1
|
Noelker C, Seitz F, Sturn A, Neff F, Andrei-Selmer LC, Rau L, Geyer A, Ross JA, Bacher M, Dodel R. Autoantibodies against α-synuclein inhibit its aggregation and cytotoxicity. J Autoimmun 2025; 152:103390. [PMID: 40037001 DOI: 10.1016/j.jaut.2025.103390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 03/06/2025]
Abstract
Aggregates of α-synuclein (α-Syn) are the major component of the Lewy bodies associated with Parkinson's disease. Recently, naturally occurring autoantibodies against α-synuclein (α-Syn-nAbs) were detected. Herein we have isolated and further characterized such α-Syn-nAbs. Using an affinity column coated with α-Syn, we have isolated α-Syn-nAbs from a commercially available intravenous Immunoglobulin (IVIg) preparation. A methodological approach based on ELISA, Western blotting and immunoprecipitation as well as surface plasmon resonance, was used to determine binding capacity to α-Syn. The epitope was determined via peptide array membrane and the functionality was tested in vitro using a toxicity and a fibrillation assay. The autoantibodies display strong binding capacity to α-Syn as demonstrated by ELISA, immunoprecipitation and Western blotting analysis. The binding affinities of the purified autoantibodies were analyzed in detail by surface plasmon resonance (Biacore). The epitope on α-Syn that is recognized by the α-Syn nAbs was fully determined. A sequence within the non-amyloid component (NAC)-Region of α-Syn is crucial for the binding of α-Syn-nAbs to α-Syn. Furthermore, the α-Syn-nAbs had an inhibitory effect on α-Syn fibril formation and were also able to specifically reverse the toxicity of α-Syn oligomers species in human neuroblastoma (SH-SY5Y) cells. Our results emphasize the possible importance of naturally occurring autoantibodies for the pathogenesis of Parkinson's disease. Since autoantibodies against α-Syn are detectable in human serum and cerebrospinal fluid and interfere with pathological events associated with α-Syn, they may provide a candidate for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Carmen Noelker
- Department of Neurology, Philipps-University Marburg, Rudolf-Bultmann Strasse 8, 35033, Marburg, Germany
| | - Florian Seitz
- Department of Neurology, Philipps-University Marburg, Rudolf-Bultmann Strasse 8, 35033, Marburg, Germany
| | - Annekathrin Sturn
- Department of Neurology, Philipps-University Marburg, Rudolf-Bultmann Strasse 8, 35033, Marburg, Germany
| | - Frauke Neff
- Institute of Pathology, Neuperlach, Munich, Germany
| | - Luminita-Cornelia Andrei-Selmer
- Department of Neurology, Philipps-University Marburg, Rudolf-Bultmann Strasse 8, 35033, Marburg, Germany; Dr. Senckenbergische Anatomy, Goethe University Frankfurt, Theodor Stern Kay 7, 60590, Frankfurt am Main, Germany
| | - Lorenz Rau
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Armin Geyer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - J Alexander Ross
- Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
| | - Michael Bacher
- Department of Neurology, Philipps-University Marburg, Rudolf-Bultmann Strasse 8, 35033, Marburg, Germany; Institute of Immunology, Philipps-University Marburg, Germany
| | - Richard Dodel
- Department of Neurology, Philipps-University Marburg, Rudolf-Bultmann Strasse 8, 35033, Marburg, Germany; Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Zhang Q, Yang G, Luo Y, Jiang L, Chi H, Tian G. Neuroinflammation in Alzheimer's disease: insights from peripheral immune cells. Immun Ageing 2024; 21:38. [PMID: 38877498 PMCID: PMC11177389 DOI: 10.1186/s12979-024-00445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, USA
| | - Yuan Luo
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China.
| | - Gang Tian
- Department of Laboratory Medicine, Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
3
|
Albus A, Kronimus Y, Burg-Roderfeld M, van der Wurp H, Willbold D, Ziehm T, Dodel R, Ross JA. The Avidity of Autoreactive Alpha-Synuclein Antibodies in Leucine-Rich Repeat Kinase 2 Mutation Carriers Is Not Altered Compared to Healthy Controls or Patients with Parkinson's Disease. Biomolecules 2023; 13:1303. [PMID: 37759704 PMCID: PMC10526238 DOI: 10.3390/biom13091303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The accumulation and aggregation of alpha-synuclein (α-Syn) are pathological processes associated with Parkinson's disease, indicating that the regulation of protein is a crucial etiopathological mechanism. Interestingly, human serum and cerebrospinal fluid contain autoantibodies that recognize α-Syn. This potentially demonstrates an already existing, naturally decomposing, and protective system. Thus, quantitative or qualitative alterations, such as the modified antigen binding of so-called naturally occurring autoantibodies against α-Syn (nAbs-α-Syn), may induce disease onset and/or progression. We investigated the serum titers and binding characteristics of nAbs-α-Syn in patients suffering from sporadic Parkinson's disease (n = 38), LRRK2 mutation carriers (n = 25), and healthy controls (n = 22). METHODS Titers of nAbs-α-Syn were assessed with ELISA and binding affinities and kinetics with SPR. Within the patient cohort, we discriminated between idiopathic and genetic (LRRK2-mutated) variants. RESULTS ELISA experiments revealed no significant differences in nAbs-α-Syn serum titers among the three cohorts. Moreover, the α-Syn avidity of nAbs-α-Syn was also unchanged. CONCLUSIONS Our findings indicate that nAbs-α-Syn concentrations or affinities in healthy and diseased persons do not differ, independent of mutations in LRRK2.
Collapse
Affiliation(s)
- Alexandra Albus
- Therapy Research in Neurogeriatrics, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany; (A.A.); (Y.K.); (H.v.d.W.); (J.A.R.)
- Department for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Yannick Kronimus
- Therapy Research in Neurogeriatrics, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany; (A.A.); (Y.K.); (H.v.d.W.); (J.A.R.)
- Department for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Monika Burg-Roderfeld
- Department of Chemistry and Biology, Fresenius University of Applied Sciences, 65510 Idstein, Germany;
| | - Hendrik van der Wurp
- Therapy Research in Neurogeriatrics, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany; (A.A.); (Y.K.); (H.v.d.W.); (J.A.R.)
- Faculty of Statistics, TU Dortmund University, 44227 Dortmund, Germany
| | - Dieter Willbold
- Institute of Physical Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.W.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Tamar Ziehm
- Institute of Physical Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.W.)
| | - Richard Dodel
- Therapy Research in Neurogeriatrics, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany; (A.A.); (Y.K.); (H.v.d.W.); (J.A.R.)
- Department for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Jean Alexander Ross
- Therapy Research in Neurogeriatrics, Center for Translational Neuro- and Behavioral Sciences, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany; (A.A.); (Y.K.); (H.v.d.W.); (J.A.R.)
| |
Collapse
|
4
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
5
|
Folke J, Bergholt E, Pakkenberg B, Aznar S, Brudek T. Alpha-Synuclein Autoimmune Decline in Prodromal Multiple System Atrophy and Parkinson's Disease. Int J Mol Sci 2022; 23:6554. [PMID: 35742998 PMCID: PMC9224313 DOI: 10.3390/ijms23126554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
Multiple-system trophy (MSA) and Parkinson's Disease (PD) are both progressive, neurodegenerative diseases characterized by neuropathological deposition of aggregated alpha-synuclein (αSyn). The causes behind this aggregation are still unknown. We have reported aberrancies in MSA and PD patients in naturally occurring autoantibodies (nAbs) against αSyn (anti-αSyn-nAbs), which are important partakers in anti-aggregatory processes, immune-mediated clearance, and anti-inflammatory functions. To elaborate further on the timeline of autoimmune aberrancies towards αSyn, we investigated here the Immunoglobulin (Ig) affinity profile and subclass composition (IgG-total, IgG1-4 and IgM) of anti-αSyn-nAbs in serum samples from prodromal (p) phases of MSA and PD. Using an electrochemiluminescence competition immunoassay, we confirmed that the repertoire of high-affinity anti-αSyn-nAbs is significantly reduced in pMSA and pPD. Further, we demonstrated that pPD had increased anti-αSyn IgG-total levels compared to pMSA and controls, concordant with increased anti-αSyn IgG1 levels in pPD. Anti-αSyn IgG2 and IgG4 levels were reduced in pMSA and pPD compared with controls, whereas anti-αSyn IgG3 levels were reduced in pMSA compared to pPD and controls. The results indicate that the impaired reactivity towards αSyn occurs prior to disease onset. The apparent lack of high-affinity anti-αSyn nAbs may result in reduced clearance of αSyn, leading to aggregation of the protein. Thus, this study provides novel insights into possible causes behind the pathogenesis in synucleinopathies such as MSA and PD.
Collapse
Affiliation(s)
- Jonas Folke
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark
| | - Emil Bergholt
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
| | - Bente Pakkenberg
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Institute of Clinical Medicine, Faculty of Health, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Susana Aznar
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience & Stereology, Department of Neurology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark; (E.B.); (B.P.); (S.A.); (T.B.)
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen NV, Denmark
| |
Collapse
|
6
|
Braczynski AK, Sevenich M, Gering I, Kupreichyk T, Agerschou ED, Kronimus Y, Habib P, Stoldt M, Willbold D, Schulz JB, Bach JP, Falkenburger BH, Hoyer W. Alpha-Synuclein-Specific Naturally Occurring Antibodies Inhibit Aggregation In Vitro and In Vivo. Biomolecules 2022; 12:biom12030469. [PMID: 35327661 PMCID: PMC8946620 DOI: 10.3390/biom12030469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is associated with motor and non-motor symptoms and characterized by aggregates of alpha-synuclein (αSyn). Naturally occurring antibodies (nAbs) are part of the innate immune system, produced without prior contact to their specific antigen, and polyreactive. The abundance of nAbs against αSyn is altered in patients with PD. In this work, we biophysically characterized nAbs against αSyn (nAbs-αSyn) and determined their biological effects. nAbs-αSyn were isolated from commercial intravenous immunoglobulins using column affinity purification. Biophysical properties were characterized using a battery of established in vitro assays. Biological effects were characterized in HEK293T cells transiently transfected with fluorescently tagged αSyn. Specific binding of nAbs-αSyn to monomeric αSyn was demonstrated by Dot blot, ELISA, and Surface Plasmon Resonance. nAbs-αSyn did not affect viability of HEK293T cells as reported by Cell Titer Blue and LDH Assays. nAbs-αSyn inhibited fibrillation of αSyn reported by the Thioflavin T aggregation assay. Altered fibril formation was confirmed with atomic force microscopy. In cells transfected with EGFP-tagged αSyn we observed reduced formation of aggresomes, perinuclear accumulations of αSyn aggregates. The results demonstrate that serum of healthy individuals contains nAbs that specifically bind αSyn and inhibit aggregation of αSyn in vitro. The addition of nAbs-αSyn to cultured cells affects intracellular αSyn aggregates. These findings help understanding the role of the innate immune systems for the pathogenesis of PD and suggest that systemic αSyn binding agents could potentially affect neuronal αSyn pathology.
Collapse
Affiliation(s)
- Anne K. Braczynski
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
| | - Marc Sevenich
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
- Priavoid GmbH, 40225 Düsseldorf, Germany
| | - Ian Gering
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
| | - Tatsiana Kupreichyk
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
| | - Emil D. Agerschou
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
| | - Yannick Kronimus
- Department of Geriatric Medicine, University Hospital Essen, University Duisburg-Essen, 47057 Duisburg, Germany;
| | - Pardes Habib
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Stoldt
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
| | - Jörg B. Schulz
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
- JARA-Institute Molecular Neuroscience and Neuroimaging, Jülich Aachen Research Alliance, FZ Jülich and RWTH University, 52428 Jülich, Germany
| | - Jan-Philipp Bach
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
| | - Björn H. Falkenburger
- Department of Neurology, RWTH University Hospital, 52074 Aachen, Germany; (A.K.B.); (P.H.); (J.B.S.); (J.-P.B.)
- Department of Neurology, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
- Correspondence: (B.H.F.); (W.H.)
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.K.); (E.D.A.); (M.S.); (D.W.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany; (M.S.); (I.G.)
- Correspondence: (B.H.F.); (W.H.)
| |
Collapse
|
7
|
Albus A, Kronimus Y, Neumann S, Vidovic N, Frenzel A, Kuhn P, Seifert M, Ziehm T, van der Wurp H, Dodel R. Effects of a Multimerized Recombinant Autoantibody Against Amyloid-β. Neuroscience 2021; 463:355-369. [PMID: 33958140 DOI: 10.1016/j.neuroscience.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease; thus, the search for a cure or causal therapy has become necessary. Despite intense research on this topic in recent decades, there is no curative therapy up today, and also no disease-modifying treatment has been approved. As promising approach passive immunization strategies have thereby come forth. In this study, we focused on naturally occurring autoantibodies against the AD-associated peptide amyloid-β. These antibodies have already reported to show beneficial functions in vitro and in mouse models of AD. However, their availability is limited due to their low abundance in peripheral blood. In a recent study, we were able to generate four recombinant antibodies against amyloid-β. In the present study, we tested these antibodies in ELISA and SPR assays for their binding behavior and by aggregation- and phagocytosis assays as functional evidences to characterize their amyloid-β-related neutralizing and clearance abilities. Further ex vivo assay on organotypic hippocampal slice cultures gave first evidence of microglial activation and inflammatory features. The tested recombinant antibodies in IgG format showed, in comparison to naturally occurring autoantibodies against amyloid-β, insufficient binding capacities and -affinities. However, after conversion of one antibody into a single chain format multimerization of the scFv-Fc construct, the investigated binding capacity and -affinity showed improvements. Further functional assays predict a protective effect of this antibody. Although, all four recombinant antibodies showed binding to amyloid-β, promising features were only detectable after conversion into a multimeric format. The multimeric scFv-Fc antibody exhibited thereby strong impact on amyloid-β clearance and inhibition of oligomerization.
Collapse
Affiliation(s)
- Alexandra Albus
- Chair of Geriatric Medicine, University Duisburg-Essen, Germany; Department of Neurology, Philipps-University, Marburg, Germany
| | - Yannick Kronimus
- Chair of Geriatric Medicine, University Duisburg-Essen, Germany; Department of Neurology, Philipps-University, Marburg, Germany
| | - Sascha Neumann
- Chair of Geriatric Medicine, University Duisburg-Essen, Germany
| | - Natascha Vidovic
- Chair of Geriatric Medicine, University Duisburg-Essen, Germany; Department of Neurology, Philipps-University, Marburg, Germany
| | | | | | - Marc Seifert
- Institute of Cell Biology (Cancer Research), Medical Faculty, University Duisburg-Essen, Germany
| | - Tamar Ziehm
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Hendrik van der Wurp
- Chair of Geriatric Medicine, University Duisburg-Essen, Germany; Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | - Richard Dodel
- Chair of Geriatric Medicine, University Duisburg-Essen, Germany; Department of Neurology, Philipps-University, Marburg, Germany.
| |
Collapse
|
8
|
Nataf S, Guillen M, Pays L. Common Neurodegeneration-Associated Proteins Are Physiologically Expressed by Human B Lymphocytes and Are Interconnected via the Inflammation/Autophagy-Related Proteins TRAF6 and SQSTM1. Front Immunol 2019; 10:2704. [PMID: 31824497 PMCID: PMC6886494 DOI: 10.3389/fimmu.2019.02704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
There is circumstantial evidence that, under neurodegenerative conditions, peptides deriving from aggregated or misfolded specific proteins elicit adaptive immune responses. On another hand, several genes involved in familial forms of neurodegenerative diseases exert key innate immune functions. However, whether or not such observations are causally linked remains unknown. To start addressing this issue, we followed a systems biology strategy based on the mining of large proteomics and immunopeptidomics databases. First, we retrieved the expression patterns of common neurodegeneration-associated proteins in two professional antigen-presenting cells, namely B lymphocytes and dendritic cells. Surprisingly, we found that under physiological conditions, numerous neurodegeneration-associated proteins are abundantly expressed by human B lymphocytes. A survey of the human proteome allowed us to map a unique protein-protein interaction network linking common neurodegeneration-associated proteins and their first shell interactors in human B lymphocytes. Interestingly, network connectivity analysis identified two major hubs that both relate with inflammation and autophagy, namely TRAF6 (TNF Receptor Associated Factor 6) and SQSTM1 (Sequestosome-1). Moreover, the mapped network in B lymphocytes comprised two additional hub proteins involved in both inflammation and autoimmunity: HSPA8 (Heat Shock Protein Family A Member 8 also known as HSC70) and HSP90AA1 (Heat Shock Protein 90 Alpha Family Class A Member 1). Based on these results, we then explored the Immune Epitope Database "IEDB-AR" and actually found that a large share of neurodegeneration-associated proteins were previously reported to provide endogenous MHC class II-binding peptides in human B lymphocytes. Of note, peptides deriving from amyloid beta A4 protein, sequestosome-1 or profilin-1 were reported to bind multiple allele-specific MHC class II molecules. In contrast, peptides deriving from microtubule-associated protein tau, presenilin 2 and serine/threonine-protein kinase TBK1 were exclusively reported to bind MHC molecules encoded by the HLA-DRB1 1501 allele, a recently-identified susceptibility gene for late onset Alzheimer's disease. Finally, we observed that the whole list of proteins reported to provide endogenous MHC class II-binding peptides in human B lymphocytes is specifically enriched in neurodegeneration-associated proteins. Overall, our work indicates that immunization against neurodegeneration-associated proteins might be a physiological process which is shaped, at least in part, by B lymphocytes.
Collapse
Affiliation(s)
- Serge Nataf
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
- Faculté de Médecine Lyon-Est, University of Lyon 1, Lyon, France
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Marine Guillen
- Faculté de Médecine Lyon-Est, University of Lyon 1, Lyon, France
| | - Laurent Pays
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
- Faculté de Médecine Lyon-Est, University of Lyon 1, Lyon, France
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
9
|
Albus A, Jördens M, Möller M, Dodel R. Encoding the Sequence of Specific Autoantibodies Against beta-Amyloid and alpha-Synuclein in Neurodegenerative Diseases. Front Immunol 2019; 10:2033. [PMID: 31507618 PMCID: PMC6718452 DOI: 10.3389/fimmu.2019.02033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023] Open
Abstract
There is no effective disease-modifying therapy for Alzheimer's or Parkinson's disease. As pathological hallmarks, the specific peptide amyloid-β and the specific protein α-Synuclein aggregate and deposit in and destabilize neurons, which lead to their degeneration. Within the context of a potential immunization strategy for these diseases, naturally occurring autoantibodies could play a crucial role in treatment due to their ability to inhibit peptide/protein aggregation and mediate their phagocytosis. We developed a procedure to extract the genetic information of such amyloid-β- and α-Synuclein- specific naturally occurring autoantibodies for future passive immunization strategies. We performed FACS-based single-cell sorting on whole blood donated from healthy individuals and performed single-cell RT-PCR analysis to amplify the coding sequences of antigen-binding regions of each antibody-secreting B1 cell. Sequences were further analyzed to determine CDR sequences and germline expression. Therefore, only low percentages of B1 cells obtained were amyloid-β+/α-Synuclein+. After cell sorting, the variable regions of full IgGs were sequenced, demonstrating preferred usage of IGVH3 and IGKV1. The study we present herein describes an approaching for extracting and amplifying the sequence information of autoantibodies based on single-cell analysis of donated blood and producing a recombinant antibody pool for potential passive immunization against neurodegenerative diseases. We sorted a small pool of CD20+ CD27+ CD43+ CD69− IgG+ and Aβ+/α-Syn+ B cells.
Collapse
Affiliation(s)
- Alexandra Albus
- Chair of Geriatric Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Neurology, Philipps-University, Marburg, Germany
| | - Marit Jördens
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Moritz Möller
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Richard Dodel
- Chair of Geriatric Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Neurology, Philipps-University, Marburg, Germany
| |
Collapse
|
10
|
Nanodelivery of cerebrolysin reduces pathophysiology of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2019; 245:201-246. [DOI: 10.1016/bs.pbr.2019.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|