1
|
Reddy NV, Suman TC, Gandhi GR, Pathak J, Yadu YK, Venkatesan T, Sushil SN. Apprehending siRNA Machinery and Gene Silencing in Brinjal Shoot and Fruit Borer, Leucinodes orbonalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70029. [PMID: 39835496 DOI: 10.1002/arch.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
RNA interference (RNAi) technology is widely used in gene functional studies and has been shown to be a promising next generation alternative for insect pest management. To understand the efficiency of RNAi machinery in Leucinodes orbonalis (L. orbonalis) Guenee, a destructive pest of eggplant, core RNAi pathway genes Argonaute-2, Dicer-2, Loquacious, and Sid-1 were mined from the transcriptome and characterized. The transcript abundance of these genes was studied after exposure to exogenous double-stranded RNA (dsRNA). Domain structure analysis revealed that these genes have conserved domains required for the definite protein function in the siRNA pathway. The protein sequences when subjected to phylogenetic analysis showed a close relation with homologs obtained from Ostrinia sp. The insects fed with dsRNA designed for vacuolar sorting protein SNF7 gene showed significant downregulation at 48 h post treatment and about 79% larval mortality. The expression study of genes showed a significant spike in transcript abundance of Dicer-2, Argonatute-2, and downregulation of Loquacious at 24 and 48 h post dsRNA exposure. The results on siRNA machinery genes expression and target gene knockdown implies L. orbonalis has an ample response to exogenous dsRNA.
Collapse
Affiliation(s)
- N Veeramanikanta Reddy
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - T C Suman
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
- Department of Plant Biotechnology, University of Agricultural Sciences, Bengaluru, India
| | - Gracy R Gandhi
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | - Jyoti Pathak
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | - Y K Yadu
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - T Venkatesan
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| | - Satya Nand Sushil
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India
| |
Collapse
|
2
|
López-Virgen AG, Dautt-Castro M, Ulloa-Llanes LK, Casas-Flores S, Contreras-Vergara CA, Hernández-Oñate MA, Sotelo-Mundo RR, Vélez-de la Rocha R, Islas-Osuna MA. Genome-wide identification of gene families related to miRNA biogenesis in Mangifera indica L. and their possible role during heat stress. PeerJ 2024; 12:e17737. [PMID: 39035161 PMCID: PMC11260077 DOI: 10.7717/peerj.17737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/23/2024] [Indexed: 07/23/2024] Open
Abstract
Mango is a popular tropical fruit that requires quarantine hot water treatment (QHWT) for postharvest sanitation, which can cause abiotic stress. Plants have various defense mechanisms to cope with stress; miRNAs mainly regulate the expression of these defense responses. Proteins involved in the biogenesis of miRNAs include DICER-like (DCL), ARGONAUTE (AGO), HYPONASTIC LEAVES 1 (HYL1), SERRATE (SE), HUA ENHANCER1 (HEN1), HASTY (HST), and HEAT-SHOCK PROTEIN 90 (HSP90), among others. According to our analysis, the mango genome contains five DCL, thirteen AGO, six HYL, two SE, one HEN1, one HST, and five putative HSP90 genes. Gene structure prediction and domain identification indicate that sequences contain key domains for their respective gene families, including the RNase III domain in DCL and PAZ and PIWI domains for AGOs. In addition, phylogenetic analysis indicates the formation of clades that include the mango sequences and their respective orthologs in other flowering plant species, supporting the idea these are functional orthologs. The analysis of cis-regulatory elements of these genes allowed the identification of MYB, ABRE, GARE, MYC, and MeJA-responsive elements involved in stress responses. Gene expression analysis showed that most genes are induced between 3 to 6 h after QHWT, supporting the early role of miRNAs in stress response. Interestingly, our results suggest that mango rapidly induces the production of miRNAs after heat stress. This research will enable us to investigate further the regulation of gene expression and its effects on commercially cultivated fruits, such as mango, while maintaining sanitary standards.
Collapse
Affiliation(s)
- Andrés G. López-Virgen
- CTAOV, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| | - Mitzuko Dautt-Castro
- CTAOV, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| | - Lourdes K. Ulloa-Llanes
- CTAOV, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| | - Sergio Casas-Flores
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosi, San Luis Potosi, México
| | | | | | - Rogerio R. Sotelo-Mundo
- CTAOA, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| | - Rosabel Vélez-de la Rocha
- Unidad Culiacán, Centro de Investigación en Alimentación y Desarrollo, A.C., Culiacán, Sinaloa, México
| | - Maria A. Islas-Osuna
- CTAOV, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México
| |
Collapse
|
3
|
Wu M, Lv H, Guo Z, Li S, Tang J, Li J, You H, Ma K. miR-317-3p and miR-283-5p Play a Crucial Role in Regulating the Resistance to Indoxacarb in Spodoptera frugiperda by Targeting GSTs4. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6889-6899. [PMID: 38512131 DOI: 10.1021/acs.jafc.3c06531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Spodoptera frugiperda is primarily controlled through chemical insecticides. Our RNA-seq data highlight the overexpression of GSTs4 in indoxacarb-resistant S. frugiperda. However, the exact role of GSTs4 in indoxacarb resistance and its regulatory mechanisms remains elusive. Therefore, we investigated the functional role of GSTs4 in S. frugiperda and explored the underlying post-transcriptional regulatory mechanisms. GSTs4 was highly overexpressed (27.6-fold) in the indoxacarb-resistant strain, and GSTs4 silencing significantly increases the susceptibility of S. frugiperda to indoxacarb, increasing mortality by 27.3%. miR-317-3p and miR-283-5p can bind to the 3'UTR of GSTs4, and the targeting relationship was confirmed by dual-luciferase reporter assays. Injecting miR-317-3p and miR-283-5p agomirs reduces GSTs4 levels by 64.8 and 42.3%, respectively, resulting in an increased susceptibility of S. frugiperda to indoxacarb. Conversely, the administration of miR-317-3p and miR-283-5pantagomirs increases GSTs4 expression and reduces larval susceptibility to indoxacarb. These findings demonstrate that miR-317-3p and miR-283-5p contribute to indoxacarb resistance in S. frugiperda by regulating the overexpression of GSTs4.
Collapse
Affiliation(s)
- Mengyan Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haixiang Lv
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhimin Guo
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Sheng Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiahui Tang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hong You
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
4
|
Lucena-Leandro VS, Abreu EFA, Vidal LA, Torres CR, Junqueira CICVF, Dantas J, Albuquerque ÉVS. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Int J Mol Sci 2022; 23:ijms232415836. [PMID: 36555476 PMCID: PMC9785151 DOI: 10.3390/ijms232415836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Invasive insects cost the global economy around USD 70 billion per year. Moreover, increasing agricultural insect pests raise concerns about global food security constraining and infestation rising after climate changes. Current agricultural pest management largely relies on plant breeding-with or without transgenes-and chemical pesticides. Both approaches face serious technological obsolescence in the field due to plant resistance breakdown or development of insecticide resistance. The need for new modes of action (MoA) for managing crop health is growing each year, driven by market demands to reduce economic losses and by consumer demand for phytosanitary measures. The disabling of pest genes through sequence-specific expression silencing is a promising tool in the development of environmentally-friendly and safe biopesticides. The specificity conferred by long dsRNA-base solutions helps minimize effects on off-target genes in the insect pest genome and the target gene in non-target organisms (NTOs). In this review, we summarize the status of gene silencing by RNA interference (RNAi) for agricultural control. More specifically, we focus on the engineering, development and application of gene silencing to control Lepidoptera through non-transforming dsRNA technologies. Despite some delivery and stability drawbacks of topical applications, we reviewed works showing convincing proof-of-concept results that point to innovative solutions. Considerations about the regulation of the ongoing research on dsRNA-based pesticides to produce commercialized products for exogenous application are discussed. Academic and industry initiatives have revealed a worthy effort to control Lepidoptera pests with this new mode of action, which provides more sustainable and reliable technologies for field management. New data on the genomics of this taxon may contribute to a future customized target gene portfolio. As a case study, we illustrate how dsRNA and associated methodologies could be applied to control an important lepidopteran coffee pest.
Collapse
Affiliation(s)
| | | | - Leonardo A. Vidal
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Cellular Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Caroline R. Torres
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Camila I. C. V. F. Junqueira
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Juliana Dantas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|
5
|
Zeng QH, Long GY, Yang XB, Jia ZY, Jin DC, Yang H. SfDicer2 RNA Interference Inhibits Molting and Wing Expansion in Sogatella furcifera. INSECTS 2022; 13:insects13080677. [PMID: 36005304 PMCID: PMC9408908 DOI: 10.3390/insects13080677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/10/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Endoribonuclease 2 (Dicer2) plays various physiological roles in the RNA interference (RNAi) pathway by fragmenting double-stranded RNA to generate small interfering RNA, which then mediates gene silencing. In this study, the role of Dicer2 in the regulation of molting and wing expansion in Sogatella furcifera (white-backed planthopper) was investigated. In particular, SfDicer2-mediated RNAi resulted in wing deformities and lethal modifications in S. furcifera, which are attributable to the significant inhibition of chitin synthesis and degradation and wing expansion genes. This study provides insights into the biological functions of Dicer2 in insects, which can aid in RNAi-mediated pest control. Abstract Endoribonuclease 2 (Dicer2) is a key nicking endonuclease involved in the small interfering RNA biosynthesis, and it plays important roles in gene regulation and antiviral immunity. The Dicer2 sequence was obtained using the transcriptomic and genomic information of Sogatella furcifera (Horváth), and the spatiotemporal characteristics and functions of molting and wing expansion regulation were studied using real-time quantitative polymerase chain reaction and RNA interference (RNAi) technology. The expression of SfDicer2 fluctuated during the nymphal stage of S. furcifera. Its expression decreased significantly over the course of molting. SfDicer2 exhibited the highest transcript level in the nymphal stage and adult fat body. After SfDicer2 was silenced, the total mortality rate was 42.69%; 18.32% of the insects died because of their inability to molt. Compared with the effects of dsGFP or water, 44.38% of the insects subjected to the silencing of SfDicer2 exhibited wing deformities after successful eclosion. After SfDicer2 RNAi, the expression of chitinase, chitin deacetylase, trehalase, chitin synthase 1, and wing expansion-related genes was significantly inhibited. These findings indicate that SfDicer2 controls molting by affecting genes associated with chitin synthesis and degradation and regulates wing expansion by altering the expression of wing expansion-related genes in S. furcifera.
Collapse
|
6
|
Dalaisón-Fuentes LI, Pascual A, Gazza E, Welchen E, Rivera-Pomar R, Catalano MI. Development of efficient RNAi methods in the corn leafhopper Dalbulus maidis, a promising application for pest control. PEST MANAGEMENT SCIENCE 2022; 78:3108-3116. [PMID: 35442515 DOI: 10.1002/ps.6937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The corn leafhopper Dalbulus maidis is the main vector of important stunting pathogens that affect maize production. Currently, there are no effective methods available to manage this pest without adverse impact on the environment. In this context, genomic-based technologies such as RNA interference (RNAi) provide a more environmentally friendly pest control strategy. Therefore, we aimed to assess the application of RNAi in D. maidis and determine the function of a candidate gene related to insect reproduction and propagation. RESULTS We have characterized the core RNAi genes and evaluated the functionality of the RNAi machinery. We assessed the potential of RNAi technology in D. maidis via injection or ingestion of double-stranded RNA (dsRNA) to adult females. We chose Bicaudal C (BicC) as a target gene due to its important role during insect oogenesis. Administration of dsRNABicC caused significant reductions in the transcript levels (fold changes up to 170 times) and ovipositions. Phenotypic analysis of the ovaries revealed alterations in oocyte development, providing additional confirmation for our results and supporting the idea that Dmai-BicC is a key player of D. maidis oogenesis. CONCLUSION This is, to our knowledge, the first report of efficient RNAi in D. maidis. We believe our findings provide a starting point for future control strategies against one of the most important maize pests in the Americas. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lucía Inés Dalaisón-Fuentes
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Pergamino, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Pergamino, Argentina
| | - Agustina Pascual
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Pergamino, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Pergamino, Argentina
| | - Elías Gazza
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Pergamino, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Pergamino, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Rolando Rivera-Pomar
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Pergamino, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Pergamino, Argentina
- Centro Regional de Estudios Genómicos (Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina
| | - María Inés Catalano
- Centro de BioInvestigaciones (Universidad Nacional del Noroeste de la Provincia de Buenos Aires-CICBA), Pergamino, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la provincia de Buenos Aires (CITNOBA-CONICET), Pergamino, Argentina
| |
Collapse
|
7
|
Choudhary C, Meghwanshi KK, Shukla N, Shukla JN. Innate and adaptive resistance to RNAi: a major challenge and hurdle to the development of double stranded RNA-based pesticides. 3 Biotech 2021; 11:498. [PMID: 34881161 PMCID: PMC8595431 DOI: 10.1007/s13205-021-03049-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022] Open
Abstract
RNA interference (RNAi) is a post-transcriptional gene silencing process where short interfering RNAs degrade targeted mRNA. Exploration of gene function through reverse genetics is the major achievement of RNAi discovery. Besides, RNAi can be used as a potential strategy for the control of insect pests. This has led to the idea of developing RNAi-based pesticides. Differential RNAi efficiency in the different insect orders is the biggest biological obstacle in developing RNAi-based pesticides. dsRNA stability, the sensitivity of core RNAi machinery, uptake of dsRNA and amplification and spreading of the RNAi signal are the key factors responsible for RNAi efficiency in insects. This review discusses the physiological and adaptive factors responsible for reduced RNAi in insects that pose a major challenge in developing dsRNA- based pesticides.
Collapse
Affiliation(s)
- Chhavi Choudhary
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| | - Keshav Kumar Meghwanshi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| | - Nidhi Shukla
- Birla Institute of Scientific Research, Statue Circle, Prithviraj Rd, C-Scheme, Jaipur, Rajasthan 302001 India
| | - Jayendra Nath Shukla
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Kishangarh, Rajasthan 305817 India
| |
Collapse
|
8
|
Cooper AMW, Song H, Shi X, Yu Z, Kim YH, Silver K, Zhang J, Zhu KY. Molecular characterization and RNA interference responses of the lethal giant larvae gene in Diabrotica virgifera virgifera adults. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21787. [PMID: 33871104 DOI: 10.1002/arch.21787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
High specificity for silencing target genes and single-copy target genes that yield clear phenotypes are two important factors for the success of RNA interference (RNAi). The lethal giant larvae (Lgl) gene appears to be an ideal gene for RNAi because RNAi can effectively suppress its expression and results in molting defects and mortality in Tribolium castaneum. To investigate the suitability of this gene for RNAi in other insects, we identified and characterized DvLgl from the western corn rootworm, Diabrotica virgifera virgifera, a species exhibiting high RNAi efficiency. DvLgl was expressed in all developmental stages and tissues investigated. The deduced DvLgl protein showed high amino-acid sequence identities and similar domain architecture to Lgls from other insect species. Despite many similarities among insect Lgls, RNAi-mediated suppression of DvLgl failed to produce a phenotype in D. v. virgifera adults. The difference in developing phenotypes could be attributed greatly to the level of gene suppression and the insect developmental stages for RNAi. These results highlight the variability in RNAi response among insects and showcase the importance of screening multiple target genes when conducting RNAi studies. Our findings are expected to help the design of future RNAi studies and future investigations of Lgl in insects.
Collapse
Affiliation(s)
| | - Huifang Song
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Xuekai Shi
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Zhitao Yu
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Young Ho Kim
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Department of Applied Biology, Kyungpook National University, Sangju, Gyeongbuk, South Korea
| | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Jianzhen Zhang
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
9
|
Cooper AMW, Song H, Shi X, Yu Z, Lorenzen M, Silver K, Zhang J, Zhu KY. Characterization, expression patterns, and transcriptional responses of three core RNA interference pathway genes from Ostrinia nubilalis. JOURNAL OF INSECT PHYSIOLOGY 2021; 129:104181. [PMID: 33359365 DOI: 10.1016/j.jinsphys.2020.104181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
RNA interference (RNAi) is commonly used in the laboratory to analyze gene function, and RNAi-based pest management strategies are now being employed. Unfortunately, RNAi is hindered by inefficient and highly-variable results when different insects are targeted, especially lepidopterans, such as the European corn borer (ECB), Ostrinia nubilalis (Lepidoptera: Crambidae). Previous efforts to achieve RNAi-mediated gene suppression in ECB revealed low RNAi efficiency with both double-stranded RNA (dsRNA) injection and ingestion. One mechanism that can affect RNAi efficiency in insects is the expression and function of core RNAi pathway genes, such as those encoding Argonaut 2 (Ago2), Dicer 2 (Dcr2), and a dsRNA binding protein (R2D2). To determine if deficiencies in these core RNAi pathway genes contribute to low RNAi efficiency in ECB, full-length complementary DNAs encoding OnAgo2, OnDcr2, and OnR2D2 were cloned, sequenced, and characterized. A comparison of domain architecture suggested that all three predicted proteins contained the necessary domains to function. However, a comparison of evolutionary distances revealed potentially important variations in the first RNase III domain of OnDcr2, the double-stranded RNA binding domains of OnR2D2, and both the PAZ and PIWI domains of OnAgo2, which may indicate functional differences in enzymatic activity between species. Expression analysis indicated that transcripts for all three genes were expressed in all developmental stages and tissues investigated. Interestingly, the introduction of non-target dsRNA into ECB second-instar larvae via microinjection did not affect OnAgo2, OnDcr2, or OnR2D2 expression. In contrast, ingestion of the same dsRNAs resulted in upregulation of OnDcr2 but downregulation of OnR2D2. The unexpected transcriptional responses of the core machinery and the divergence in amino-acid sequence between specific domains in each core RNAi protein may possibly contribute to low RNAi efficiency in ECB. Understanding the contributions of different RNAi pathway components is critical to adapting this technology for use in controlling lepidopteran pests that exhibit low RNAi efficiency.
Collapse
Affiliation(s)
- Anastasia M W Cooper
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| | - Huifang Song
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xuekai Shi
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhitao Yu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, Campus Box 7613, North Carolina State University, Raleigh, NC 27695, USA
| | - Kristopher Silver
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhen Zhang
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
10
|
Silencing of Double-Stranded Ribonuclease Improves Oral RNAi Efficacy in Southern Green Stinkbug Nezaraviridula. INSECTS 2021; 12:insects12020115. [PMID: 33525755 PMCID: PMC7912330 DOI: 10.3390/insects12020115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 01/13/2023]
Abstract
Variability in RNA-interference (RNAi) efficacy among different insect orders poses a big hurdle in the development of RNAi-based pest control strategies. The activity of double-stranded ribonucleases (dsRNases) in the digestive canal of insects can be one of the critical factors affecting oral RNAi efficacy. Here, the involvement of these dsRNases in the southern green stinkbug Nezaraviridula was investigated. First, the full sequence of the only dsRNase (NvdsRNase) in the transcriptome of N. viridula was obtained, followed by an oral feeding bioassay to evaluate the effect of NvdsRNase-silencing on oral RNAi efficacy. The NvdsRNase was first silenced in nymphs by NvdsRNase-dsRNA injections, followed by exposure to an artificial diet containing a lethal αCop-specific dsRNA. A significantly higher mortality was observed in the NvdsRNase-silenced nymphs when placed on the dsαCop-containing diet (65%) than in the dsGFP injected and dsαCop fed control (46.67%). Additionally, an ex vivo dsRNA degradation assay showed a higher stability of dsRNA in the saliva and midgut juice of NvdsRNase-silenced adults. These results provide evidence for the involvement of NvdsRNase in the reduction of oral RNAi efficacy in N. viridula. This information will be useful in further improving potential RNAi-based strategies to control this pest.
Collapse
|
11
|
Sharma R, Christiaens O, Taning CN, Smagghe G. RNAi-mediated mortality in southern green stinkbug Nezara viridula by oral delivery of dsRNA. PEST MANAGEMENT SCIENCE 2021; 77:77-84. [PMID: 32696565 DOI: 10.1002/ps.6017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The southern green stinkbug, Nezara viridula (Hemiptera: Pentatomidae), is an important emerging polyphagous pest infesting soybean in the United States, Brazil and Argentina. The indiscriminate use of synthetic insecticides to control stinkbugs has limited the effectiveness of current management strategies. Alternatively, RNA interference (RNAi) has emerged as a novel mode of action to control pests in an eco-friendly manner. RESULTS Here, we assessed the potential of RNAi technology by oral delivery of double-stranded RNA (dsRNA) for the control of N. viridula. Initially, ten candidate genes were tested by microinjection assay to select the best target genes for oral delivery. Seven genes resulted in more than 90% mortality after microinjection. To evaluate RNAi efficacy by oral delivery of dsRNA, five genes were tested by feeding the insects on gene-specific dsRNA mixed with an artificial diet. Significant mortality of 43% and 45% was observed after 14 days of treatment with dsαCop and dsvATPase A, respectively. To elucidate the lower RNAi efficacy via oral delivery of dsRNA, ex vivo dsRNA degradation in the saliva and the midgut juice was performed, which indicated that the reduced RNAi efficacy is accompanied by a rapid degradation of dsRNA by digestive secretions. CONCLUSION This study proves that RNAi can be triggered by orally delivered dsRNA in N. viridula and can be exploited to control this economically important pest. The reduced stability of dsRNA in saliva and midgut that was observed indicates a need to further improve RNAi efficacy, for example by use of specific formulations.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Clauvis Nt Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Arraes FBM, Martins-de-Sa D, Noriega Vasquez DD, Melo BP, Faheem M, de Macedo LLP, Morgante CV, Barbosa JARG, Togawa RC, Moreira VJV, Danchin EGJ, Grossi-de-Sa MF. Dissecting protein domain variability in the core RNA interference machinery of five insect orders. RNA Biol 2020; 18:1653-1681. [PMID: 33302789 DOI: 10.1080/15476286.2020.1861816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi)-mediated gene silencing can be used to control specific insect pest populations. Unfortunately, the variable efficiency in the knockdown levels of target genes has narrowed the applicability of this technology to a few species. Here, we examine the current state of knowledge regarding the miRNA (micro RNA) and siRNA (small interfering RNA) pathways in insects and investigate the structural variability at key protein domains of the RNAi machinery. Our goal was to correlate domain variability with mechanisms affecting the gene silencing efficiency. To this end, the protein domains of 168 insect species, encompassing the orders Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera, were analysed using our pipeline, which takes advantage of meticulous structure-based sequence alignments. We used phylogenetic inference and the evolutionary rate coefficient (K) to outline the variability across domain regions and surfaces. Our results show that four domains, namely dsrm, Helicase, PAZ and Ribonuclease III, are the main contributors of protein variability in the RNAi machinery across different insect orders. We discuss the potential roles of these domains in regulating RNAi-mediated gene silencing and the role of loop regions in fine-tuning RNAi efficiency. Additionally, we identified several order-specific singularities which indicate that lepidopterans have evolved differently from other insect orders, possibly due to constant coevolution with plants and viruses. In conclusion, our results highlight several variability hotspots that deserve further investigation in order to improve the application of RNAi technology in the control of insect pests.
Collapse
Affiliation(s)
| | - Diogo Martins-de-Sa
- Departamento De Biologia Celular, Universidade De Brasília, Brasília-DF, Brazil
| | - Daniel D Noriega Vasquez
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Catholic University of Brasília, Brasília-DF, Brazil
| | - Bruno Paes Melo
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Viçosa University, UFV, Viçosa-MG, Brazil
| | - Muhammad Faheem
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Department of Biological Sciences, National University of Medical Sciences, Punjab, Pakistan
| | | | - Carolina Vianna Morgante
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Embrapa Semiarid, Petrolina-PE, Brazil.,National Institute of Science and Technology, Jakarta Embrapa-Brazil
| | | | - Roberto Coiti Togawa
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil
| | - Valdeir Junio Vaz Moreira
- Biotechnology Center, Brazil.,Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Departamento De Biologia Celular, Universidade De Brasília, Brasília-DF, Brazil
| | - Etienne G J Danchin
- National Institute of Science and Technology, Jakarta Embrapa-Brazil.,INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Catholic University of Brasília, Brasília-DF, Brazil.,National Institute of Science and Technology, Jakarta Embrapa-Brazil
| |
Collapse
|
13
|
Functional validation of DvABCB1 as a receptor of Cry3 toxins in western corn rootworm, Diabrotica virgifera virgifera. Sci Rep 2020; 10:15830. [PMID: 32985523 PMCID: PMC7522262 DOI: 10.1038/s41598-020-72572-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/03/2020] [Indexed: 02/03/2023] Open
Abstract
Western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is a serious insect pest in the major corn growing areas of North America and in parts of Europe. WCR populations with resistance to Bacillus thuringiensis (Bt) toxins utilized in commercial transgenic traits have been reported, raising concerns over their continued efficacy in WCR management. Understanding the modes of action of Bt toxins is important for WCR control and resistance management. Although different classes of proteins have been identified as Bt receptors for lepidopteran insects, identification of receptors in WCR has been limited with no reports of functional validation. Our results demonstrate that heterologous expression of DvABCB1 in Sf9 and HEK293 cells conferred sensitivity to the cytotoxic effects of Cry3A toxins. The result was further validated using knockdown of DvABCB1 by RNAi which rendered WCR larvae insensitive to a Cry3A toxin. However, silencing of DvABCB2 which is highly homologous to DvABCB1 at the amino acid level, did not reduce the sensitivity of WCR larvae to a Cry3A toxin. Furthermore, our functional studies corroborate different mode-of-actions for other insecticidal proteins including Cry34Ab1/35Ab1, Cry6Aa1, and IPD072Aa against WCR. Finally, reduced expression and alternatively spliced transcripts of DvABCB1 were identified in a mCry3A-resistant strain of WCR. Our results provide the first clear demonstration of a functional receptor in the molecular mechanism of Cry3A toxicity in WCR and confirmed its role in the mechanism of resistance in a mCry3A resistant strain of WCR.
Collapse
|
14
|
Jain RG, Robinson KE, Fletcher SJ, Mitter N. RNAi-Based Functional Genomics in Hemiptera. INSECTS 2020; 11:E557. [PMID: 32825516 PMCID: PMC7564473 DOI: 10.3390/insects11090557] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/05/2023]
Abstract
RNA interference (RNAi) is a powerful approach for sequence-specific gene silencing, displaying tremendous potential for functional genomics studies in hemipteran insects. Exploiting RNAi allows the biological roles of critical genes to be defined and aids the development of RNAi-based biopesticides. In this review, we provide context to the rapidly expanding field of RNAi-based functional genomics studies in hemipteran insects. We highlight the most widely used RNAi delivery strategies, including microinjection, oral ingestion and topical application. Additionally, we discuss the key variables affecting RNAi efficacy in hemipteran insects, including insect life-stage, gene selection, the presence of nucleases, and the role of core RNAi machinery. In conclusion, we summarise the application of RNAi in functional genomics studies in Hemiptera, focusing on genes involved in reproduction, behaviour, metabolism, immunity and chemical resistance across 33 species belonging to 14 families.
Collapse
Affiliation(s)
| | - Karl E. Robinson
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Sciences, The University of Queensland, Brisbane 4072, Queensland, Australia; (R.G.J.); (S.J.F.); (N.M.)
| | | | | |
Collapse
|
15
|
Adeyinka OS, Riaz S, Toufiq N, Yousaf I, Bhatti MU, Batcho A, Olajide AA, Nasir IA, Tabassum B. Advances in exogenous RNA delivery techniques for RNAi-mediated pest control. Mol Biol Rep 2020; 47:6309-6319. [DOI: 10.1007/s11033-020-05666-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/12/2020] [Indexed: 01/09/2023]
|
16
|
Romeis J, Widmer F. Assessing the Risks of Topically Applied dsRNA-Based Products to Non-target Arthropods. FRONTIERS IN PLANT SCIENCE 2020; 11:679. [PMID: 32582240 PMCID: PMC7289159 DOI: 10.3389/fpls.2020.00679] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
RNA interference (RNAi) is a powerful technology that offers new opportunities for pest control through silencing of genes that are essential for the survival of arthropod pests. The approach relies on sequence-specificity of applied double-stranded (ds) RNA that can be designed to have a very narrow spectrum of both the target gene product (RNA) as well as the target organism, and thus allowing highly targeted pest control. Successful RNAi has been reported from a number of arthropod species belonging to various orders. Pest control may be achieved by applying dsRNA as foliar sprays. One of the main concerns related to the use of dsRNA is adverse environmental effects particularly on valued non-target species. Arthropods form an important part of the biodiversity in agricultural landscapes and contribute important ecosystem services. Consequently, environmental risk assessment (ERA) for potential impacts that plant protection products may have on valued non-target arthropods is legally required prior to their placement on the market. We describe how problem formulation can be used to set the context and to develop plausible pathways on how the application of dsRNA-based products could harm valued non-target arthropod species, such as those contributing to biological pest control. The current knowledge regarding the exposure to and the hazard posed by dsRNA in spray products for non-target arthropods is reviewed and suggestions are provided on how to select the most suitable test species and to conduct laboratory-based toxicity studies that provide robust, reliable and interpretable results to support the ERA.
Collapse
Affiliation(s)
- Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Franco Widmer
- Competence Division Method Development and Analytics, Agroscope, Zurich, Switzerland
| |
Collapse
|
17
|
Mehlhorn SG, Geibel S, Bucher G, Nauen R. Profiling of RNAi sensitivity after foliar dsRNA exposure in different European populations of Colorado potato beetle reveals a robust response with minor variability. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104569. [PMID: 32448424 DOI: 10.1016/j.pestbp.2020.104569] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 05/10/2023]
Abstract
In recent years, substantial effort was spent on the exploration and implementation of RNAi technology using double-stranded RNA (dsRNA) for pest management purposes. However, only few studies investigated the geographical variation in RNAi sensitivity present in field-collected populations of the targeted insect pest. In this baseline study, 2nd instar larvae of 14 different European populations of Colorado potato beetle (CPB), Leptinotarsa decemlineata, collected from nine different countries were exposed to a foliarly applied diagnostic dose of dsactin (dsact) to test for possible variations in RNAi response. Only minor variability in RNAi sensitivity was observed between populations. However, the time necessary to trigger a dsRNA-mediated phenotypic response varied significantly among populations, indicated by significant differences in mortality figures obtained five days after treatment. An inbred German laboratory reference strain D01 and a Spanish field strain E02 showed almost 100% mortality after foliar exposure to 30 ng dsactin (equal to 0.96 g/ha), whereas another Spanish strain E01 was least responsive and showed only 30% mortality. Calculated LD50-values for foliarly applied dsact against strains D01 (most sensitive) and E01 (least sensitive) were 9.22 and 68.7 ng/leaf disc, respectively. The variability was not based on target gene sequence divergence or knock-down efficiency. Variability in expression of the core RNAi machinery genes dicer (dcr2a) and argonaute (ago2a) was observed but did not correlate with sensitivity. Interestingly, RT-qPCR data collected for all strains revealed a strong correlation between the expression level of dcr2a and ago2a (r 0.93) as well as ago2a and stauC (r 0.94), a recently described dsRNA binding protein in Coleopterans. Overall, this study demonstrates that sensitivity of CPB to sprayable RNAi slightly varies between strains but also shows that foliar RNAi as a control method works against all tested CPB populations collected across a broad geographic range in Europe. Thus, underpinning the potential of RNAi-based CPB control as a promising component in integrated pest management (IPM) and resistance management programs.
Collapse
Affiliation(s)
- Sonja G Mehlhorn
- Department of Evolutionary Developmental Genetics, Göttingen Center for Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany; Bayer AG, Crop Science Division, R&D, Pest Control, Alfred-Nobel-Str. 50, 40789 Monheim, Germany
| | - Sven Geibel
- Bayer AG, Crop Science Division, R&D, Pest Control, Alfred-Nobel-Str. 50, 40789 Monheim, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Göttingen Center for Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, Alfred-Nobel-Str. 50, 40789 Monheim, Germany.
| |
Collapse
|
18
|
Uslu VV, Wassenegger M. Critical view on RNA silencing-mediated virus resistance using exogenously applied RNA. Curr Opin Virol 2020; 42:18-24. [PMID: 32371359 DOI: 10.1016/j.coviro.2020.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 01/16/2023]
Abstract
In almost all eukaryotes, RNA interference (RNAi) is a natural defence mechanism against foreign nucleic acids, including transposons and viruses. It is generally triggered by long double stranded RNA molecules (dsRNA, >50bp) that are processed into small interfering RNAs (siRNAs). RNAi can be artificially activated by the expression of RNAi triggers through viruses (virus-induced gene silencing, VIGS) and transgenes. Moreover, for almost 10 years, exogenous RNA application methods are developed as tools to induce RNAi in plants. In this review, exogenous RNA application techniques having the potential to activate RNAi with a focus on RNAi-mediated virus resistance will be discussed. Limitations of exogenous RNA applications, targeting of virus vectors and open questions related to mechanistic details that still require further investigation will be pointed out.
Collapse
Affiliation(s)
- Veli V Uslu
- RLP AgroScience, AlPlanta - Institute for Plant Research, 67435 Neustadt, Germany
| | - Michael Wassenegger
- RLP AgroScience, AlPlanta - Institute for Plant Research, 67435 Neustadt, Germany; Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Christiaens O, Whyard S, Vélez AM, Smagghe G. Double-Stranded RNA Technology to Control Insect Pests: Current Status and Challenges. FRONTIERS IN PLANT SCIENCE 2020; 11:451. [PMID: 32373146 PMCID: PMC7187958 DOI: 10.3389/fpls.2020.00451] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/26/2020] [Indexed: 05/21/2023]
Abstract
Exploiting the RNA interference (RNAi) gene mechanism to silence essential genes in pest insects, leading to toxic effects, has surfaced as a promising new control strategy in the past decade. While the first commercial RNAi-based products are currently coming to market, the application against a wide range of insect species is still hindered by a number of challenges. In this review, we discuss the current status of these RNAi-based products and the different delivery strategies by which insects can be targeted by the RNAi-triggering double-stranded RNA (dsRNA) molecules. Furthermore, this review also addresses a number of physiological and cellular barriers, which can lead to decreased RNAi efficacy in insects. Finally, novel non-transgenic delivery technologies, such as polymer or liposomic nanoparticles, peptide-based delivery vehicles and viral-like particles, are also discussed, as these could overcome these barriers and lead to effective RNAi-based pest control.
Collapse
Affiliation(s)
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ana M. Vélez
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Riga M, Denecke S, Livadaras I, Geibel S, Nauen R, Vontas J. Development of efficient RNAi in Nezara viridula for use in insecticide target discovery. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21650. [PMID: 31833096 DOI: 10.1002/arch.21650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Stink bugs are an emerging pest in many regions of the world but their molecular biology is still poorly understood. While several transcriptomes are available, the lack of validated gene manipulation tools like RNA interference (RNAi) in species such as the southern green stinkbug Nezara viridula precludes the characterization of individual genes in vivo. Such tools are particularly useful in performing high-throughput screens to search for essential genes that can be prioritized as potential insecticide targets. Here, we developed and optimized an efficient RNAi in N. viridula for use in insecticide target discovery and beyond. The visible marker Sex combs reduced and the essential gene Actin were used to verify the usability and efficiency of RNAi by microinjection at both the adult and nymphal stages, respectively, with nymphal approach presenting significant advantages. Following validation, RNAi was then used to measure lethality following the knockdown (KD) of two genes that are known insecticide targets, Chitin synthase, and Acetyl-CoA carboxylase. The KD of each gene resulted in >75% corrected mortality. These results indicate that RNAi is an effective tool in N. viridula and set a benchmark to evaluate potential targets in future RNAi screens aimed at insecticide target discovery.
Collapse
Affiliation(s)
- Maria Riga
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Ioannis Livadaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Sven Geibel
- Division Crop Science, Research and Development, Bayer AG, Monheim, Germany
| | - Ralf Nauen
- Division Crop Science, Research and Development, Bayer AG, Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Crop Science, Pesticide Science Laboratory, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
21
|
Dias NP, Cagliari D, Dos Santos EA, Smagghe G, Jurat-Fuentes JL, Mishra S, Nava DE, Zotti MJ. Insecticidal Gene Silencing by RNAi in the Neotropical Region. NEOTROPICAL ENTOMOLOGY 2020; 49:1-11. [PMID: 31749122 DOI: 10.1007/s13744-019-00722-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Insecticidal gene silencing by RNA interference (RNAi) involves a post-transcriptional mechanism with great potential for insect control. Here, we aim to summarize the progress on RNAi research toward control of insect pests in the Neotropical region and discuss factors determining its efficacy and prospects for pest management. We include an overview of the available RNAi information for Neotropical pests in the Lepidoptera, Coleoptera, Diptera, and Hemiptera orders. Emphasis is put on significant findings in the use of RNAi against relevant Neotropical pests, including diamondback moth (Plutella xylostella L.), Asian citrus psyllid (Diaphorina citri Kuwayama), and the cotton boll weevil (Anthonomus grandis Boheman). We also examine the main factors involved in insecticidal RNAi efficiency and major advances to improve screening of lethal genes, formulation, and delivery. Few studies detail resistance mechanisms to RNAi, demonstrating a need for more research. Advances in formulation, delivery, and resistance management tools for insecticidal RNAi in the Neotropics can provide a basis for efficient field application.
Collapse
Affiliation(s)
- N P Dias
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil.
| | - D Cagliari
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil
| | - E A Dos Santos
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil
| | - G Smagghe
- Dept of Plants and Crops, Ghent Univ, Ghent, Belgium
| | - J L Jurat-Fuentes
- Dept of Entomology and Plant Pathology, The Univ of Tennessee, Knoxville, USA
| | - S Mishra
- Dept of Entomology and Plant Pathology, The Univ of Tennessee, Knoxville, USA
| | - D E Nava
- Entomology Lab, EmbrapaClima Temperado, Pelotas, Brasil
| | - M J Zotti
- Dept of Crop Protection, Federal Univ of Pelotas, Pelotas, Brazil.
| |
Collapse
|
22
|
Tian L, Zeng Y, Xie W, Wu Q, Wang S, Zhou X, Zhang Y. Genome-wide identification and analysis of genes associated with RNA interference in Bemisia tabaci. PEST MANAGEMENT SCIENCE 2019; 75:3005-3014. [PMID: 30891929 DOI: 10.1002/ps.5415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/10/2019] [Accepted: 03/16/2019] [Indexed: 05/14/2023]
Abstract
BACKGROUND As a method of RNA-mediated gene silencing, RNA interference (RNAi) is a useful reverse genetic tool with which to study gene function, and holds great promise for pest management. Bemisia tabaci is a cosmopolitan pest that causes extensive damage to crops. The mechanism underlying RNAi efficiency in B. tabaci is not well known. We identified and analyzed candidate genes in the RNAi pathway to understand the RNAi mechanism and provide a basis for the application of RNAi in pest management. RESULTS We identified 33 genes putatively involved in the RNAi pathway from the B. tabaci Q genome. Phylogenetic and structural analyses confirmed the characteristics of these genes. Furthermore, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and transcriptomic analysis profiled gene expression patterns during different developmental stages. Gene expression levels estimated by qRT-PCR and RNA-seq analyses were significantly correlated. Moreover, gene functions were verified by RNAi. When accompanied by knockdown of AGO2, Dicer2 and Sid1, the efficiency of CYP6DB3 RNAi decreased correspondingly. CONCLUSION In this study, we annotated and validated genes involved in B. tabaci RNAi. A better understanding of the building blocks of the RNAi process in B. tabaci facilitates integration of this novel biotechnology into the management of this emerging pest, either directly or indirectly. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixia Tian
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|