1
|
Reiche ME, Poels K, Bosmans LA, Vos WG, Van Tiel CM, Gijbels MJJ, Aarts SABM, Den Toom M, Beckers L, Weber C, Atzler D, Rensen PCN, Kooijman S, Lutgens E. Adipocytes control hematopoiesis and inflammation through CD40 signaling. Haematologica 2023; 108:1873-1885. [PMID: 36475519 PMCID: PMC10316249 DOI: 10.3324/haematol.2022.281482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/30/2022] [Indexed: 08/18/2024] Open
Abstract
The co-stimulatory CD40-CD40L dyad plays an important role in chronic inflammatory diseases associated with aging. Although CD40 is mainly expressed by immune cells, CD40 is also present on adipocytes. We aimed to delineate the role of adipocyte CD40 in the aging hematopoietic system and evaluated the effects of adipocyte CD40 deficiency on cardiometabolic diseases. Adult adipocyte CD40-deficient mice (AdiCD40KO) mice had a decrease in bone marrow hematopoietic stem cells (Lin-Sca+cKit+, LSK) and common lymphoid progenitors, which was associated with increased bone marrow adiposity and T-cell activation, along with elevated plasma corticosterone levels, a phenotype that became more pronounced with age. Atherosclerotic AdiCD40koApoE-/- (CD40AKO) mice also displayed changes in the LSK population, showing increased myeloid and lymphoid multipotent progenitors, and augmented corticosterone levels. Increased T-cell activation could be observed in bone marrow, spleen, and adipose tissue, while the numbers of B cells were decreased. Although atherosclerosis was reduced in CD40AKO mice, plaques contained more activated T cells and larger necrotic cores. Analysis of peripheral adipose tissue in a diet-induced model of obesity revealed that obese AdiCD40KO mice had increased T-cell activation in adipose tissue and lymphoid organs, but decreased weight gain and improved insulin sensitivity, along with increased fat oxidation. In conclusion, adipocyte CD40 plays an important role in maintaining immune cell homeostasis in bone marrow during aging and chronic inflammatory diseases, particularly of the lymphoid populations. Although adipocyte CD40 deficiency reduces atherosclerosis burden and ameliorates diet-induced obesity, the accompanying T-cell activation may eventually aggravate cardiometabolic diseases.
Collapse
Affiliation(s)
- Myrthe E Reiche
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands; Department of Medical Cell Biology, Uppsala University, Uppsala
| | - Kikkie Poels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Winnie G Vos
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Claudia M Van Tiel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Marion J J Gijbels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht
| | - Suzanne A B M Aarts
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Myrthe Den Toom
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam
| | - Christian Weber
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands; Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany; German Centre of Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich
| | - Dorothee Atzler
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany; German Centre of Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, Munich
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands; Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany; German Centre of Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Cardiovascular Medicine, Experimental CardioVascular Immunology Laboratory, Mayo Clinic, Rochester, MN.
| |
Collapse
|
2
|
Gissler MC, Scherrer P, Anto-Michel N, Pennig J, Hoppe N, Füner L, Härdtner C, Stachon P, Li X, Mitre LS, Marchini T, Madl J, Wadle C, Hilgendorf I, von Zur Mühlen C, Bode C, Weber C, Lutgens E, Wolf D, Gerdes N, Zirlik A, Willecke F. Deficiency of Endothelial CD40 Induces a Stable Plaque Phenotype and Limits Inflammatory Cell Recruitment to Atherosclerotic Lesions in Mice. Thromb Haemost 2021; 121:1530-1540. [PMID: 33618394 DOI: 10.1055/a-1397-1858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The co-stimulatory CD40L-CD40 dyad exerts a critical role in atherosclerosis by modulating leukocyte accumulation into developing atherosclerotic plaques. The requirement for cell-type specific expression of both molecules, however, remains elusive. Here, we evaluate the contribution of CD40 expressed on endothelial cells (ECs) in a mouse model of atherosclerosis. METHODS AND RESULTS Atherosclerotic plaques of apolipoprotein E-deficient (Apoe -/- ) mice and humans displayed increased expression of CD40 on ECs compared with controls. To interrogate the role of CD40 on ECs in atherosclerosis, we induced EC-specific (BmxCreERT2-driven) deficiency of CD40 in Apoe -/- mice. After feeding a chow diet for 25 weeks, EC-specific deletion of CD40 (iEC-CD40) ameliorated plaque lipid deposition and lesional macrophage accumulation but increased intimal smooth muscle cell and collagen content, while atherosclerotic lesion size did not change. Leukocyte adhesion to the vessel wall was impaired in iEC-CD40-deficient mice as demonstrated by intravital microscopy. In accord, expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) in the vascular endothelium declined after deletion of CD40. In vitro, antibody-mediated inhibition of human endothelial CD40 significantly abated monocyte adhesion on ECs. CONCLUSION Endothelial deficiency of CD40 in mice promotes structural features associated with a stable plaque phenotype in humans and decreases leukocyte adhesion. These results suggest that endothelial-expressed CD40 contributes to inflammatory cell migration and consecutive plaque formation in atherogenesis.
Collapse
Affiliation(s)
- Mark Colin Gissler
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Scherrer
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nathaly Anto-Michel
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Pennig
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natalie Hoppe
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Füner
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carmen Härdtner
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Stachon
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xiaowei Li
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucia Sol Mitre
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Timoteo Marchini
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Germany
| | - Carolin Wadle
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Esther Lutgens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andreas Zirlik
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Florian Willecke
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Klinik für Allgemeine und Interventionelle Kardiologie/Angiologie, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
3
|
Abstract
The immune system plays an important role in obesity-induced adipose tissue inflammation and the resultant metabolic dysfunction, which can lead to hypertension, dyslipidemia, and insulin resistance and their downstream sequelae of type 2 diabetes mellitus and cardiovascular disease. While macrophages are the most abundant immune cell type in adipose tissue, other immune cells are also present, such as B cells, which play important roles in regulating adipose tissue inflammation. This brief review will overview B-cell subsets, describe their localization in various adipose depots and summarize our knowledge about the function of these B-cell subsets in regulating adipose tissue inflammation, obesity-induced metabolic dysfunction and atherosclerosis.
Collapse
Affiliation(s)
- Prasad Srikakulapu
- From the Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| | - Coleen A McNamara
- From the Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville
| |
Collapse
|
4
|
Mechanistic basis of co-stimulatory CD40-CD40L ligation mediated regulation of immune responses in cancer and autoimmune disorders. Immunobiology 2019; 225:151899. [PMID: 31899051 DOI: 10.1016/j.imbio.2019.151899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/08/2023]
Abstract
Generation of an accurate humoral and a cell mediated adaptive immune responsesare dictated by binding of an antigen to a T- and a B-cell receptor, respectively (first signal) followed by ligation of costimulatory molecules (second signal). CD40, a costimulatory receptor molecule, expressed mainly on antigen presenting cells, some non-immune cells and tumors, binds to CD40 ligand molecule expressed transiently on T-cells and non-immune cells under inflammatory conditions. In the past decade, the CD40-CD40L interaction has emerged as an immune-potentiating system that governs and regulates host immune response against various diseases and pathogens, failing of which results in detrimental patho-physiologies including cancer and autoimmune disorders. CD40-CD40L transduces immune signals intracellularly via TRAF-dependent and independent mechanisms and further downstream by different MAPK pathways and transcription factors such as NF-κB, p38 etc. While CD40 signaling pathway through its cognate interaction between B and T cells promotes activation and proliferation of B-cells, Ig class switching, and generation of B cell memory; however, CD40-CD40L interaction involving other APCs and non-immune cells relay distinct cell signaling resulting in production of a variety of cytokines/chemokines and cell adhesion molecules ultimately conferring host defense against pathogen. In cancer and autoimmune disorders, CD40-CD40L interaction is also responsible for aberrant expression of many disease specific markers, class I/II MHC molecules and other co-stimulatory molecules such as B7 and CD28 in cell- and disease-specific manner. In the present review, the current state of understanding about the CD40-CD40L mediated regulation of immune and non-immune cells is presented. The current paradigm is to target CD40 using agonist anti-CD40 mAbs alone or in synergistic combination with chemotherapy in order to harness or confer anti-tumor and anti-inflammatory immunity.
Collapse
|
5
|
Depletion of CD40 on CD11c + cells worsens the metabolic syndrome and ameliorates hepatic inflammation during NASH. Sci Rep 2019; 9:14702. [PMID: 31604965 PMCID: PMC6789104 DOI: 10.1038/s41598-019-50976-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
The co-stimulatory CD40-CD40L dyad plays a central role in fine-tuning immune reactions, including obesity-induced inflammation. Genetic ablation of CD40L reduced adipose tissue inflammation, while absence of CD40 resulted in aggravated metabolic dysfunction in mice. During obesity, CD40 expressing CD11c+ dendritic cells (DC) and macrophages accumulate in adipose tissue and liver. We investigated the role of CD40+CD11c+ cells in the metabolic syndrome and nonalcoholic steatohepatitis (NASH). DC-CD40-ko mice (CD40fl/flCD11ccre) mice were subjected to obesity or NASH. Obesity and insulin resistance were induced by feeding mice a 54% high fat diet (HFD). NASH was induced by feeding mice a diet containing 40% fat, 20% fructose and 2% cholesterol. CD40fl/flCD11ccre mice fed a HFD displayed increased weight gain, increased adipocyte size, and worsened insulin resistance. Moreover, CD40fl/flCD11ccre mice had higher plasma and hepatic cholesterol levels and developed profound liver steatosis. Overall, regulatory T cell numbers were decreased in these mice. In NASH, absence of CD40 on CD11c+ cells slightly decreased liver inflammation but did not affect liver lipid accumulation. Our experiments suggest that CD40 expressing CD11c+ cells can act as a double-edged sword: CD40 expressing CD11c+ cells contribute to liver inflammation during NASH but are protective against the metabolic syndrome via induction of regulatory T cells.
Collapse
|
6
|
Reiche ME, den Toom M, Willemsen L, van Os B, Gijbels MJJ, Gerdes N, Aarts SABM, Lutgens E. Deficiency of T cell CD40L has minor beneficial effects on obesity-induced metabolic dysfunction. BMJ Open Diabetes Res Care 2019; 7:e000829. [PMID: 31908798 PMCID: PMC6936585 DOI: 10.1136/bmjdrc-2019-000829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Obesity-associated metabolic dysfunction increases the risk of multiple diseases such as type 2 diabetes and cardiovascular disease. The importance of the co-stimulatory CD40-CD40L dyad in diet-induced obesity (DIO), with opposing phenotypes arising when either the receptor (aggravating) or the ligand (protective) is deleted, has been described previously. The functions of CD40 and CD40L are cell type dependent. As co-stimulation via T cell-mediated CD40L is essential for driving inflammation, we here investigate the role of T cell CD40L in DIO. RESEARCH DESIGN AND METHODS CD4CreCD40Lfl/fl mice on a C57BL/6 background were generated and subjected to DIO by administration of 15 weeks of high fat diet (HFD). RESULTS HFD-fed CD4CreCD40Lfl/fl mice had similar weight gain, adipocyte sizes, plasma cholesterol and triglyceride levels as their wild-type (WT) counterparts. Insulin and glucose tolerance were comparable, although CD4CreCD40Lfl/fl mice did have a decreased plasma insulin concentration, suggesting a minor improvement of insulin resistance. Furthermore, although the degree of hepatosteatosis was similar in both genotypes, the gene expression of fatty acid synthase 1 and ATP-citrate lyase had decreased, whereas expression of peroxisome proliferator-activated receptor-α had increased in livers of CD4CreCD40Lfl/fl mice, suggesting decreased hepatic lipid uptake in absence of T cell CD40L.Moreover, CD4CreCD40Lfl/fl mice displayed significantly lower numbers of effector memory CD4+ T cells and regulatory T cells in blood and lymphoid organs compared with WT. However, immune cell composition and inflammatory status of the adipose tissue was similar in CD4CreCD40Lfl/fl and WT mice. CONCLUSIONS T cell CD40L deficiency results in a minor improvement of insulin sensitivity and hepatic steatosis in DIO, despite the strong decrease in effector T cells and regulatory T cells in blood and lymphoid organs. Our data indicate that other CD40L-expressing cell types are more relevant in the pathogenesis of obesity-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Myrthe E Reiche
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Myrthe den Toom
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Lisa Willemsen
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Bram van Os
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Marion J J Gijbels
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
- Pathology, CARIM, Maastricht, The Netherlands
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Suzanne A B M Aarts
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Esther Lutgens
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Munich, Germany
| |
Collapse
|