1
|
Mani C, Acharya G, Saamarthy K, Ochola D, Mereddy S, Pruitt K, Manne U, Palle K. Racial differences in RAD51 expression are regulated by miRNA-214-5P and its inhibition synergizes with olaparib in triple-negative breast cancer. Breast Cancer Res 2023; 25:44. [PMID: 37081516 PMCID: PMC10120249 DOI: 10.1186/s13058-023-01615-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/03/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) affects young women and is the most aggressive subtype of breast cancer (BC). TNBCs disproportionally affect women of African-American (AA) descent compared to other ethnicities. We have identified DNA repair gene RAD51 as a poor prognosis marker in TNBC and its posttranscriptional regulation through microRNAs (miRNAs). This study aims to delineate the mechanisms leading to RAD51 upregulation and develop novel therapeutic combinations to effectively treat TNBCs and reduce disparity in clinical outcomes. METHODS Analysis of TCGA data for BC cohorts using the UALCAN portal and PrognoScan identified the overexpression of RAD51 in TNBCs. miRNA sequencing identified significant downregulation of RAD51-targeting miRNAs miR-214-5P and miR-142-3P. RT-PCR assays were used to validate the levels of miRNAs and RAD51, and immunohistochemical and immunoblotting techniques were used similarly for RAD51 protein levels in TNBC tissues and cell lines. Luciferase assays were performed under the control of RAD51 3'-UTR to confirm that miR-214-5P regulates RAD51 expression. To examine the effect of miR-214-5P-mediated downregulation of RAD51 on homologous recombination (HR) in TNBC cells, Dr-GFP reporter assays were performed. To assess the levels of olaparib-induced DNA damage responses in miR-214-5P, transfected cells, immunoblots, and immunofluorescence assays were used. Furthermore, COMET assays were used to measure DNA lesions and colony assays were performed to assess the sensitivity of BRCA-proficient TNBC cells to olaparib. RESULTS In-silico analysis identified upregulation of RAD51 as a poor prognostic marker in TNBCs. miRNA-seq data showed significant downregulation of miR-214-5P and miR-142-3P in TNBC cell lines derived from AA women compared to Caucasian-American (CA) women. miR-214-5P mimics downregulated RAD51 expression and induces HR deficiency as measured by Dr-GFP assays in these cell lines. Based on these results, we designed a combination treatment of miR-214-5P and olaparib in HR-proficient AA TNBC cell lines using clonogenic survival assays. The combination of miR-214-5P and olaparib showed synergistic lethality compared to individual treatments in these cell lines. CONCLUSIONS Our studies identified a novel epigenetic regulation of RAD51 in TNBCs by miR-214-5P suggesting a novel combination therapies involving miR-214-5P and olaparib to treat HR-proficient TNBCs and to reduce racial disparity in therapeutic outcomes.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Department of Surgery, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Ganesh Acharya
- Department of Cell Biology and Biochemistry, Department of Surgery, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Karunakar Saamarthy
- Department of Cell Biology and Biochemistry, Department of Surgery, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Damieanus Ochola
- Department of Cell Biology and Biochemistry, Department of Surgery, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Srinidhi Mereddy
- Department of Cellular and Molecular Biology, University of Washington, 1400 NE Campus Parkway, Seattle, WA, 98195, USA
| | - Kevin Pruitt
- Department of Immunology and Infectious Diseases, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Department of Surgery, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
2
|
Nguyen Thi Ngoc Thanh, Tram PB, Tuyet NHH, Uyen NHP, Tien LTM, Anh DN, Van LTT, Luan HH, Hue NT. Association of Polymorphisms in Genes Involved in DNA Repair and Cell Cycle Arrest with Breast Cancer in a Vietnamese Case-Control Cohort. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721040101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Kantapan J, Paksee S, Duangya A, Sangthong P, Roytrakul S, Krobthong S, Suttana W, Dechsupa N. A radiosensitizer, gallotannin-rich extract from Bouea macrophylla seeds, inhibits radiation-induced epithelial-mesenchymal transition in breast cancer cells. BMC Complement Med Ther 2021; 21:189. [PMID: 34217266 PMCID: PMC8254241 DOI: 10.1186/s12906-021-03363-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Radioresistance can pose a significant obstacle to the effective treatment of breast cancers. Epithelial–mesenchymal transition (EMT) is a critical step in the acquisition of stem cell traits and radioresistance. Here, we investigated whether Maprang seed extract (MPSE), a gallotannin-rich extract of seed from Bouea macrophylla Griffith, could inhibit the radiation-induced EMT process and enhance the radiosensitivity of breast cancer cells. Methods Breast cancer cells were pre-treated with MPSE before irradiation (IR), the radiosensitizing activity of MPSE was assessed using the colony formation assay. Radiation-induced EMT and stemness phenotype were identified using breast cancer stem cells (CSCs) marker (CD24−/low/CD44+) and mammosphere formation assay. Cell motility was determined via the wound healing assay and transwell migration. Radiation-induced cell death was assessed via the apoptosis assay and SA-β-galactosidase staining for cellular senescence. CSCs- and EMT-related genes were confirmed by real-time PCR (qPCR) and Western blotting. Results Pre-treated with MPSE before irradiation could reduce the clonogenic activity and enhance radiosensitivity of breast cancer cell lines with sensitization enhancement ratios (SERs) of 2.33 and 1.35 for MCF7 and MDA-MB231cells, respectively. Pretreatment of breast cancer cells followed by IR resulted in an increased level of DNA damage maker (γ-H2A histone family member) and enhanced radiation-induced cell death. Irradiation induced EMT process, which displayed a significant EMT phenotype with a down-regulated epithelial marker E-cadherin and up-regulated mesenchymal marker vimentin in comparison with untreated breast cancer cells. Notably, we observed that pretreatment with MPSE attenuated the radiation-induced EMT process and decrease some stemness-like properties characterized by mammosphere formation and the CSC marker. Furthermore, pretreatment with MPSE attenuated the radiation-induced activation of the pro-survival pathway by decrease the expression of phosphorylation of ERK and AKT and sensitized breast cancer cells to radiation. Conclusion MPSE enhanced the radiosensitivity of breast cancer cells by enhancing IR-induced DNA damage and cell death, and attenuating the IR-induced EMT process and stemness phenotype via targeting survival pathways PI3K/AKT and MAPK in irradiated breast cancer cells. Our findings describe a novel strategy for increasing the efficacy of radiotherapy for breast cancer patients using a safer and low-cost natural product, MPSE. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03363-6.
Collapse
Affiliation(s)
- Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Siwaphon Paksee
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Aphidet Duangya
- Interdisciplinary Program of Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.,Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Sucheewin Krobthong
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Wipob Suttana
- Department of Biomedical Science, School of Health Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
4
|
Chu CN, Wang YC, Chang WS, Wang ZH, Liu LC, Wang SC, Lin CC, Liu TY, Chang JG, Tsai CW, Yu CC, Bau DAT. Association of Interleukin-4 Polymorphisms With Breast Cancer in Taiwan. In Vivo 2020; 34:1111-1116. [PMID: 32354899 DOI: 10.21873/invivo.11882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The present study aimed at evaluating the contribution of IL-4 promoter T-1099G (rs2243248), C-589T (rs2243250), C-33T (rs2070874) genotypes to the risk of breast cancer in Taiwanese. MATERIALS AND METHODS A total of 1232 breast cancer patients and 1232 age-matched controls were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methodology. RESULTS Genotypic frequencies of IL-4 rs2243248, rs2243250 and rs2070874 were not differentially distributed between case and control groups. Consistently, there was no difference in the distribution of allelic frequencies among patients and controls. CONCLUSION IL-4 rs2243248, rs2243250 and rs2070874 do not confer breast cancer susceptibility in Taiwanese.
Collapse
Affiliation(s)
- Chin-Nan Chu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, R.O.C.,Division of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yun-Chi Wang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Zhi-Hong Wang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| | - Liang-Chih Liu
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Shao-Chun Wang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Cheng-Chieh Lin
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Ting-Yuan Liu
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Jan-Gowth Chang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chien-Chih Yu
- School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, R.O.C. .,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
5
|
Yang F, Mu X, Bian C, Zhang H, Yi T, Zhao X, Lin X. Association of excision repair cross-complimentary group 1 gene polymorphisms with breast and ovarian cancer susceptibility. J Cell Biochem 2019; 120:15635-15647. [PMID: 31081240 DOI: 10.1002/jcb.28830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
The role of excision repair cross-complimentary group 1 (ERCC1) gene polymorphisms in breast and ovarian cancer development has long been controversial and existing data were inconsistent. Here, we conducted a comprehensive meta-analysis to better clarify the association. Case-control studies published from December 2008 to November 2018 were assessed. The statistical analyses of the pooled odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were calculated. Fifteen articles with 24 case-control studies and 3 ERCC1 polymorphisms were enrolled. A total of 20 923 participants including 9896 cases and 11 027 controls were analyzed. The results showed that C to T variation in the ERCC1 rs11615 (C/T) polymorphisms was correlated with breast cancer susceptibility (T vs C: OR = 1.19, 95% CI = 1.02-1.38; TT + CT vs CC: OR = 1.24, 95% CI = 1.12-1.36). ERCC1 rs3212986 (C/A) polymorphisms posed an increased risk for breast and ovarian cancer as whole (A vs C: OR = 1.12, 95% CI = 1.01-1.25; AA + CA vs CC: OR = 1.11, 95% CI = 1.02-1.22), and presented especially higher risk for ovarian cancer (A vs C: OR = 1.31, 95% CI = 1.05-1.63; AA vs CA + CC: OR = 1.66, 95% CI = 1.12-2.47; AA vs CC: OR = 1.72, 95% CI = 1.12-2.64). Meanwhile, neither overall group analyses nor stratified analyses displayed any association of ERCC1 rs2298881 (A/C) polymorphisms in breast and ovarian cancer susceptibility. This meta-analysis suggested that ERCC1 rs11615 (C/T) polymorphisms were associated with breast cancer susceptibility and rs3212986 (C/A) polymorphisms were especially correlated with ovarian cancer risk. More case-control studies with well-adjusted data and diverse populations are essential for validation of our conclusion.
Collapse
Affiliation(s)
- Fan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Xiyan Mu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Ce Bian
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Huan Zhang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P R China
| | - Tao Yi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Xiaojuan Lin
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| |
Collapse
|