1
|
Sharma H, Garg R. Characterization of the Helicase activity of Pif-like Helicases from Arabidopsis thaliana and role in gene regulation and abiotic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109771. [PMID: 40106934 DOI: 10.1016/j.plaphy.2025.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/10/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Regulation in gene expression is rendered by the dynamic structural transitions between classical B-form DNA and non-canonical DNA folds such as G-Quadruplexes (GQS). Several proteins interact with GQSes and regulate a range of biological processes including regulation of DNA replication, transcription, and translation. Several GQS helicases resolve these structures and contribute to maintaining genomic stability. Arabidopsis has 3 homologs of Pif-Like-Helicases (AtPLHs) which have been characterized in this study. Cellular localization and tissue-specific profiling of these homologs revealed nuclear localization and expression in seedling, leaves, and flower tissues suggesting they might play a role in gene regulation and plant development. Molecular characterization of recombinant AtPLH2 and AtPLH3 suggested DNA binding, ATPase, and helicase activity of these two proteins. Further, phenotyping of Atplh mutants revealed alterated seedling root and hypocotyl growth and pollen germination. Transcriptomic profiling of mutants revealed the upregulation of genes associated with processes like systemic acquired resistance, glutathione metabolic process, cellular oxidant detoxification, β-glucosidase activity, SAM-dependent methyltransferase activity, heme binding, calmodulin binding, etc, with these genes harboring WRKY and AP2/EREB TF binding sites in their promoters. These mutants showed susceptibility to different abiotic stresses like salinity and ABA stress as well as to hydroxyurea. Further, AtPLH2 and AtPLH3 mutants showed no root elongation under low pH suggesting root elongation is affected in the absence of these genes. Our study highlights the role of these GQS helicases in regulating genes involved in root development and stress tolerance.
Collapse
Affiliation(s)
- Himanshi Sharma
- Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Rohini Garg
- Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India.
| |
Collapse
|
2
|
Paz HA, Pilkington A, Loy HD, Zhong Y, Shankar K, Wankhade UD. Beta-adrenergic agonist induces unique transcriptomic signature in inguinal white adipose tissue. Physiol Rep 2023; 11:e15646. [PMID: 36967237 PMCID: PMC10040403 DOI: 10.14814/phy2.15646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
Activation of thermogenic adipose tissue depots has been linked to improved metabolism and weight loss. To study the molecular regulation of adipocyte thermogenesis, we performed RNA-Seq on brown adipose tissue (BAT), gonadal white adipose tissue (gWAT), and inguinal white adipose tissue (iWAT) from mice treated with β3-adrenoreceptor agonist CL316,243 (CL). Our analysis revealed diverse transcriptional profile and identified pathways in response to CL treatment. Differentially expressed genes (DEGs) in iWATCL were associated with the upregulation of pathways involved in cellular immune responses and with the upregulation of the browning program. We identified 39 DEGs in beige adipose which included certain heat shock proteins (Hspa1a and Hspa1b), and others suggesting potential associations with browning. Our results highlight transcriptional heterogeneity across adipose tissues and reveal genes specifically regulated in beige adipose, potentially aiding in identifying novel browning pathways.
Collapse
Affiliation(s)
- Henry A. Paz
- Department of PediatricsCollege of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Anna‐Claire Pilkington
- Department of PediatricsCollege of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Hannah D. Loy
- Department of PediatricsCollege of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Ying Zhong
- Department of PediatricsCollege of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Kartik Shankar
- Department of Pediatrics, Section of NutritionUniversity of Colorado School of Medicine, Anschutz Medical CampusAuroraColoradoUSA
| | - Umesh D. Wankhade
- Department of PediatricsCollege of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
| |
Collapse
|
3
|
Cai T, Wang N, Meng P, Sun W, Cui Y. Up-regulated PIF1 predicts poor clinical outcomes and correlates with low immune infiltrates in clear cell renal cell carcinoma. Front Genet 2023; 13:1058040. [PMID: 36685888 PMCID: PMC9847676 DOI: 10.3389/fgene.2022.1058040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Petite Integration Factor 1 (PIF1) is a multifunctional helicase and DNA processing enzyme that plays an important role in the process of several cancer types. However, the relationship between clear cell renal cell carcinoma (ccRCC) and PIF1 remains unclear. This study aims to explore the role of PIF1 in ccRCC tumorigenesis and prognosis. Methods: Based on The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, we retrieved and verified the expression of PIF1 in ccRCC tissues as well as normal tissues. To assess the protein expression of PIF1 by using the Human Protein Atlas and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). We also performed receiver operating characteristic (ROC) curve analysis to differentiate the effectiveness of PIF1 in ccRCC and adjacent normal tissues. To evaluate the value of PIF1 on clinical outcomes in ccRCC patients by using multivariate methods and Kaplan‒Meier survival curves. Protein‒protein interaction (PPI) networks were made with STRING. We determined the relationship between the expression of PIF1 and immune cell infiltration with single-sample gene set enrichment analysis (ssGSEA). Results: Compared with normal tissues, the expression of PIF1 was significantly elevated in ccRCC. The mRNA expression of PIF1 is correlated with high TNM stage and high pathologic stage. The receiver operating characteristic (ROC) curve analysis showed that PIF1 was related to an area under the curve (AUC) value of 0.928 to distinguish between ccRCC tissues and normal tissues. Kaplan‒Meier survival analysis showed that the overall survival (OS) of ccRCC patients with a high level of PIF1 was significantly shorter than that of those with a low level of PIF1. PIF1 may play an important role in the occurrence of tumors. Correlation analysis showed that PIF1-mediated carcinogenesis may participate in the process of tumor immune escape in ccRCC. Conclusion: PIF1 could be a reference biomarker to identify ccRCC patients with poor prognosis. PIF1 may play a distinct role in the microenvironment of ccRCC by regulating tumor infiltration of immune cells, which is a new therapeutic target to affect the growth of the tumor.
Collapse
Affiliation(s)
- Tong Cai
- Department of Urology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ning Wang
- Department of Urology, The Affiliated YantaiYuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Peng Meng
- Department of Oncology, Yantai Traditional Chinese Medicine Hospital, Yantai, Shandong, China
| | - Weigui Sun
- Department of Urology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China,*Correspondence: Weigui Sun, ; Yuanshan Cui,
| | - Yuanshan Cui
- Department of Urology, The Affiliated YantaiYuhuangding Hospital of Qingdao University, Yantai, Shandong, China,*Correspondence: Weigui Sun, ; Yuanshan Cui,
| |
Collapse
|
4
|
Malone EG, Thompson MD, Byrd AK. Role and Regulation of Pif1 Family Helicases at the Replication Fork. Int J Mol Sci 2022; 23:ijms23073736. [PMID: 35409096 PMCID: PMC8998199 DOI: 10.3390/ijms23073736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Pif1 helicases are a multifunctional family of DNA helicases that are important for many aspects of genomic stability in the nucleus and mitochondria. Pif1 helicases are conserved from bacteria to humans. Pif1 helicases play multiple roles at the replication fork, including promoting replication through many barriers such as G-quadruplex DNA, the rDNA replication fork barrier, tRNA genes, and R-loops. Pif1 helicases also regulate telomerase and promote replication termination, Okazaki fragment maturation, and break-induced replication. This review highlights many of the roles and regulations of Pif1 at the replication fork that promote cellular health and viability.
Collapse
Affiliation(s)
- Emory G. Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Matthew D. Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (E.G.M.); (M.D.T.)
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-526-6488
| |
Collapse
|
5
|
Anacleto SL, Milenkovic D, Kroon PA, Needs PW, Lajolo FM, Hassimotto NMA. Citrus flavanone metabolites protect pancreatic-β cells under oxidative stress induced by cholesterol. Food Funct 2020; 11:8612-8624. [PMID: 32959863 DOI: 10.1039/d0fo01839b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cholesterol is one of the triggers of oxidative stress in the pancreatic-β cell, generating high levels of reactive oxygen species, which leads to impairment of insulin synthesis and secretion. Bioactive compounds, such as citrus flavanones, which possess anti-inflammatory and antioxidant activities, could reduce oxidative stress in β-cells and improve their function. We describe for the first time the protective effects of the phase-II flavanone metabolites [naringenin 7-O-glucuronide, hesperetin 3'-O-glucuronide, and hesperetin 7-O-glucuronide], and two flavanones-catabolites derived from gut microbiota metabolism [hippuric acid and 3-(4-hydroxyphenyl)propionic acid], on pancreatic β-cell line MIN6 under oxidative stress, at physiologically relevant concentration. Cholesterol reduced cell viability in a dose and time-dependent manner, with an improvement in the presence of the metabolites. Moreover, flavanone metabolites attenuated oxidative stress by reducing levels of lipid peroxides, superoxide anions, and hydrogen peroxide. In response to the reduction of reactive oxygen species, a decrease in superoxide dismutase and glutathione peroxidase activities was observed; these activities were elevated by cholesterol. Moreover, all the flavanone metabolites improved mitochondrial function and insulin secretion, and reduced apoptosis. Flavanone metabolites were found uptake by β-cells, and therefore could be responsible for the observed protective effects. These results demonstrated that circulating phase-II hesperetin and naringenin metabolites, and also phenolics derived from gut microbiota, protect pancreatic-β cells against oxidative stress, leading to an improvement in β-cell function and could be the bioactive molecules derived from the citrus consumption.
Collapse
Affiliation(s)
- Sara L Anacleto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil.
| | - Dragan Milenkovic
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, 451 East Health Sciences Drive, 95616, Davis, California, USA and Unité de Nutrition Humaine, INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Paul W Needs
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Franco Maria Lajolo
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil.
| | - Neuza M A Hassimotto
- Food Research Center-(FoRC-CEPID) and Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Ononye OE, Sausen CW, Bochman ML, Balakrishnan L. Dynamic regulation of Pif1 acetylation is crucial to the maintenance of genome stability. Curr Genet 2020; 67:85-92. [PMID: 33079209 DOI: 10.1007/s00294-020-01116-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023]
Abstract
PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.
Collapse
Affiliation(s)
- Onyekachi E Ononye
- Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, USA
| | - Christopher W Sausen
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA.
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, USA.
| |
Collapse
|
7
|
Chen B, Hua Z, Gong B, Tan X, Zhang S, Li Q, Chen Y, Zhang J, Li Z. Downregulation of PIF1, a potential new target of MYCN, induces apoptosis and inhibits cell migration in neuroblastoma cells. Life Sci 2020; 256:117820. [PMID: 32512012 DOI: 10.1016/j.lfs.2020.117820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Neuroblastoma (NB) is one of the most common malignant tumors in children. Chemotherapy resistance is one of the significant challenges in the treatment of high-risk NB patients, and it is necessary to search for new valid targets for NB treatment. This study aims to explore the possible role of PIF1 in NB by using bioinformatic analysis and downregulation of PIF1 with specific siRNA. Kyoto genome encyclopedia and R language based gene ontology was used to analyze the differentially expressed genes (DEGs) (including PIF1) when MYCN expression was silenced in NB cells. Analysis based on the R2 database showed a lower expression of PIF1 correlated with good prognosis in NB patients. Downregulation of MYCN expression by transfecting MYCN siRNA (#1, #2) into NB cells decreased the PIF1 expression at both mRNA and protein levels, while upregulation of MYCN expression by transfecting MYCN overexpressed plasmid increased the PIF1 expression. We further found that downregulation of PIF1 expression by transfecting PIF1 siRNA (#1, #2) into NB cells, increased the number of apoptotic cells, inhibited the cell survival, decreased the ability of cell migration and induced a cell cycle arrest at G1 phase. These data indicated that PIF1, as a potential new target of MYCN, maybe a novel target for NB treatment.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baocheng Gong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolin Tan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Simeng Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinhua Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|