tissue cell line, respectively. The results indicated that Sp1 was identified as a direct target of miR‑124 through luciferase reporter assays. In summary, this study demonstrated for the first time that miR-124 expression is downregulated and Sp1 expression is upregulated in an animal model of glioma, which, in turn, may be involved in the development of glioma brain cancer.
Collapse
Affiliation(s)
- Atena Vaghf
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Sadegh
- Departments of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran; Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
4
|
Madani F, Morovvati H, Webster TJ, Najaf Asaadi S, Rezayat SM, Hadjighassem M, Khosravani M, Adabi M. Combination chemotherapy via poloxamer 188 surface-modified PLGA nanoparticles that traverse the blood-brain-barrier in a glioblastoma model. Sci Rep 2024; 14:19516. [PMID: 39174603 PMCID: PMC11341868 DOI: 10.1038/s41598-024-69888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
The effect of chemotherapy for anti-glioblastoma is limited due to insufficient drug delivery across the blood-brain-barrier. Poloxamer 188-coated nanoparticles can enhance the delivery of nanoparticles across the blood-brain-barrier. This study presents the design, preparation, and evaluation of a combination of PLGA nanoparticles (PLGA NPs) loaded with methotrexate (P-MTX NPs) and PLGA nanoparticles loaded with paclitaxel (P-PTX NPs), both of which were surface-modified with poloxamer188. Cranial tumors were induced by implanting C6 cells in a rat model and MRI demonstrated that the tumors were indistinguishable in the two rats with P-MTX NPs + P-PTX NPs treated groups. Brain PET scans exhibited a decreased brain-to-background ratio which could be attributed to the diminished metabolic tumor volume. The expression of Ki-67 as a poor prognosis factor, was significantly lower in P-MTX NPs + P-PTX NPs compared to the control. Furthermore, the biodistribution of PLGA NPs was determined by carbon quantum dots loaded into PLGA NPs (P-CQD NPs), and quantitative analysis of ex-vivo imaging of the dissected organs demonstrated that 17.2 ± 0.6% of the NPs were concentrated in the brain after 48 h. The findings highlight the efficacy of combination nanochemotherapy in glioblastoma treatment, indicating the need for further preclinical studies.
Collapse
Affiliation(s)
- Fatemeh Madani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Morovvati
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Program in Materials Science, UFPI, Teresina, Brazil
| | - Sareh Najaf Asaadi
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Bausart M, Bozzato E, Joudiou N, Koutsoumpou X, Manshian B, Préat V, Gallez B. Mismatch between Bioluminescence Imaging (BLI) and MRI When Evaluating Glioblastoma Growth: Lessons from a Study Where BLI Suggested "Regression" while MRI Showed "Progression". Cancers (Basel) 2023; 15:cancers15061919. [PMID: 36980804 PMCID: PMC10047859 DOI: 10.3390/cancers15061919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Orthotopic glioblastoma xenografts are paramount for evaluating the effect of innovative anti-cancer treatments. In longitudinal studies, tumor growth (or regression) of glioblastoma can only be monitored by noninvasive imaging. For this purpose, bioluminescence imaging (BLI) has gained popularity because of its low cost and easy access. In the context of the development of new nanomedicines for treating glioblastoma, we were using luciferase-expressing GL261 cell lines. Incidentally, using BLI in a specific GL261 glioblastoma model with cells expressing both luciferase and the green fluorescent protein (GL261-luc-GFP), we observed an apparent spontaneous regression. By contrast, the magnetic resonance imaging (MRI) analysis revealed that the tumors were actually growing over time. For other models (GL261 expressing only luciferase and U87 expressing both luciferase and GFP), data from BLI and MRI correlated well. We found that the divergence in results coming from different imaging modalities was not due to the tumor localization nor the penetration depth of light but was rather linked to the instability in luciferase expression in the viral construct used for the GL261-luc-GFP model. In conclusion, the use of multi-modality imaging prevents possible errors in tumor growth evaluation, and checking the stability of luciferase expression is mandatory when using BLI as the sole imaging modality.
Collapse
Affiliation(s)
- Mathilde Bausart
- Advanced Drug Delivery and Biomaterials (ADDB) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Elia Bozzato
- Advanced Drug Delivery and Biomaterials (ADDB) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Xanthippi Koutsoumpou
- Department of Imaging and Pathology, Translational Cell and Tissue Research Unit, Katholiek Universiteit Leuven (KULeuven), 3000 Leuven, Belgium
| | - Bella Manshian
- Department of Imaging and Pathology, Translational Cell and Tissue Research Unit, Katholiek Universiteit Leuven (KULeuven), 3000 Leuven, Belgium
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials (ADDB) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance (REMA) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
6
|
Locomotion Outcome Improvement in Mice with Glioblastoma Multiforme after Treatment with Anastrozole. Brain Sci 2023; 13:brainsci13030496. [PMID: 36979306 PMCID: PMC10046174 DOI: 10.3390/brainsci13030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is a tumor that infiltrates several brain structures. GBM is associated with abnormal motor activities resulting in impaired mobility, producing a loss of functional motor independence. We used a GBM xenograft implanted in the striatum to analyze the changes in Y (vertical) and X (horizontal) axis displacement of the metatarsus, ankle, and knee. We analyzed the steps dissimilarity factor between control and GBM mice with and without anastrozole. The body weight of the untreated animals decreased compared to treated mice. Anastrozole reduced the malignant cells and decreased GPR30 and ERα receptor expression. In addition, we observed a partial recovery in metatarsus and knee joint displacement (dissimilarity factor). The vertical axis displacement of the GBM+anastrozole group showed a difference in the right metatarsus, right knee, and left ankle compared to the GBM group. In the horizontal axis displacement of the right metatarsus, ankle, and knee, the GBM+anastrozole group exhibited a difference at the last third of the step cycle compared to the GBM group. Thus, anastrozole partially modified joint displacement. The dissimilarity factor and the vertical and horizontal displacements study will be of interest in GBM patients with locomotion alterations. Hindlimb displacement and gait locomotion analysis could be a valuable methodological tool in experimental and clinical studies to help diagnose locomotive deficits related to GBM.
Collapse
|
7
|
Garrigós MM, Oliveira FA, Nucci MP, Mamani JB, Dias OFM, Rego GNA, Junqueira MS, Costa CJS, Silva LRR, Alves AH, Valle NME, Marti L, Gamarra LF. Bioluminescence Imaging and ICP-MS Associated with SPION as a Tool for Hematopoietic Stem and Progenitor Cells Homing and Engraftment Evaluation. Pharmaceutics 2023; 15:pharmaceutics15030828. [PMID: 36986690 PMCID: PMC10057125 DOI: 10.3390/pharmaceutics15030828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Bone marrow transplantation is a treatment for a variety of hematological and non-hematological diseases. For the transplant success, it is mandatory to have a thriving engraftment of transplanted cells, which directly depends on their homing. The present study proposes an alternative method to evaluate the homing and engraftment of hematopoietic stem cells using bioluminescence imaging and inductively coupled plasma mass spectrometry (ICP-MS) associated with superparamagnetic iron oxide nanoparticles. We have identified an enriched population of hematopoietic stem cells in the bone marrow following the administration of Fluorouracil (5-FU). Lately, the cell labeling with nanoparticles displayed the greatest internalization status when treated with 30 µg Fe/mL. The quantification by ICP-MS evaluate the stem cells homing by identifying 3.95 ± 0.37 µg Fe/mL in the control and 6.61 ± 0.84 µg Fe/mL in the bone marrow of transplanted animals. In addition, 2.14 ± 0.66 mg Fe/g in the spleen of the control group and 2.17 ± 0.59 mg Fe/g in the spleen of the experimental group was also measured. Moreover, the bioluminescence imaging provided the follow up on the hematopoietic stem cells behavior by monitoring their distribution by the bioluminescence signal. Lastly, the blood count enabled the monitoring of animal hematopoietic reconstitution and ensured the transplantation effectiveness.
Collapse
Affiliation(s)
| | | | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | | | | | - Mara S. Junqueira
- Center for Translational Research in Oncology, Cancer Institute of the State of Sao Paulo—ICESP, São Paulo 01246-000, SP, Brazil
| | | | | | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | | | - Luciana Marti
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
8
|
Pedra NS, Bona NP, de Aguiar MSS, Spohr L, Alves FL, Santos FDSD, Saraiva JT, Stefanello FM, Braganhol E, Spanevello RM. Impact of gallic acid on tumor suppression: Modulation of redox homeostasis and purinergic response in in vitro and a preclinical glioblastoma model. J Nutr Biochem 2022; 110:109156. [PMID: 36255060 DOI: 10.1016/j.jnutbio.2022.109156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023]
Abstract
Glioblastoma (GBM) is the deadliest primary brain tumor in adults due to the high rate of relapse with current treatment. Therefore, the search for therapeutic alternatives is urgent. Gallic acid (GA), a potent natural antioxidant, has antitumor and modulatory actions on purinergic signaling. In this study, we investigated the cytotoxic effects of GA on the rat GBM (C6) cell line and on astrocyte culture and analyzed its role in regulating oxidative stress and purinergic enzymes involved in GBM proliferation. Cells were exposed to GA from 50 to 400 µM for 24 and/or 48 h. Next, the effect of GA was evaluated in the preclinical model of GBM. Wistar rats were treated with 50 or 100 mg/kg of GA for 15 days, and cerebral and systemic redox status and degradation of adenine nucleotides and nucleosides in circulating platelets, lymphocytes, and serum were evaluated. Our results demonstrated that GA has selective anti-glioma activity in vitro, without inducing cytotoxicity in astrocyte. Furthermore, GA prevented oxidative stress and changes in the hydrolysis of nucleotides in GBM cells. The anti-glioma effect was also observed in vivo, as GA reduced tumor volume by 90%. Interestingly, GA decreased the oxidative damage induced by a tumor in the brain, serum, and platelets, and, also prevented changes in the degradation of nucleotides and nucleosides in lymphocytes, platelets, and serum. These results indicate, for the first time, the therapeutic potential of GA in a preclinical model of GBM, whose effects may be related to its role in redox and purinergic modulation.
Collapse
Affiliation(s)
- Nathalia Stark Pedra
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Natália Pontes Bona
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luíza Spohr
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fernando Lopez Alves
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli da Silva Dos Santos
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliane Torchelsen Saraiva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências - Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Roselia Maria Spanevello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
9
|
Crocus sativus L. Tepal Extract Induces Apoptosis in Human U87 Glioblastoma Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4740246. [PMID: 35722462 PMCID: PMC9205709 DOI: 10.1155/2022/4740246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/21/2022] [Indexed: 12/13/2022]
Abstract
Crocus sativus (C. sativus) is considered as the costliest spice and an important medicinal plant. Herein, we investigated the effects of tepal extract (TE) of C. sativus on the viability of the human glioblastoma cells. Results revealed that TE significantly (P < 0.05) inhibited the proliferation of U87 glioblastoma cells in a dose-dependent manner with comparatively lower toxic effects against normal astrocytes. The IC50 of TE against U87 glioblastoma cells was found to be 130 μg/mL as compared to 600 μg/mL against normal astrocytes. TE also inhibited the colony formation of U87 cells significantly (P < 0.05). The AO/EB and Annexin V/PI staining assays indicated that TE stimulated apoptosis in U87 cells dose dependently. The early and late apoptotic U87 cells increased from 0.66% and 2.3% at control to 14.2% and 21.4% at 260 μg/mL of TE. Moreover, TE caused upregulation of Bax and suppression of Bcl-2. Wound healing assay showed that migration of the U87 cells was suppressed significantly (P < 0.05) at 80 μg/mL of TE. Taken together, these results suggest that TE exhibits antiproliferative effects against U87 glioma cells and may prove to be an important source of natural anticancer agents.
Collapse
|
10
|
Optimization of Multimodal Nanoparticles Internalization Process in Mesenchymal Stem Cells for Cell Therapy Studies. Pharmaceutics 2022; 14:pharmaceutics14061249. [PMID: 35745821 PMCID: PMC9227698 DOI: 10.3390/pharmaceutics14061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Considering there are several difficulties and limitations in labeling stem cells using multifunctional nanoparticles (MFNP), the purpose of this study was to determine the optimal conditions for labeling human bone marrow mesenchymal stem cells (hBM-MSC), aiming to monitor these cells in vivo. Thus, this study provides information on hBM-MSC direct labeling using multimodal nanoparticles in terms of concentration, magnetic field, and period of incubation while maintaining these cells’ viability and the homing ability for in vivo experiments. The cell labeling process was assessed using 10, 30, and 50 µg Fe/mL of MFNP, with periods of incubation ranging from 4 to 24 h, with or without a magnetic field, using optical microscopy, near-infrared fluorescence (NIRF), and inductively coupled plasma mass spectrometry (ICP-MS). After the determination of optimal labeling conditions, these cells were applied in vivo 24 h after stroke induction, intending to evaluate cell homing and improve NIRF signal detection. In the presence of a magnetic field and utilizing the maximal concentration of MFNP during cell labeling, the iron load assessed by NIRF and ICP-MS was four times higher than what was achieved before. In addition, considering cell viability higher than 98%, the recommended incubation time was 9 h, which corresponded to a 25.4 pg Fe/cell iron load (86% of the iron load internalized in 24 h). The optimization of cellular labeling for application in the in vivo study promoted an increase in the NIRF signal by 215% at 1 h and 201% at 7 h due to the use of a magnetized field during the cellular labeling process. In the case of BLI, the signal does not depend on cell labeling showing no significant differences between unlabeled or labeled cells (with or without a magnetic field). Therefore, the in vitro cellular optimized labeling process using magnetic fields resulted in a shorter period of incubation with efficient iron load internalization using higher MFNP concentration (50 μgFe/mL), leading to significant improvement in cell detection by NIRF technique without compromising cellular viability in the stroke model.
Collapse
|
11
|
Murdock MH, Hussey GS, Chang JT, Hill RC, Nascari DG, Rao AV, Hansen KC, Foley LM, Hitchens TK, Amankulor NM, Badylak SF. A liquid fraction of extracellular matrix inhibits glioma cell viability in vitro and in vivo. Oncotarget 2022; 13:426-438. [PMID: 35198102 PMCID: PMC8860176 DOI: 10.18632/oncotarget.28203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Suppressive effects of extracellular matrix (ECM) upon various cancers have been reported. Glioblastoma multiforme has poor prognosis and new therapies are desired. This work investigated the effects of a saline-soluble fraction of urinary bladder ECM (ECM-SF) upon glioma cells. Viability at 24 hours in 1, 5, or 10 mg/mL ECM-SF-spiked media was evaluated in primary glioma cells (0319, 1015, 1119), glioma cell lines (A172, T98G, U87MG, C6), and brain cell lines (HCN-2, HMC3). Viability universally decreased at 5 and 10 mg/mL with U87MG, HCN-2, and HCM3 being least sensitive. Apoptosis in 0319 and 1119 cells was confirmed via NucView 488. Bi-weekly intravenous injection of ECM-SF (120 mg/kg) for 10 weeks in Sprague-Dawley rats did not affect weight, temperature, complete blood count, or multi-organ histology (N = 5). Intratumoral injection of ECM-SF (10 uL of 30 mg/mL) at weeks 2-4 post C6 inoculation in Wistar rats increased median survival from 24.5 to 51 days (hazard ratio for death 0.22) and decreased average tumor volume at time of death from 349 mm3 to 90 mm3 over 10 weeks (N = 6). Mass spectrometry identified 2,562 protein species in ECM-SF, parent ECM, and originating tissue. These results demonstrate the suppressive effects of ECM on glioma and warrant further study.
Collapse
Affiliation(s)
- Mark H. Murdock
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - George S. Hussey
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jordan T. Chang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - David G. Nascari
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aparna V. Rao
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Lesley M. Foley
- Animal Imaging Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - T. Kevin Hitchens
- Animal Imaging Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nduka M. Amankulor
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F. Badylak
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Nucci MP, Oliveira FA, Ferreira JM, Pinto YO, Alves AH, Mamani JB, Nucci LP, Valle NME, Gamarra LF. Effect of Cell Therapy and Exercise Training in a Stroke Model, Considering the Cell Track by Molecular Image and Behavioral Analysis. Cells 2022; 11:cells11030485. [PMID: 35159294 PMCID: PMC8834410 DOI: 10.3390/cells11030485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The goal of this study is to see how combining physical activity with cell treatment impacts functional recovery in a stroke model. Molecular imaging and multimodal nanoparticles assisted in cell tracking and longitudinal monitoring (MNP). The viability of mesenchymal stem cell (MSC) was determined using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and bioluminescent image (BLI) after lentiviral transduction and MNP labeling. At random, the animals were divided into 5 groups (control-G1, and experimental G2-G5). The photothrombotic stroke induction was confirmed by local blood perfusion reduction and Triphenyltetrazolium chloride (TTC), and MSC in the G3 and G5 groups were implanted after 24 h, with BLI and near-infrared fluorescence image (NIRF) tracking these cells at 28 h, 2, 7, 14, and 28 days. During a 28-day period, the G5 also conducted physical training, whereas the G4 simply did the training. At 0, 7, 14, and 28 days, the animals were functionally tested using a cylinder test and a spontaneous motor activity test. MNP internalization in MSC was confirmed using brightfield and fluorescence microscopy. In relation to G1 group, only 3% of cell viability reduced. The G2–G5 groups showed more than 69% of blood perfusion reduction. The G5 group performed better over time, with a progressive recovery of symmetry and an increase of fast vertical movements. Up to 7 days, BLI and NIRF followed MSC at the damaged site, demonstrating a signal rise that could be connected to cell proliferation at the injury site during the acute phase of stroke. Local MSC therapy mixed with physical activity resulted in better results in alleviating motor dysfunction, particularly during the acute period. When it comes to neurorehabilitation, this alternative therapy could be a suitable fit.
Collapse
Affiliation(s)
- Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
- LIM44, Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
| | - João M. Ferreira
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
| | - Yolanda O. Pinto
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
| | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
| | - Leopoldo P. Nucci
- Centro Universitário do Planalto Central, Brasília 72445-020, Brazil;
| | - Nicole M. E. Valle
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil; (M.P.N.); (F.A.O.); (J.M.F.); (Y.O.P.); (A.H.A.); (J.B.M.); (N.M.E.V.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
13
|
De Leo TC, Dos Santos SN, Bernardes ES, Cummings RD, Stowell SR, Dias-Baruffi M. Molecular Imaging for In Vivo Tracking and Detection of Galectin Binding Partners. Methods Mol Biol 2022; 2442:339-352. [PMID: 35320534 DOI: 10.1007/978-1-0716-2055-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular imaging (MI) is a non-invasive growing technology that allows the investigation of cellular and molecular processes in basic and clinical research and medicine. Luminescent proteins and radionuclides can be associated to target molecules providing high-definition and real-time image of whole body in few minutes or hours. Several MI studies have enabled the determination of molecular partners, in vivo tracking, and fate of compounds in different disorders. Considering that galectins are multifaceted proteins with great impact in many biological events, here we describe methods and strategies to generate labeled galectins for in vivo non-invasive imaging studies.
Collapse
Affiliation(s)
- Thais Canassa De Leo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Sofia Nascimento Dos Santos
- Departamento de Radiofarmácia, Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, São Paulo, SP, Brasil
| | - Emerson Soares Bernardes
- Departamento de Radiofarmácia, Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, São Paulo, SP, Brasil
| | | | - Sean R Stowell
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.
| |
Collapse
|
14
|
Naud C, Thébault C, Carrière M, Hou Y, Morel R, Berger F, Diény B, Joisten H. Cancer treatment by magneto-mechanical effect of particles, a review. NANOSCALE ADVANCES 2020; 2:3632-3655. [PMID: 36132753 PMCID: PMC9419242 DOI: 10.1039/d0na00187b] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/19/2020] [Indexed: 05/19/2023]
Abstract
Cancer treatment by magneto-mechanical effect of particles (TMMEP) is a growing field of research. The principle of this technique is to apply a mechanical force on cancer cells in order to destroy them thanks to magnetic particles vibrations. For this purpose, magnetic particles are injected in the tumor or exposed to cancer cells and a low-frequency alternating magnetic field is applied. This therapeutic approach is quite new and a wide range of treatment parameters are explored to date, as described in the literature. This review explains the principle of the technique, summarizes the parameters used by the different groups and reports the main in vitro and in vivo results.
Collapse
Affiliation(s)
- Cécile Naud
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
- BrainTech Lab, U1205, INSERM, Univ. Grenoble Alpes, CHU-Grenoble France
| | | | - Marie Carrière
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES 38000 Grenoble France
| | - Yanxia Hou
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES 38000 Grenoble France
| | - Robert Morel
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
| | - François Berger
- BrainTech Lab, U1205, INSERM, Univ. Grenoble Alpes, CHU-Grenoble France
| | - Bernard Diény
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
| | - Hélène Joisten
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
- Univ. Grenoble Alpes, CEA, LETI 38000 Grenoble France
| |
Collapse
|
15
|
Han Y, Sun Y, Zhang Y, Xia Q. High DPP4 expression predicts poor prognosis in patients with low-grade glioma. Mol Biol Rep 2020; 47:2189-2196. [PMID: 32076999 DOI: 10.1007/s11033-020-05321-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/13/2020] [Indexed: 11/25/2022]
Abstract
Dipeptidyl peptidase-IV (DPP4) plays a key role in tumor development; however, its role in glioma pathogenesis has not been determined. Here, we aimed to investigate the expression pattern of DPP4 and explore the association between expression and patient prognosis in glioma. DPP4 levels were investigated using qRT-PCR, immunohistochemistry and western blot in a rat model of glioma and also in patient samples. The relationship between DPP4 levels, WHO pathological grade gliomas, and isocitrate dehydrogenase 1 and 2 (IDH1/2) status was assessed in patient samples. Our data indicated that DPP4 levels were markedly increased in a rat model of glioma (p < 0.05, p < 0.01) and aslo in patient samples. Furthermore, the elevation of DPP4 levels in the samples obtained from pateints was associated with the pathogical grade of glioma and the IDH1/2 status (p < 0.01, p < 0.001). High DPP4 levels decreased the survival probability of patients with low-grade glioma (LGG). The data from patient samples showed that DPP4 expression increased with the pathological grade. Increased expression of DPP4 could be a promising index for determining the prognosis of glioma.
Collapse
Affiliation(s)
- Yadi Han
- Department of Clinical Laboratory Science, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
- Zhengzhou Key Laboratory of Digestive Tumor Markers, No. 127 Dongming Road, Zhengzhou, 450008, China
| | - Yuxue Sun
- Department of Neurosurgery, Renmin Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Yusong Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| | - Qingxin Xia
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| |
Collapse
|
16
|
Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study. Int J Mol Sci 2020; 21:ijms21030958. [PMID: 32023985 PMCID: PMC7038138 DOI: 10.3390/ijms21030958] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Magnetic hyperthermia (MHT) has been shown as a promising alternative therapy for glioblastoma (GBM) treatment. This study consists of three parts: The first part evaluates the heating potential of aminosilane-coated superparamagnetic iron oxide nanoparticles (SPIONa). The second and third parts comprise the evaluation of MHT multiple applications in GBM model, either in vitro or in vivo. The obtained heating curves of SPIONa (100 nm, +20 mV) and their specific absorption rates (SAR) stablished the best therapeutic conditions for frequencies (309 kHz and 557 kHz) and magnetic field (300 Gauss), which were stablished based on three in vitro MHT application in C6 GBM cell line. The bioluminescence (BLI) signal decayed in all applications and parameters tested and 309 kHz with 300 Gauss have shown to provide the best therapeutic effect. These parameters were also established for three MHT applications in vivo, in which the decay of BLI signal correlates with reduced tumor and also with decreased tumor glucose uptake assessed by positron emission tomography (PET) images. The behavior assessment showed a slight improvement after each MHT therapy, but after three applications the motor function displayed a relevant and progressive improvement until the latest evaluation. Thus, MHT multiple applications allowed an almost total regression of the GBM tumor in vivo. However, futher evaluations after the therapy acute phase are necessary to follow the evolution or tumor total regression. BLI, positron emission tomography (PET), and spontaneous locomotion evaluation techniques were effective in longitudinally monitoring the therapeutic effects of the MHT technique.
Collapse
|
17
|
Rego GNDA, Mamani JB, Souza TKF, Nucci MP, Silva HRD, Gamarra LF. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. EINSTEIN-SAO PAULO 2019; 17:eAO4786. [PMID: 31390427 PMCID: PMC6668731 DOI: 10.31744/einstein_journal/2019ao4786] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/28/2019] [Indexed: 11/21/2022] Open
Abstract
Objective: To evaluate the potential of magnetic hyperthermia using aminosilane-coated superparamagnetic iron oxide nanoparticles in glioblastoma tumor model. Methods: The aminosilane-coated superparamagnetic iron oxide nanoparticles were analyzed as to their stability in aqueous medium and their heating potential through specific absorption rate, when submitted to magnetic hyperthermia with different frequencies and intensities of alternating magnetic field. In magnetic hyperthermia in vitro assays, the C6 cells cultured and transduced with luciferase were analyzed by bioluminescence in the absence/presence of alternating magnetic field, and also with and without aminosilane-coated superparamagnetic iron oxide nanoparticles. In the in vivo study, the measurement of bioluminescence was performed 21 days after glioblastoma induction with C6 cells in rats. After 24 hours, the aminosilane-coated superparamagnetic iron oxide nanoparticles were implanted in animals, and magnetic hyperthermia was performed for 40 minutes, using the best conditions of frequency and intensity of alternating magnetic field tested in the in vitro study (the highest specific absorption rate value) and verified the difference of bioluminescence before and after magnetic hyperthermia. Results: The aminosilane-coated superparamagnetic iron oxide nanoparticles were stable, and their heating capacity increased along with higher frequency and intensity of alternating magnetic field. The magnetic hyperthermia application with 874kHz and 200 Gauss of alternating magnetic field determined the best value of specific absorption rate (194.917W/g). When these magnetic hyperthermia parameters were used in in vitro and in vivo analysis, resulted in cell death of 52.0% and 32.8%, respectively, detected by bioluminescence. Conclusion: The magnetic hyperthermia was promissing for the therapeutical process of glioblastoma tumors in animal model, using aminosilane-coated superparamagnetic iron oxide nanoparticles, which presented high specific absorption rate.
Collapse
Affiliation(s)
| | | | | | - Mariana Penteado Nucci
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
18
|
da Silva HR, Mamani JB, Nucci MP, Nucci LP, Kondo AT, Fantacini DMC, de Souza LEB, Picanço-Castro V, Covas DT, Kutner JM, de Oliveira FA, Hamerschlak N, Gamarra LF. Triple-modal imaging of stem-cells labeled with multimodal nanoparticles, applied in a stroke model. World J Stem Cells 2019; 11:100-123. [PMID: 30842808 PMCID: PMC6397806 DOI: 10.4252/wjsc.v11.i2.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been widely tested for their therapeutic efficacy in the ischemic brain and have been shown to provide several benefits. A major obstacle to the clinical translation of these therapies has been the inability to noninvasively monitor the best route, cell doses, and collateral effects while ensuring the survival and effective biological functioning of the transplanted stem cells. Technological advances in multimodal imaging have allowed in vivo monitoring of the biodistribution and viability of transplanted stem cells due to a combination of imaging technologies associated with multimodal nanoparticles (MNPs) using new labels and covers to achieve low toxicity and longtime residence in cells.
AIM To evaluate the sensitivity of triple-modal imaging of stem cells labeled with MNPs and applied in a stroke model.
METHODS After the isolation and immunophenotypic characterization of human bone marrow MSCs (hBM-MSCs), our team carried out lentiviral transduction of these cells for the evaluation of bioluminescent images (BLIs) in vitro and in vivo. In addition, MNPs that were previously characterized (regarding hydrodynamic size, zeta potential, and optical properties), and were used to label these cells, analyze cell viability via the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay and BLI analysis, and quantify the internalization process and iron load in different concentrations of MNPs via magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF), and inductively coupled plasma-mass spectrometry (ICP-MS). In in vivo analyses, the same labeled cells were implanted in a sham group and a stroke group at different times and under different MNP concentrations (after 4 h or 6 d of cell implantation) to evaluate the sensitivity of triple-modal images.
RESULTS hBM-MSC collection and isolation after immunophenotypic characterization were demonstrated to be adequate in hBM samples. After transduction of these cells with luciferase (hBM-MSCLuc), we detected a maximum BLI intensity of 2.0 x 108 photons/s in samples of 106 hBM-MSCs. Analysis of the physicochemical characteristics of the MNPs showed an average hydrodynamic diameter of 38.2 ± 0.5 nm, zeta potential of 29.2 ± 1.9 mV and adequate colloidal stability without agglomeration over 18 h. The signal of iron load internalization in hBM-MSCLuc showed a close relationship with the corresponding MNP-labeling concentrations based on MRI, ICP-MS and NIRF. Under the highest MNP concentration, cellular viability showed a reduction of less than 10% compared to the control. Correlation analysis of the MNP load internalized into hBM-MSCLuc determined via the MRI, ICP-MS and NIRF techniques showed the same correlation coefficient of 0.99. Evaluation of the BLI, NIRF, and MRI signals in vivo and ex vivo after labeled hBM-MSCLuc were implanted into animals showed differences between different MNP concentrations and signals associated with different techniques (MRI and NIRF; 5 and 20 µg Fe/mL; P < 0.05) in the sham groups at 4 h as well as a time effect (4 h and 6 d; P < 0.001) and differences between the sham and stroke groups in all images signals (P < 0.001).
CONCLUSION This study highlighted the importance of quantifying MNPs internalized into cells and the efficacy of signal detection under the triple-image modality in a stroke model.
Collapse
Affiliation(s)
| | | | - Mariana Penteado Nucci
- LIM44, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | | | | | | | | | - Virginia Picanço-Castro
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Dimas Tadeu Covas
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo 05403-010, Brazil
| | | | | | | | | |
Collapse
|
19
|
Giakoumettis D, Kritis A, Foroglou N. C6 cell line: the gold standard in glioma research. Hippokratia 2018; 22:105-112. [PMID: 31641331 PMCID: PMC6801124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Glioblastoma multiforme is the most aggressive brain tumor with poor prognosis and an average survival of 1-2 years. Animal models that simulate the features of human glioma are the key to newer agents or therapeutic strategies. In order to establish such models, the C6 glioma cell line has been mostly used in neuro-oncology research. METHODS In this narrative review, we systematically reviewed the international literature in order to retrieve and present the most important biological and molecular features of C6 cell line. RESULTS Even though many cell lines have been developed, each cell line presents with slight differences from human glioma behavior. C6 cancer cell line is a rat glioma cell line, which can simulate in overall the high growth rate, the high vascularization, and the highly infiltrative character of glioblastoma multiforme. CONCLUSIONS Most of the C6 glioma research has been focused on testing a wide diversity of agents for their tumoricidal activity. C6 cell line is considered to be a safe and popular glioma model in the literature, providing a good simulation of glioblastoma multiforme. HIPPOKRATIA 2018, 22(3): 105-112.
Collapse
Affiliation(s)
- D Giakoumettis
- First Department of Neurosurgery, University of Athens Medical School, "Evangelismos" General Hospital, Athens
- First Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Kritis
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences
- cGMP Regenerative Medicine facility, Department of Physiology and Pharmacology, Faculty of Medicine, School of Health Sciences
| | - N Foroglou
- First Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|