1
|
Jin M, Chen X, Zheng L, Peng Y, Lin M, Liang K, Liu X, Xu Z, Yang Y, Wei B, Wan J. Astaxanthin-loaded polylactic acid-glycolic acid nanoparticles alleviates atherosclerosis by suppressing macrophage ferroptosis via the NRF2/SLC7A11/GPX4 pathway. Arch Biochem Biophys 2025; 765:110316. [PMID: 39848420 DOI: 10.1016/j.abb.2025.110316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Astaxanthin (ASX), a fat-soluble carotenoid mainly sourced from Haematococcus pluvialis, shows promise for clinical applications in chronic inflammatory diseases. This study investigates whether ASX can mitigate atherosclerosis (AS) by modulating macrophage ferroptosis and provides astaxanthin-loaded polylactic acid-glycolic acid nanoparticles (ASX-PLGA NPs) as comparison. METHOD ApoE-/- mice were fed a high-fat diet with ASX or statin intervention. Plaque area, lipid aggregation, collagen content, and ferroptosis-related indicators were assessed. Moreover, ASX-PLGA NPs were synthesized and characterized and were used to pretreat macrophages induced with oxidized low-density lipoprotein (ox-LDL). Indicators linked to ferroptosis and oxidative stress were detected. Finally, the expression of nuclear factor erythroid -related factor 2 (NRF2) was evaluated. RESULTS ASX intervention significantly delayed the progression of AS plaques, characterized by reductions in plaque area and increased collagen fibers. The observed improvements in AS were consistent with statins. ASX-PLGA NPs demonstrate good safety and stability and have better therapeutic effects than ASX alone. Indicators linked to ferroptosis and oxidative stress were significantly improved in groups containing ASX in vivo and vitro. Additionally, ASX facilitated the nuclear translocation of NRF2, which could be attenuated with ML385, a specific inhibitor of NRF2. CONCLUSION ASX-PLGA NPs have better therapeutic effects than ASX alone. The regulation of NRF2/SLC7A11/GPX4 represents a novel mechanism by which ASX can counteract ferroptosis and impede AS progression.
Collapse
Affiliation(s)
- Mengying Jin
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Xiao Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Lanzhuoying Zheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Yuanyuan Peng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Mingying Lin
- Department of Cardiology, Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| | - Ke Liang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Xinran Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Zihan Xu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Yiming Yang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Baozhu Wei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| | - Jing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
2
|
Fan S, Hu Y, Shi J. Role of ferroptosis in atrial fibrillation: a review. Front Pharmacol 2025; 16:1362060. [PMID: 39981174 PMCID: PMC11839810 DOI: 10.3389/fphar.2025.1362060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Cardiovascular disease remains the leading cause of mortality, with atrial fibrillation emerging as one of the most common conditions encountered in clinical practice. However, its underlying mechanisms remain poorly understood, prompting ongoing research. Ferroptosis, a recently discovered form of regulated cell death characterized by lipid peroxidation and disrupted cellular redox balance leading to cell death due to iron overload, has attracted significant attention. Since its identification, ferroptosis has been extensively studied in various contexts, including cancer, stroke, myocardial ischemia/reperfusion injury, and heart failure. Growing evidence suggests that ferroptosis may also play a critical role in the onset and progression of atrial fibrillation, though research in this area is still limited. This article provides a concise overview of the potential mechanisms by which ferroptosis may contribute to the pathogenesis of atrial fibrillation.
Collapse
Affiliation(s)
- Shaowei Fan
- Lugouqiao Second Community Health Service Center, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Yuanhui Hu
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Jingjing Shi
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
3
|
Yan H, Hu Y, Lyu Y, Akk A, Hirbe AC, Wickline SA, Pan H, Roberson EDO, Pham CTN. Systemic delivery of murine SOD2 mRNA to experimental abdominal aortic aneurysm mitigates expansion and rupture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599454. [PMID: 38948794 PMCID: PMC11212962 DOI: 10.1101/2024.06.17.599454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Oxidative stress is implicated in the pathogenesis and progression of abdominal aortic aneurysm (AAA). Antioxidant delivery as a therapeutic for AAA is of substantial interest although clinical translation of antioxidant therapy has met with significant challenges due to limitations in achieving sufficient antioxidant levels at the site of AAA. We posit that nanoparticle-based approaches hold promise to overcome challenges associated with systemic administration of antioxidants. Methods We employed a peptide-based nanoplatform to overexpress a key modulator of oxidative stress, superoxide dismutase 2 (SOD2). The efficacy of systemic delivery of SOD2 mRNA as a nanotherapeutic agent was studied in two different murine AAA models. Unbiased mass spectrometry-enabled proteomics and high-dimensional bioinformatics were used to examine pathways modulated by SOD2 overexpression. Results The murine SOD2 mRNA sequence was mixed with p5RHH, an amphipathic peptide capable of delivering nucleic acids in vivo to form self-assembled nanoparticles of ∼55 nm in diameter. We further demonstrated that the nanoparticle was stable and functional up to four weeks following self-assembly when coated with hyaluronic acid. Delivery of SOD2 mRNA mitigated the expansion of small AAA and largely prevented rupture. Mitigation of AAA was accompanied by enhanced SOD2 protein expression in aortic wall tissue. Concomitant suppression of nitric oxide, inducible nitric oxide synthase expression, and cell death was observed. Proteomic profiling of AAA tissues suggests that SOD2 overexpression augments levels of microRNAs that regulate vascular inflammation and cell apoptosis, inhibits platelet activation/aggregation, and downregulates mitogen-activated protein kinase signaling. Gene set enrichment analysis shows that SOD2 mRNA delivery is associated with activation of oxidative phosphorylation, lipid metabolism, respiratory electron transportation, and tricarboxylic acid cycle pathways. Conclusions These results confirm that SOD2 is key modulator of oxidative stress in AAA. This nanotherapeutic mRNA delivery approach may find translational application in the medical management of small AAA and the prevention of AAA rupture.
Collapse
|
4
|
Leszto K, Biskup L, Korona K, Marcinkowska W, Możdżan M, Węgiel A, Młynarska E, Rysz J, Franczyk B. Selenium as a Modulator of Redox Reactions in the Prevention and Treatment of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:688. [PMID: 38929127 PMCID: PMC11201165 DOI: 10.3390/antiox13060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases stand as the predominant global cause of mortality, exerting a profound impact on both life expectancy and its quality. Given their immense public health burden, extensive efforts have been dedicated to comprehending the underlying mechanisms and developing strategies for prevention and treatment. Selenium, a crucial participant in redox reactions, emerges as a notable factor in maintaining myocardial cell homeostasis and influencing the progression of cardiovascular disorders. Some disorders, such as Keshan disease, are directly linked with its environmental deficiency. Nevertheless, the precise extent of its impact on the cardiovascular system remains unclear, marked by contradictory findings in the existing literature. High selenium levels have been associated with an increased risk of developing hypertension, while lower concentrations have been linked to heart failure and atrial fibrillation. Although some trials have shown its potential effectiveness in specific groups of patients, large cohort supplementation attempts have generally yielded unsatisfactory outcomes. Consequently, there persists a significant need for further research aimed at delineating specific patient cohorts and groups of diseases that would benefit from selenium supplementation.
Collapse
Affiliation(s)
- Klaudia Leszto
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Laura Biskup
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Klaudia Korona
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Weronika Marcinkowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Maria Możdżan
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Andrzej Węgiel
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (K.L.)
| |
Collapse
|
5
|
Luo X, Wang Y, Zhu X, Chen Y, Xu B, Bai X, Weng X, Xu J, Tao Y, Yang D, Du J, Lv Y, Zhang S, Hu S, Li J, Jia H. MCL attenuates atherosclerosis by suppressing macrophage ferroptosis via targeting KEAP1/NRF2 interaction. Redox Biol 2024; 69:102987. [PMID: 38100883 PMCID: PMC10761782 DOI: 10.1016/j.redox.2023.102987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Micheliolide (MCL), which is the active metabolite of parthenolide, has demonstrated promising clinical application potential. However, the effects and underlying mechanisms of MCL on atherosclerosis are still unclear. METHOD ApoE-/- mice were fed with high fat diet, with or without MCL oral administration, then the plaque area, lipid deposition and collagen content were determined. In vitro, MCL was used to pretreat macrophages combined by ox-LDL, the levels of ferroptosis related proteins, NRF2 activation, mitochondrial function and oxidative stress were detected. RESULTS MCL administration significantly attenuated atherosclerotic plaque progress, which characteristics with decreased plaque area, less lipid deposition and increased collagen. Compared with HD group, the level of GPX4 and xCT in atherosclerotic root macrophages were increased in MCL group obviously. In vitro experiment demonstrated that MCL increased GPX4 and xCT level, improved mitochondrial function, attenuated oxidative stress and inhibited lipid peroxidation to suppress macrophage ferroptosis induced with ox-LDL. Moreover, MCL inhibited KEAP1/NRF2 complex formation and enhanced NRF2 nucleus translocation, while the protective effect of MCL on macrophage ferroptosis was abolished by NRF2 inhibition. Additionally, molecular docking suggests that MCL may bind to the Arg483 site of KEAP1, which also contributes to KEAP1/NRF2 binding. Furthermore, Transfection Arg483 (KEAP1-R483S) mutant plasmid can abrogate the anti-ferroptosis and anti-oxidative effects of MC in macrophages. KEAP1-R483S mutation also limited the protective effect of MCL on atherosclerosis progress and macrophage ferroptosis in ApoE-/- mice. CONCLUSION MCL suppressed atherosclerosis by inhibiting macrophage ferroptosis via activating NRF2 pathway, the related mechanism is through binding to the Arg483 site of KEAP1 competitively.
Collapse
Affiliation(s)
- Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Yuehong Wang
- State Key Laboratory of Systems Medicine for Cancer, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, 200127, PR China
| | - Xinxin Zhu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Xiaoxuan Bai
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Xiuzhu Weng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Jinmei Xu
- Department of Endocrinology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Yangyang Tao
- Department of Ultrasound, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Dan Yang
- Department of Forensic Medicine, Harbin Medical University, Harbin, 150001, PR China
| | - Jie Du
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Ying Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Shan Zhang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Sining Hu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China.
| |
Collapse
|
6
|
He X, Xiong Y, Liu Y, Li Y, Zhou H, Wu K. Ferrostatin-1 inhibits ferroptosis of vascular smooth muscle cells and alleviates abdominal aortic aneurysm formation through activating the SLC7A11/GPX4 axis. FASEB J 2024; 38:e23401. [PMID: 38236196 DOI: 10.1096/fj.202300198rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
Ferroptosis, a type of iron-catalyzed necrosis, is responsible for vascular smooth muscle cell (VSMC) death and serves as a potential therapeutic target for alleviating aortic aneurysm. Here, our study explored the underlying mechanism of ferroptosis affecting VSMC functions and the resultant formation of AAA using its inhibitor Ferrostatin-1 (Fer-1). Microarray-based gene expression profiling was employed to identify differentially expressed genes related to AAA and ferroptosis. An AAA model was established by angiotensin II (Ang II) induction in apolipoprotein E-knockout (ApoE-/- ) mice, followed by injection of Fer-1 and RSL-3 (ferroptosis inducer). Then, the role of Fer-1 and RSL-3 in the ferroptosis of VSMCs and AAA formation was analyzed in Ang II-induced mice. Primary mouse VSMCs were cultured in vitro and treated with Ang II, Fer-1, sh-SLC7A11, or sh-GPX4 to assess the effect of Fer-1 via the SLC7A11/GPX axis. Bioinformatics analysis revealed that GPX4 was involved in the fibrosis formation of AAA, and there was an interaction between SLC7A11 and GPX4. In vitro assays showed that Fer-1 alleviated Ang II-induced ferroptosis of VSMCs and retard the consequent AAA formation. The mechanism was associated with activation of the SLC7A11/GPX4 pathway. Silencing of SLC7A11 or GPX4 could inhibit the ameliorating effect of Fer-1 on the ferroptosis of VSMCs. In vivo animal studies further demonstrated that Fer-1 inhibited Ang II-induced ferroptosis and vessel wall structural abnormalities in AAA mouse through activation of the SLC7A11/GPX4 pathway. Fer-1 may prevent AAA formation through activation of the SLC7A11/GPX4 pathway.
Collapse
Affiliation(s)
- Xin He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yunchuan Xiong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yu Liu
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yaozhen Li
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Haiyang Zhou
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Kemin Wu
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, P. R. China
| |
Collapse
|
7
|
Yu SS, Du JL. Current views on selenoprotein S in the pathophysiological processes of diabetes-induced atherosclerosis: potential therapeutics and underlying biomarkers. Diabetol Metab Syndr 2024; 16:5. [PMID: 38172976 PMCID: PMC10763436 DOI: 10.1186/s13098-023-01247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) consistently ranks as the primary mortality factor among diabetic people. A thorough comprehension of the pathophysiological routes and processes activated by atherosclerosis (AS) caused by diabetes mellitus (DM), together with the recognition of new contributing factors, could lead to the discovery of crucial biomarkers and the development of innovative drugs against atherosclerosis. Selenoprotein S (SELENOS) has been implicated in the pathology and progression of numerous conditions, including diabetes, dyslipidemia, obesity, and insulin resistance (IR)-all recognized contributors to endothelial dysfunction (ED), a precursor event to diabetes-induced AS. Hepatic-specific deletion of SELENOS accelerated the onset and progression of obesity, impaired glucose tolerance and insulin sensitivity, and increased hepatic triglycerides (TG) and diacylglycerol (DAG) accumulation; SELENOS expression in subcutaneous and omental adipose tissue was elevated in obese human subjects, and act as a positive regulator for adipogenesis in 3T3-L1 preadipocytes; knockdown of SELENOS in Min6 β-cells induced β-cell apoptosis and reduced cell proliferation. SELENOS also participates in the early stages of AS, notably by enhancing endothelial function, curbing the expression of adhesion molecules, and lessening leukocyte recruitment-actions that collectively reduce the formation of foam cells. Furthermore, SELENOS forestalls the apoptosis of vascular smooth muscle cells (VSMCs) and macrophages, mitigates vascular calcification, and alleviates inflammation in macrophages and CD4+ T cells. These actions help stifle the creation of unstable plaque characterized by thinner fibrous caps, larger necrotic cores, heightened inflammation, and more extensive vascular calcification-features seen in advanced atherosclerotic lesion development. Additionally, serum SELENOS could function as a potential biomarker, and SELENOS single nucleotide polymorphisms (SNPs) rs4965814, rs28628459, and rs9806366, might be effective gene markers for atherosclerosis-related diseases in diabetes. This review accentuates the pathophysiological processes of atherosclerosis in diabetes and amasses current evidence on SELENOS's potential therapeutic benefits or as predictive biomarkers in the various stages of diabetes-induced atherosclerosis.
Collapse
Affiliation(s)
- Shan-Shan Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, 116011, Liaoning, China
| | - Jian-Ling Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, 116011, Liaoning, China.
| |
Collapse
|
8
|
Li Y, Ma JQ, Wang CC, Zhou J, Sun YD, Wei XL, Zhao ZQ. Ferroptosis: A potential target of macrophages in plaque vulnerability. Open Life Sci 2023; 18:20220722. [PMID: 37791060 PMCID: PMC10543703 DOI: 10.1515/biol-2022-0722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023] Open
Abstract
Plaque vulnerability has been the subject of several recent studies aimed at reducing the risk of stroke and carotid artery stenosis. Atherosclerotic plaque development is a complex process involving inflammation mediated by macrophages. Plaques become more vulnerable when the equilibrium between macrophage recruitment and clearance is disturbed. Lipoperoxides, which are affected by iron levels in cells, are responsible for the cell death seen in ferroptosis. Ferroptosis results from lipoperoxide-induced mitochondrial membrane toxicity. Atherosclerosis in ApoE(-/-) mice is reduced when ferroptosis is inhibited and iron intake is limited. Single-cell sequencing revealed that a ferroptosis-related gene was substantially expressed in atherosclerosis-modeled macrophages. Since ferroptosis can be regulated, it offers hope as a non-invasive method of treating carotid plaque. In this study, we discuss the role of ferroptosis in atherosclerotic plaque vulnerability, including its mechanism, regulation, and potential future research directions.
Collapse
Affiliation(s)
- Yu Li
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Ji-Qing Ma
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Chao-Chen Wang
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Jian Zhou
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Yu-Dong Sun
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University,
Nanjing201411, China
| | - Xiao-Long Wei
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| | - Zhi-Qing Zhao
- Department of Vascular Surgery, Changhai Hospital, The PLA Naval Medical University, 168 Changhai Road, Shanghai200433, China
| |
Collapse
|
9
|
Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023; 13:biom13050799. [PMID: 37238669 DOI: 10.3390/biom13050799] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Selenium is a trace mineral that is essential for health. After being obtained from food and taken up by the liver, selenium performs various physiological functions in the body in the form of selenoproteins, which are best known for their redox activity and anti-inflammatory properties. Selenium stimulates the activation of immune cells and is important for the activation of the immune system. Selenium is also essential for the maintenance of brain function. Selenium supplements can regulate lipid metabolism, cell apoptosis, and autophagy, and have displayed significant alleviating effects in most cardiovascular diseases. However, the effect of increased selenium intake on the risk of cancer remains unclear. Elevated serum selenium levels are associated with an increased risk of type 2 diabetes, and this relationship is complex and nonlinear. Selenium supplementation seems beneficial to some extent; however, existing studies have not fully explained the influence of selenium on various diseases. Further, more intervention trials are needed to verify the beneficial or harmful effects of selenium supplementation in various diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Ghelichkhani F, Gonzalez FA, Kapitonova MA, Rozovsky S. Selenoprotein S Interacts with the Replication and Transcription Complex of SARS-CoV-2 by Binding nsp7. J Mol Biol 2023; 435:168008. [PMID: 36773692 PMCID: PMC9911985 DOI: 10.1016/j.jmb.2023.168008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replicates and evades detection using ER membranes and their associated protein machinery. Among these hijacked human proteins is selenoprotein S (selenos). This selenoprotein takes part in the protein quality control, signaling, and the regulation of cytokine secretion. While the role of selenos in the viral life cycle is not yet known, it has been reported to interact with SARS-CoV-2 nonstructural protein 7 (nsp7), a viral protein essential for the replication of the virus. We set to study whether selenos and nsp7 interact directly and if they can still bind when nsp7 is bound to the replication and transcription complex of the virus. Using biochemical assays, we show that selenos binds directly to nsp7. In addition, we found that selenos can bind to nsp7 when it is in a complex with the coronavirus's minimal replication and transcription complex, comprised of nsp7, nsp8, and the RNA-dependent RNA polymerase nsp12. In addition, through crosslinking experiments, we mapped the interaction sites of selenos and nsp7 in the replication complex and showed that the hydrophobic segment of selenos is essential for binding to nsp7. This arrangement leaves an extended helix and the intrinsically disordered segment of selenos-including the reactive selenocysteine-exposed and free to potentially recruit additional proteins to the replication and transcription complex.
Collapse
Affiliation(s)
- Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Fabio A Gonzalez
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
11
|
Ghelichkhani F, Gonzalez FA, Kapitonova MA, Schaefer-Ramadan S, Liu J, Cheng R, Rozovsky S. Selenoprotein S: A versatile disordered protein. Arch Biochem Biophys 2022; 731:109427. [PMID: 36241082 PMCID: PMC10026367 DOI: 10.1016/j.abb.2022.109427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Selenoprotein S (selenos) is a small, intrinsically disordered membrane protein that is associated with various cellular functions, such as inflammatory processes, cellular stress response, protein quality control, and signaling pathways. It is primarily known for its contribution to the ER-associated degradation (ERAD) pathway, which governs the extraction of misfolded proteins or misassembled protein complexes from the ER to the cytosol for degradation by the proteasome. However, selenos's other cellular roles in signaling are equally vital, including the control of transcription factors and cytokine levels. Consequently, genetic polymorphisms of selenos are associated with increased risk for diabetes, dyslipidemia, and cardiovascular diseases, while high expression levels correlate with poor prognosis in several cancers. Its inhibitory role in cytokine secretion is also exploited by viruses. Since selenos binds multiple protein complexes, however, its specific contributions to various cellular pathways and diseases have been difficult to establish. Thus, the precise cellular functions of selenos and their interconnectivity have only recently begun to emerge. This review aims to summarize recent insights into the structure, interactome, and cellular roles of selenos.
Collapse
Affiliation(s)
- Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Fabio A Gonzalez
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | | | - Jun Liu
- Enlaza Therapeutics, 11099 N. Torrey Pines Rd, suite 290, La Jolla, CA, 92037, USA
| | - Rujin Cheng
- NGM Biopharmaceuticals, Inc., 333 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
12
|
ÖĞÜT S, DEĞİRMENCİOĞLU S, BAHTİYAR N, CİNEMRE FB, AYDEMİR B, KARAÇETİN D, HACIOSMANOĞLU E, KURAL A, GÜNEŞ ME, BEKTAŞ M. The Role of Some Selenoproteins in the Etiopathogenesis of Breast Cancer. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.38079/igusabder.1152514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Amaç: Meme kanseri, kadınlarda kanser kaynaklı ölümlerde akciğer kanserinden sonra ikinci sırada yer alır. Çeşitli çalışmalarda, selenoproteinlerin kanserogenezin bazı evrelerini baskıladığı ve kanser hücrelerinin çoğalma hızını azalttığı gösterilmiştir. Ancak bu mekanizmalar tam olarak açıklanamamıştır. Kanser tedavisinde radyoterapi, kemoterapiyle birlikte en çok tercih edilen tedavi yöntemlerindendir. Çalışmanın amacı, radyoterapi alan meme kanserli hastaların tedavi öncesi ve sonrası selenoprotein düzeylerindeki değişiklikleri değerlendirerek hastalığın etiyopatogenezine olası etkilerini incelemektir.Yöntem: Çalışmamıza meme kanseri teşhisi konmuş, radyoterapi öncesi ve radyoterapi sonrası örnekleri alınan 35 kadın hasta ile herhangi bir ilaç tedavisi almayan 25 sağlıklı kadın gönüllü dahil edildi. Hasta ve sağlıklı kontrol gruplarını oluşturan bireylerden kan örnekleri alındı. Serum örneklerinde selenoprotein K (Sel-K), selenoprotein W1 (Sel-W1) ve selenoprotein P (Sel-P) düzeyleri ELISA (Enzyme-Linked Immunosorbent Assay) yöntemi ile ölçüldü. İstatistiksel analiz, Wilcoxon ve Mann-Whitney U testleri kullanılarak yapıldı. Hesaplamalar için Statistical Package for the Social Sciences – SPSS 21.0 for Windows (SPSS Inc, Chicago, IL, ABD) kullanıldı. p<0.05, istatistiksel olarak anlamlı bir farkı belirtmek için kabul edildi.Bulgular: Serum Sel-K düzeyleri tedavi öncesi ve kontrol grubu karşılaştırıldığında, tedavi öncesi grupta anlamlı olarak düşük bulundu. Sel- P düzeyleri hem tedavi öncesi hem de tedavi sonrasında kontrol grubu ile karşılaştırıldığında her iki grupta da kontrol grubuna göre düşük bulundu. Sel-W1 düzeylerinde gruplar arasında herhangi bir anlamlılık bulunmadı.Sonuç: Meme kanserinde bazı selenoproteinlerin hastalığın etiyopatogenezinde önemli bir rolü olmakla birlikte daha fazla örneklem grubu ve ileri çalışmalar ile hastalığın progresyonu ve selenoprotein düzeyleri arasındaki ilişkinin araştırılmasına ihtiyaç duyulmaktadır.
Collapse
Affiliation(s)
- Selim ÖĞÜT
- İSTANBUL ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ ENSTİTÜSÜ, TIP BİLİMLERİ (DR)
| | - Sevgin DEĞİRMENCİOĞLU
- KIRKLARELİ ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ BİYOKİMYA ANABİLİM DALI
| | - Nurten BAHTİYAR
- İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA, CERRAHPAŞA TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, BİYOFİZİK ANABİLİM DALI
| | - Fatma Behice CİNEMRE
- SAKARYA ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ BİYOKİMYA ANABİLİM DALI
| | - Birsen AYDEMİR
- SAKARYA ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, BİYOFİZİK ANABİLİM DALI
| | - Didem KARAÇETİN
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, İSTANBUL BAŞAKŞEHİR ÇAM VE SAKURA ŞEHİR SAĞLIK UYGULAMA VE ARAŞTIRMA MERKEZİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, RADYASYON ONKOLOJİSİ ANABİLİM DALI
| | - Ebru HACIOSMANOĞLU
- BEZM-İ ÂLEM VAKIF ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ
| | - Alev KURAL
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, HAMİDİYE ULUSLARARASI TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ BİYOKİMYA ANABİLİM DALI
| | - Mehmet Emin GÜNEŞ
- İSTANBUL ESENYURT ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ FAKÜLTESİ, HEMŞİRELİK BÖLÜMÜ
| | | |
Collapse
|
13
|
Ren J, Lv Y, Wu L, Chen S, Lei C, Yang D, Li F, Liu C, Zheng Y. Key ferroptosis-related genes in abdominal aortic aneurysm formation and rupture as determined by combining bioinformatics techniques. Front Cardiovasc Med 2022; 9:875434. [PMID: 36017103 PMCID: PMC9395677 DOI: 10.3389/fcvm.2022.875434] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Abdominal aortic aneurysm (AAA) is a cardiovascular disease with high mortality and pathogenesis closely related to various cell death types, e.g., autophagy, apoptosis and pyroptosis. However, the association between AAA and ferroptosis is unknown. Methods GSE57691 and GSE98278 dataset were obtained from the Gene Expression Omnibus database, and a ferroptosis-related gene (FRG) set was downloaded from the FerrDb database. These data were normalized, and ferroptosis-related differentially expressed genes (FDEGs, AAA vs. normal samples) were identified using the limma package in R. FRGs expression was analyzed by Gene Set Expression Analysis (GSEA), and FDEGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) pathway enrichment analyses using the clusterProfiler package in R and ClueGO in Cytoscape. Protein–protein interaction networks were assembled using Cytoscape, and crucial FDEGs were identified using CytoHubba. Critical FDEG transcription factors (TFs) were predicted with iRegulon. FDEGs were verified in GSE98278 set, and key FDEGs in AAA (compared with normal samples) and ruptured AAA (RAAA; compared with AAA samples) were identified. Ferroptosis-related immune cell infiltration and correlations with key genes were analyzed by CIBERSORT. Key FEDGs were reverified in Ang II-induced AAA models of ApoE–/– and CD57B/6J mice by immunofluorescence assay. Results In AAA and normal samples, 40 FDEGs were identified, and the expression of suppressive FRGs was significantly downregulated with GSEA. For FDEGs, the GO terms were response to oxidative stress and cellular response to external stimulus, and the KEGG pathways were the TNF and NOD-like receptor signaling pathways. IL6, ALB, CAV1, PTGS2, NOX4, PRDX6, GPX4, HSPA5, HSPB1, and NCF2 were the most enriched genes in the crucial gene cluster. CEBPG, NFAT5, SOX10, GTF2IRD1, STAT1, and RELA were potential TFs affecting these crucial genes. Ferroptosis-related immune cells involved in AAA formation were CD8+ T, naive CD4+ T, and regulatory T cells (Tregs); M0 and M2 macrophages; and eosinophils. Tregs were also involved in RAAA. GPX4, SLC2A1, and PEBP1 expression was downregulated in both the RAAA and AAA samples. GPX4 and PEBP1 were more important in AAA because they influenced ferroptosis-related immune cell infiltration, and SLC2A1 was more important in RAAA. Conclusions This is the first study to show that ferroptosis is crucial to AAA/RAAA formation. The TNF and NOD-like signaling pathways and ferroptosis-related immune cell infiltration play key roles in AAA/RAAA. GPX4 is a key ferroptosis-related gene in AAA. Ferroptosis and related genes might be promising targets in the treatment of AAA/RAAA.
Collapse
Affiliation(s)
- Jinrui Ren
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanze Lv
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianglin Wu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siliang Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuxiang Lei
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changzheng Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yuehong Zheng,
| |
Collapse
|
14
|
Berdaweel IA, Hart AA, Jatis AJ, Karlan N, Akhter SA, Gaine ME, Smith RM, Anderson EJ. A Genotype-Phenotype Analysis of Glutathione Peroxidase 4 in Human Atrial Myocardium and Its Association with Postoperative Atrial Fibrillation. Antioxidants (Basel) 2022; 11:antiox11040721. [PMID: 35453406 PMCID: PMC9026099 DOI: 10.3390/antiox11040721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Heterogeneity in the incidence of postoperative atrial fibrillation (POAF) following heart surgery implies that underlying genetic and/or physiological factors impart a higher risk of this complication to certain patients. Glutathione peroxidase-4 (GPx4) is a vital selenoenzyme responsible for neutralizing lipid peroxides, mediators of oxidative stress known to contribute to postoperative arrhythmogenesis. Here, we sought to determine whether GPX4 single nucleotide variants are associated with POAF, and whether any of these variants are linked with altered GPX4 enzyme content or activity in myocardial tissue. Sequencing analysis was performed across the GPX4 coding region within chromosome 19 from a cohort of patients (N = 189) undergoing elective coronary artery bypass graft (−/+ valve) surgery. GPx4 enzyme content and activity were also analyzed in matching samples of atrial myocardium from these patients. Incidence of POAF was 25% in this cohort. Five GPX4 variants were associated with POAF risk (permutated p ≤ 0.05), and eight variants associated with altered myocardial GPx4 content and activity (p < 0.05). One of these variants (rs713041) is a well-known modifier of cardiovascular disease risk. Collectively, these findings suggest GPX4 variants are potential risk modifiers and/or predictors of POAF. Moreover, they illustrate a genotype−phenotype link with this selenoenzyme, which will inform future mechanistic studies.
Collapse
Affiliation(s)
- Islam A. Berdaweel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; (I.A.B.); (A.J.J.); (N.K.); (M.E.G.); (R.M.S.)
| | - Alexander A. Hart
- Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Andrew J. Jatis
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; (I.A.B.); (A.J.J.); (N.K.); (M.E.G.); (R.M.S.)
| | - Nathan Karlan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; (I.A.B.); (A.J.J.); (N.K.); (M.E.G.); (R.M.S.)
| | - Shahab A. Akhter
- Department of Cardiovascular Sciences, Brody School of Medicine, East Carolina Heart Institute, Greenville, NC 28592, USA;
| | - Marie E. Gaine
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; (I.A.B.); (A.J.J.); (N.K.); (M.E.G.); (R.M.S.)
| | - Ryan M. Smith
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; (I.A.B.); (A.J.J.); (N.K.); (M.E.G.); (R.M.S.)
| | - Ethan J. Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; (I.A.B.); (A.J.J.); (N.K.); (M.E.G.); (R.M.S.)
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-(319)335-8157
| |
Collapse
|
15
|
Construction of the circRNA-miRNA-mRNA Regulatory Network of an Abdominal Aortic Aneurysm to Explore Its Potential Pathogenesis. DISEASE MARKERS 2021; 2021:9916881. [PMID: 34777635 PMCID: PMC8589483 DOI: 10.1155/2021/9916881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 01/20/2023]
Abstract
Background Abdominal aortic aneurysm (AAA) is a progressive cardiovascular disease, which is a permanent and localized dilatation of the abdominal aorta with potentially fatal consequence of aortic rupture. Dysregulation of circRNAs is correlated with the development of various pathological events in cardiovascular diseases. However, the function of circRNAs in abdominal aortic aneurysm (AAA) is unknown and remains to be explored. This study is aimed at determining the regulatory mechanisms of circRNAs in AAAs. This study was aimed at exploring the underlying molecular mechanisms of abdominal aortic aneurysms based on the competing endogenous RNA (ceRNA) regulatory hypothesis of circRNA, miRNA, and mRNA. Methods The expression profiles of circRNAs (GSE144431), miRNAs (GSE62179), and mRNAs (GSE7084, GSE57691, and GSE47472) in human tissue sample from the aneurysm group and normal group were obtained from the Gene Expression Omnibus database, respectively. The circRNA-miRNA-mRNA network was constructed by using Cytoscape 3.7.2 software; then, the protein-protein interaction (PPI) network was constructed by using the STRING database, and the hub genes were identified by using the cytoHubba plug-in. The circRNA-miRNA-hub gene regulatory subnetwork was formed to understand the regulatory axis of hub genes in AAAs. Results The present study identified 40 differentially expressed circRNAs (DECs) in the GSE144431, 90 differentially expressed miRNAs (DEmiRs) in the GSE62179, and 168 differentially expressed mRNAs (DEGs) with the same direction regulation (130 downregulated and 38 upregulated) in the GSE7084, GSE57691, and GSE47472 datasets identified regarding AAAs. The miRNA response elements (MREs) of three DECs were then predicted. Four overlapping miRNAs were obtained by intersecting the predicted miRNA and DEmiRs. Then, 17 overlapping mRNAs were obtained by intersecting the predicted target mRNAs of 4 miRNAs with 168 DEGs. Furthermore, the circRNA-miRNA-mRNA network was constructed through 3 circRNAs, 4 miRNAs, and 17 mRNAs, and three hub genes (SOD2, CCR7, and PGRMC1) were identified. Simultaneously, functional enrichment and pathway analysis were performed within genes in the circRNA-miRNA-mRNA network. Three of them (SOD2, CCR7, and PGRMC1) were suggested to be crucial based on functional enrichment, protein-protein interaction, and ceRNA network analysis. Furthermore, the expression of SOD2 and CCR7 may be regulated by hsa_circ_0011449/hsa_circ_0081968/hsa-let-7f-5p; the expression of PGRMC1 may be regulated by hsa_circ_0011449/hsa_circ_0081968-hsa-let-7f-5p/hsa-let-7e-5p. Conclusion In conclusion, the ceRNA interaction axis we identified may be an important target for the treatment of abdominal aortic aneurysms. This study provided further understanding of the potential pathogenesis from the perspective of the circRNA-related competitive endogenous RNA network in AAAs.
Collapse
|
16
|
Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis 2021; 12:782. [PMID: 34376636 PMCID: PMC8355346 DOI: 10.1038/s41419-021-04054-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
In advanced atherosclerosis (AS), defective function-induced cell death leads to the formation of the characteristic necrotic core and vulnerable plaque. The forms and mechanisms of cell death in AS have recently been elucidated. Among them, ferroptosis, an iron-dependent form of necrosis that is characterized by oxidative damage to phospholipids, promotes AS by accelerating endothelial dysfunction in lipid peroxidation. Moreover, disordered intracellular iron causes damage to macrophages, vascular smooth muscle cells (VSMCs), vascular endothelial cells (VECs), and affects many risk factors or pathologic processes of AS such as disturbances in lipid peroxidation, oxidative stress, inflammation, and dyslipidemia. However, the mechanisms through which ferroptosis initiates the development and progression of AS have not been established. This review explains the possible correlations between AS and ferroptosis, and provides a reliable theoretical basis for future studies on its mechanism.
Collapse
|
17
|
Xi J, Zhang Q, Wang J, Guo R, Wang L. Factors Influencing Selenium Concentration in Community-Dwelling Patients with Type 2 Diabetes Mellitus. Biol Trace Elem Res 2021; 199:1657-1663. [PMID: 32676938 DOI: 10.1007/s12011-020-02283-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Selenium (Se) plays an important role in the pathogenesis of diabetes, and which factors affecting Se concentration in patients with type 2 diabetes mellitus (T2DM) are unknown. This study aimed to explore the factors influencing Se concentration in community-dwelling individuals with T2DM. A total of 176 patients with T2DM were involved, and their general information was collected through a self-designed questionnaire. Venous blood samples and hair samples were collected to detect Se concentration and biochemical parameters. Multiple linear regression and binary logistic regression analysis were used to analyze the factors influencing Se concentration in patients with T2DM. The factors influencing selenoprotein P concentration in patients with T2DM included alkaline phosphatase (β = - 1.373; 95% CI: 0.087-0.736; P = 0.012), systolic blood pressure (SBP; β = - 0.047; 95% CI: 0.930-0.978; P < 0.001), the duration of T2DM (β = - 0.074; 95% CI: 0.877-0.983; P = 0.011), and clinical complications (β = 1.237; 95% CI: 1.465-8.109; P = 0.005). The factors influencing glutathione peroxidase activity in patients with T2DM were creatinine (CREA; β = - 0.378; P < 0.001), uric acid (β = - 0.069; P = 0.009), body mass index (β = - 2.177; P = 0.002), SBP (β = - 0.275; P = 0.031), and medical payment (β = 29.160; P < 0.001). The factors influencing serum Se concentration in patients with T2DM were albumin (β = - 1.391; 95% CI: 0.065-0.959; P = 0.043) and CREA (β = - 1.482; 95% CI: 0.072-0.718; P = 0.012). The factors influencing hair Se concentration in patients with T2DM were smoking (β = - 1.151; 95% CI: 0.133-0.755; P = 0.010), drinking (β = 1.366; 95% CI: 1.191-12.909; P = 0.025), and hair dyeing (β = - 1.113; 95% CI: 0.124-0.867; P = 0.025). In conclusion, the Se concentration in patients with T2DM was mainly affected by liver and renal function. When liver and/or renal function was impaired, the Se concentration in patients with T2DM was decreased.
Collapse
Affiliation(s)
- Jing Xi
- School of Nursing, Medical College, Soochow University, No.1 Shizi Street, Suzhou, 215006, China
| | - Qianqian Zhang
- School of Nursing, Medical College, Soochow University, No.1 Shizi Street, Suzhou, 215006, China
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jian Wang
- Research Center, Soochow Setek Biotechnology Co., Ltd, Suzhou, China
| | - Renmei Guo
- Research Center, Soochow Setek Biotechnology Co., Ltd, Suzhou, China
| | - Li Wang
- School of Nursing, Medical College, Soochow University, No.1 Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
18
|
Satoh K. Drug discovery focused on novel pathogenic proteins for pulmonary arterial hypertension. J Cardiol 2021; 78:1-11. [PMID: 33563508 DOI: 10.1016/j.jjcc.2021.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease in which the wall thickening and narrowing of pulmonary microvessels progress due to complicated interactions among processes such as endothelial dysfunction, the proliferation of pulmonary artery smooth muscle cells (PASMCs) and adventitial fibrocytes, and inflammatory cell infiltration. Early diagnosis of patients with PAH is difficult and lung transplantation is the only last choice to save severely ill patients. However, the number of donors is limited. Many patients with PAH show rapid progression and a high degree of pulmonary arterial remodeling characterized by the abnormal proliferation of PASMCs, which makes treatment difficult even with multidrug therapy comprising pulmonary vasodilators. Thus, it is important to develop novel therapy targeting factors other than vasodilation, such as PASMC proliferation. In the development of PAH, inflammation and oxidative stress are deeply involved in its pathogenesis. Excessive proliferation and apoptosis resistance in PASMCs are key mechanisms underlying PAH. Based on those characteristics, we recently screened novel pathogenic proteins and have performed drug discovery targeting those proteins. To confirm the clinical significance of this, we used patient-derived blood samples to evaluate biomarker potential for diagnosis and prognosis. Moreover, we conducted high throughput screening and found several inhibitors of the pathogenic proteins. In this review, we introduce the recent progress on basic and clinical PAH research, focusing on the screening of pathogenic proteins and drug discovery.
Collapse
Affiliation(s)
- Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| |
Collapse
|
19
|
Poloczek J, Kazura W, Kwaśnicka E, Gumprecht J, Jochem J, Stygar D. Effects of Bariatric Surgeries on Fetuin-A, Selenoprotein P, Angiopoietin-Like Protein 6, and Fibroblast Growth Factor 21 Concentration. J Diabetes Res 2021; 2021:5527107. [PMID: 34414240 PMCID: PMC8369187 DOI: 10.1155/2021/5527107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is a civilization disease representing a global health problem. Excessive body weight significantly reduces the quality of life. It is also associated with the leading causes of death, including type 2 diabetes mellitus, cardiovascular diseases, and numerous types of cancer. The mainstay of therapy is a dietary treatment. However, in morbidly obese patients, dietary treatment is often insufficient. In these patients, the most effective procedure is bariatric surgery, but it is still difficult to predict its outcome and metabolic changes. Hepatokines are proteins secreted by hepatocytes. Many of them, including fetuin-A, selenoprotein P, angiopoietin-like protein 6, and fibroblast growth factor 21, have been linked to metabolic dysfunctions. In this context, hepatokines may prove helpful. This review investigates the possible changes in hepatokine profiles after selected bariatric surgery protocols. In this regard, Roux-en-Y gastric bypass is the most studied type of surgery. The overall analysis of published research identified fetuin-A as a potential marker of metabolic alternations in patients after bariatric surgery.
Collapse
Affiliation(s)
- Jakub Poloczek
- Department of Rehabilitation, 3rd Specialist Hospital in Rybnik, 44-200 Rybnik, Poland
- Department of Internal Medicine, Diabetology, and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wojciech Kazura
- Doctoral School of Medical University of Silesia, Department of Physiology, Faculty of Medical Sciences in Zabrze, 41-808 Zabrze, Poland
| | - Ewa Kwaśnicka
- Pediatric Ward, Municipal Hospital in Żory, 44-240 Żory, Poland
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology, and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Jochem
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland
| |
Collapse
|
20
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
21
|
Stanishevska NV. Selenoproteins and their emerging roles in signaling pathways. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The functional activity of selenoproteins has a wide range of effects on complex pathogenetic processes, including teratogenesis, immuno-inflammatory, neurodegenerative. Being active participants and promoters of many signaling pathways, selenoproteins support the lively interest of a wide scientific community. This review is devoted to the analysis of recent data describing the participation of selenoproteins in various molecular interactions mediating important signaling pathways. Data processing was carried out by the method of complex analysis. For convenience, all selenoproteins were divided into groups depending on their location and function. Among the group of selenoproteins of the ER membrane, selenoprotein N affects the absorption of Ca2+ by the endoplasmic reticulum mediated by oxidoreductin (ERO1), a key player in the CHOP/ERO1 branch, a pathogenic mechanism that causes myopathy. Another selenoprotein of the ER membrane selenoprotein K binding to the DHHC6 protein affects the IP3R receptor that regulates Ca2+ flux. Selenoprotein K is able to affect another protein of the endoplasmic reticulum CHERP, also appearing in Ca2+ transport. Selenoprotein S, associated with the lumen of ER, is able to influence the VCP protein, which ensures the incorporation of selenoprotein K into the ER membrane. Selenoprotein M, as an ER lumen protein, affects the phosphorylation of STAT3 by leptin, which confirms that Sel M is a positive regulator of leptin signaling. Selenoprotein S also related to luminal selenoproteins ER is a modulator of the IRE1α-sXBP1 signaling pathway. Nuclear selenoprotein H will directly affect the suppressor of malignant tumours, p53 protein, the activation of which increases with Sel H deficiency. The same selenoprotein is involved in redox regulation. Among the cytoplasmic selenoproteins, abundant investigations are devoted to SelP, which affects the PI3K/Akt/Erk signaling pathway during ischemia/reperfusion, is transported into the myoblasts through the plasmalemma after binding to the apoER2 receptor, and into the neurons to the megaline receptor and in general, selenoprotein P plays the role of a pool that stores the necessary trace element and releases it, if necessary, for vital selenoproteins. The thioredoxin reductase family plays a key role in the invasion and metastasis of salivary adenoid cystic carcinoma through the influence on the TGF-β-Akt/GSK-3β pathway during epithelial-mesenchymal transition. The deletion of thioredoxin reductase 1 affects the levels of messengers of the Wnt/β-catenin signaling pathway. No less studied is the glutathione peroxidase group, of which GPX3 is able to inhibit signaling in the Wnt/β-catenin pathway and thereby inhibit thyroid metastasis, as well as suppress protein levels in the PI3K/Akt/c-fos pathway. A key observation is that in cases of carcinogenesis, a decrease in GPX3 and its hypermethylation are almost always found. Among deiodinases, deiodinase 3 acts as a promoter of the oncogenes BRAF, MEK or p38, while stimulating a decrease in the expression of cyclin D1. The dependence of the level of deiodinase 3 on the Hedgehog (SHH) signaling pathway is also noted. Methionine sulfoxide reductase A can compete for the uptake of ubiquitin, reduce p38, JNK and ERK promoters of the MAPK signaling pathway; methionine sulfoxide reductase B1 suppresses MAPK signaling messengers, and also increases PARP and caspase 3.
Collapse
|
22
|
Kikuchi N, Satoh K, Satoh T, Yaoita N, Siddique MAH, Omura J, Kurosawa R, Nogi M, Sunamura S, Miyata S, Misu H, Saito Y, Shimokawa H. Diagnostic and Prognostic Significance of Serum Levels of SeP (Selenoprotein P) in Patients With Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:2553-2562. [PMID: 31665907 DOI: 10.1161/atvbaha.119.313267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Despite the recent progress in upfront combination therapy for pulmonary arterial hypertension (PAH), useful biomarkers for the disorder still remain to be developed. SeP (Selenoprotein P) is a glycoprotein secreted from various kinds of cells including pulmonary artery smooth muscle cells to maintain cellular metabolism. We have recently demonstrated that SeP production from pulmonary artery smooth muscle cells is upregulated and plays crucial roles in the pathogenesis of PAH. However, it remains to be elucidated whether serum SeP levels could be a useful biomarker for PAH. Approach and Results: We measured serum SeP levels and evaluated their prognostic impacts in 65 consecutive patients with PAH and 20 controls during follow-up (mean, 1520 days; interquartile range, 1393-1804 days). Serum SeP levels were measured using a newly developed sol particle homogeneous immunoassay. The patients with PAH showed significantly higher serum SeP levels compared with controls. Higher SeP levels (cutoff point, 3.47 mg/L) were associated with the outcome (composite end point of all-cause death and lung transplantation) in patients with PAH (hazard ratio, 4.85 [1.42-16.6]; P<0.01). Importantly, we found that the absolute change in SeP of patients with PAH (ΔSeP) in response to the initiation of PAH-specific therapy significantly correlated with the absolute change in mean pulmonary artery pressure, pulmonary vascular resistance (ΔPVR), and cardiac index (ΔCI; R=0.78, 0.76, and -0.71 respectively, all P<0.0001). Moreover, increase in ΔSeP during the follow-up predicted poor outcome of PAH. CONCLUSIONS Serum SeP is a novel biomarker for diagnosis and assessment of treatment efficacy and long-term prognosis in patients with PAH.
Collapse
Affiliation(s)
- Nobuhiro Kikuchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Taijyu Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Nobuhiro Yaoita
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Mohammad Abdul Hai Siddique
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Junichi Omura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Ryo Kurosawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Masamichi Nogi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Shinichiro Sunamura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Hirofumi Misu
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan (H.M.)
| | - Yoshiro Saito
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.S.)
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| |
Collapse
|
23
|
Abstract
Selenium is an essential trace element for maintenance of overall health, whose deficiency and dyshomeostasis have been linked to a variety of diseases and disorders. The majority of previous researches focused on characterization of genes encoding selenoproteins or proteins involved in selenium metabolism as well as their functions. Many studies in humans also investigated the relationship between selenium and complex diseases, but their results have been inconsistent. In recent years, systems biology and "-omics" approaches have been widely used to study complex and global variations of selenium metabolism and function in physiological and different pathological conditions. The present paper reviews recent progress in large-scale and systematic analyses of the relationship between selenium status or selenoproteins and several complex diseases, mainly including population-based cohort studies and meta-analyses, genetic association studies, and some other omics-based studies. Advances in ionomics and its application in studying the interaction between selenium and other trace elements in human health and diseases are also discussed.
Collapse
Affiliation(s)
- Huimin Ying
- Department of Endocrinology, Xixi Hospital of Hangzhou, Hangzhou, 310023, Zhejiang, People's Republic of China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, People's Republic of China.
| |
Collapse
|
24
|
Rocca C, Pasqua T, Boukhzar L, Anouar Y, Angelone T. Progress in the emerging role of selenoproteins in cardiovascular disease: focus on endoplasmic reticulum-resident selenoproteins. Cell Mol Life Sci 2019; 76:3969-3985. [PMID: 31218451 PMCID: PMC11105271 DOI: 10.1007/s00018-019-03195-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases represent one of the most important health problems of developed countries. One of the main actors involved in the onset and development of cardiovascular diseases is the increased production of reactive oxygen species that, through lipid peroxidation, protein oxidation and DNA damage, induce oxidative stress and cell death. Basic and clinical research are ongoing to better understand the endogenous antioxidant mechanisms that counteract oxidative stress, which may allow to identify a possible therapeutic targeting/application in the field of stress-dependent cardiovascular pathologies. In this context, increasing attention is paid to the glutathione/glutathione-peroxidase and to the thioredoxin/thioredoxin-reductase systems, among the most potent endogenous antioxidative systems. These key enzymes, belonging to the selenoprotein family, have a well-established function in the regulation of the oxidative cell balance. The aim of the present review was to highlight the role of selenoproteins in cardiovascular diseases, introducing the emerging cardioprotective role of endoplasmic reticulum-resident members and in particular one of them, namely selenoprotein T or SELENOT. Accumulating evidence indicates that the dysfunction of different selenoproteins is involved in the susceptibility to oxidative stress and its associated cardiovascular alterations, such as congestive heart failure, coronary diseases, impaired cardiac structure and function. Some of them are under investigation as useful pathological biomarkers. In addition, SELENOT exhibited intriguing cardioprotective effects by reducing the cardiac ischemic damage, in terms of infarct size and performance. In conclusion, selenoproteins could represent valuable targets to treat and diagnose cardiovascular diseases secondary to oxidative stress, opening a new avenue in the field of related therapeutic strategies.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Rende, Italy.
- UNIROUEN, Inserm U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University, 76821, Mont-Saint-Aignan, France.
- Institute for Research and Innovation in Biomedicine, 76000, Rouen, France.
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Rende, Italy
- "Fondazione Umberto Veronesi", Milan, Italy
| | - Loubna Boukhzar
- UNIROUEN, Inserm U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University, 76821, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, 76000, Rouen, France
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University, 76821, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, 76000, Rouen, France
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Rende, Italy.
- National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|