1
|
Tsuji S, Mizukami S, Sakamoto A, Takemoto K, Seto T, Uehara K, Yukata K, Sakai T, Iwaisako K, Takeda N, Yanai R, Asagiri M. Cell cycle checkpoint factor p15 Ink4b is a novel regulator of osteoclast differentiation. Sci Rep 2025; 15:6197. [PMID: 39979342 PMCID: PMC11842748 DOI: 10.1038/s41598-025-89988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Osteoclasts are specialized cells essential for bone resorption, a crucial process in bone remodeling, and dysregulation of osteoclastogenesis can lead to pathological bone loss such as osteoporosis and rheumatoid arthritis. Therefore, understanding the precise mechanisms governing osteoclast differentiation is crucial for developing effective therapies for skeletal diseases. In osteoclastogenesis, as well as other differentiated cells, it is well understood that cell cycle arrest is essential for terminal differentiation and is tightly regulated by CDK inhibitors such as Cip/Kip family and Ink4 family protein. In this manuscript, we identified p15Ink4b, a member of the Ink4 family, as a novel regulator of osteoclastogenesis by comprehensive single-cell RNA sequence data reanalyzing. Furthermore, histological analysis and in vitro osteoclast differentiation assay revealed that p15Ink4b functionally regulates osteoclastogenesis. Our findings may not only provide insights into the molecular mechanisms of osteoclast differentiation but also underscore the potential of harnessing cell cycle mechanisms to develop novel therapeutic strategies for bone diseases.
Collapse
Affiliation(s)
- Shunya Tsuji
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Minami-Kogushi, Ube, Yamaguchi, Japan
| | - Sora Mizukami
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, Japan
| | - Akihiko Sakamoto
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, Japan
| | - Kenji Takemoto
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, Japan
| | - Tetsuya Seto
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, Japan
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Minami-Kogushi, Ube, Yamaguchi, Japan
| | - Kazuya Uehara
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, Japan
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Minami-Kogushi, Ube, Yamaguchi, Japan
| | - Kiminori Yukata
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Minami-Kogushi, Ube, Yamaguchi, Japan
| | - Takashi Sakai
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Minami-Kogushi, Ube, Yamaguchi, Japan
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryoji Yanai
- Department of Ophthalmology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masataka Asagiri
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, Japan.
- Research Institute for Cell Design Medical Science, Yamaguchi University, Minami-Kogushi, Ube, Yamaguchi, Japan.
| |
Collapse
|
2
|
Fu YF, Shi SW, Wu JJ, Yuan ZD, Wang LS, Nie H, Zhang ZY, Wu X, Chen YC, Ti HB, Zhang KY, Mao D, Ye JX, Li X, Yuan FL. Osteoclast Secretes Stage-Specific Key Molecules for Modulating Osteoclast-Osteoblast Communication. J Cell Physiol 2025; 240:e31484. [PMID: 39606839 DOI: 10.1002/jcp.31484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
In most cases of bone metabolic disorders, such as osteoporosis and osteomalacia, these conditions are often attributed to dysfunctional osteoclasts, leading to their common characterization as "destructors." In addition to the widely documented regulatory process where osteoblasts direct osteoclastic bone resorption, there is increasing evidence suggesting that osteoclasts also in turn influence osteoblastic bone formation through direct and indirect mechanisms. It is well-known that differentiation of osteoclasts involves several stages, each characterized by specific cellular features and functions. Stage-specific key molecules secreted during these stages play a critical role in mediating osteoclast-osteoblast communication. In this review, we described the different stages of osteoclast differentiation and reviewed stage-specific key molecules involved in osteoclasts-osteoblasts communication. We highlighted that a detailed understanding of these processes and molecular mechanism could facilitate the development of novel treatments for bone metabolic disorders.
Collapse
Affiliation(s)
- Yi-Fei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Shu-Wen Shi
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Lei-Sheng Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hao Nie
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xian Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Yue-Chun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hui-Bo Ti
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Ke-Yue Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Jun-Xing Ye
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xia Li
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Konno T, Murachi H, Otsuka K, Kimura Y, Sampei C, Arasaki Y, Kohara Y, Hayata T. Ctdnep1 phosphatase is required for negative regulation of RANKL-induced osteoclast differentiation in RAW264.7 cells. Biochem Biophys Res Commun 2024; 719:150063. [PMID: 38749090 DOI: 10.1016/j.bbrc.2024.150063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
Osteoclasts are multinucleated cells with bone resorption activity. Excessive osteoclast activity has been implicated in osteoporosis, rheumatoid arthritis, and bone destruction due to bone metastases from cancer, making osteoclasts essential target cells in bone and joint diseases. C-terminal domain nuclear envelope phosphatase 1 (Ctdnep1, formerly Dullard) is a negative regulator of transforming growth factor (TGF)-β superfamily signaling and regulates endochondral ossification in mesenchymal cells during skeletal development. In this study, we investigated the role of Ctdnep1 in the Receptor activator of nuclear factor-kappa B ligand (RANKL)-induced RAW264.7 osteoclast differentiation. Expression of Ctdnep1 did not change during osteoclast differentiation; Ctdnep1 protein localized to the cytoplasm before and after osteoclast differentiation. Small interfering RNA-mediated knockdown of Ctdnep1 increased tartrate-resistant acid phosphatase-positive multinucleated osteoclasts and the expression of osteoclast marker genes, including Acp5, Ctsk, and Nfatc1. Interestingly, the knockdown of Ctdnep1 increased the protein level of Nfatc1 in cells unstimulated with RANKL. Knockdown of Ctdnep1 also enhanced calcium-resorbing activity. Mechanistically, the knockdown of Ctdnep1 increased the phosphorylation of RANKL signaling components. These results suggest that Ctdnep1 negatively regulates osteoclast differentiation by suppressing the RANKL signaling pathway.
Collapse
Affiliation(s)
- Takuto Konno
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Hitomi Murachi
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Kanon Otsuka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yuta Kimura
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Chisato Sampei
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yasuhiro Arasaki
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Yukihiro Kohara
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 287-8510, Japan.
| |
Collapse
|
4
|
Seok MC, Koo HW, Jeong JH, Ko MJ, Lee BJ. Bone Substitute Options for Spine Fusion in Patients With Spine Trauma-Part II: The Role of rhBMP. Korean J Neurotrauma 2024; 20:35-44. [PMID: 38576507 PMCID: PMC10990692 DOI: 10.13004/kjnt.2024.20.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 04/06/2024] Open
Abstract
In Part II, we focus on an important aspect of spine fusion in patients with spine trauma: the pivotal role of recombinant human bone morphogenetic protein-2 (rhBMP-2). Despite the influx of diverse techniques facilitated by technological advancements in spinal surgery, spinal fusion surgery remains widely used globally. The persistent challenge of spinal pseudarthrosis has driven extensive efforts to achieve clinically favorable fusion outcomes, with particular emphasis on the evolution of bone graft substitutes. Part II of this review aims to build upon the foundation laid out in Part I by providing a comprehensive summary of commonly utilized bone graft substitutes for spinal fusion in patients with spinal trauma. Additionally, it will delve into the latest advancements and insights regarding the application of rhBMP-2, offering an updated perspective on its role in enhancing the success of spinal fusion procedures.
Collapse
Affiliation(s)
- Min cheol Seok
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Hae-Won Koo
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Myeong Jin Ko
- Department of Neurosurgery, College of Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Byung-Jou Lee
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
5
|
Wan JX, Wang YQ, Lan SN, Chen L, Feng MQ, Chen X. Research Progress in Function and Regulation of E3 Ubiquitin Ligase SMURF1. Curr Med Sci 2023; 43:855-868. [PMID: 37558865 DOI: 10.1007/s11596-023-2774-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023]
Abstract
Smad ubiquitylation regulatory factor 1 (Smurf1) is an important homologous member of E6-AP C-terminus type E3 ubiquitin ligase. Initially, Smurf1 was reportedly involved in the negative regulation of the bone morphogenesis protein (BMP) pathway. After further research, several studies have confirmed that Smurf1 is widely involved in various biological processes, such as bone homeostasis regulation, cell migration, apoptosis, and planar cell polarity. At the same time, recent studies have provided a deeper understanding of the regulatory mechanisms of Smurf1's expression, activity, and substrate selectivity. In our review, a brief summary of recent important biological functions and regulatory mechanisms of E3 ubiquitin ligase Smurf1 is proposed.
Collapse
Affiliation(s)
- Ji-Xi Wan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Qi Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Na Lan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming-Qian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Zhang L, Fang Z, Cheng G, He M, Lin Y. A novel Hoxd13 mutation causes synpolydactyly and promotes osteoclast differentiation by regulating pSmad5/p65/c-Fos/Rank axis. Cell Death Dis 2023; 14:145. [PMID: 36804539 PMCID: PMC9941469 DOI: 10.1038/s41419-023-05681-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
The mutations of HOXD13 gene have been involved in synpolydactyly (SPD), and the polyalanine extension mutation of Hoxd13 gene could lead to SPD in mice. In this study, a novel missense mutation of Hoxd13 (NM_000523: exon2: c.G917T: p.R306L) was identified in a Chinese family with SPD. The mice carrying the corresponding Hoxd13mutation were generated. The results showed that the homozygous mutation of Hoxd13 also caused SPD, but heterozygous mutation did not affect limbs development, which was different from that of SPD patients. With the increasing generation, the mice with homozygous Hoxd13 mutation presented more severe syndactyly. Western blotting showed that this mutation did not affect the protein expression of Hoxd13, suggesting that this mutation did not result in haploinsufficiency. Further analysis demonstrated that this homozygous Hoxd13mutation promoted osteoclast differentiation and bone loss, and enhanced the mRNA and protein expression of osteoclast-related genes Rank, c-Fos, and p65. Meanwhile, this homozygous Hoxd13 mutation elevated the level of phosphorylated Smad5 (pSmad5). Co-immunoprecipitation verified that this mutation attenuated the interaction between pSmad5 and HOXD13, suggesting that this mutation released more pSmad5. Inhibition of pSmad5 reduced the expression of Rank, c-Fos, and p65 despite in the mutation group. In addition, inhibition of pSmad5 repressed the osteoclast differentiation. ChIP assay confirmed that p65 and c-Fos could bind to the promoter of Rank. These results suggested that this novel Hoxd13 mutation promoted osteoclast differentiation by regulating Smad5/p65/c-Fos/Rank axis, which might provide a new insight into SPD development.
Collapse
Affiliation(s)
- Lishan Zhang
- grid.410638.80000 0000 8910 6733Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 China
| | - Ziqi Fang
- grid.460018.b0000 0004 1769 9639Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021 China
| | - Guangdong Cheng
- grid.410638.80000 0000 8910 6733Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 China
| | - Mengting He
- grid.464402.00000 0000 9459 9325Department of Critical Care Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250000 China
| | - Yanliang Lin
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China. .,Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
7
|
Tompkins YH, Choi J, Teng PY, Yamada M, Sugiyama T, Kim WK. Reduced bone formation and increased bone resorption drive bone loss in Eimeria infected broilers. Sci Rep 2023; 13:616. [PMID: 36635321 PMCID: PMC9837181 DOI: 10.1038/s41598-023-27585-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Coccidiosis is an economically significant disease in the global poultry industry, but little is known about the mechanisms of bone defects caused by coccidiosis; thus, the study focused on effects of coccidiosis on the bone homeostasis of young broiler chickens. A total of 480 male Cobb500 broilers were randomly allocated into four treatment groups, including an uninfected control consuming diet ad libitum, two infected groups were orally gavaged with two different concentrations of sporulated Eimeria oocysts, and an uninfected pair-fed group fed the same amount of feed as the high Eimeria-infected group consumed. Growth performance and feed intake were recorded, and samples were collected on 6 days post infection. Results indicated that coccidiosis increased systemic oxidative status and elevated immune response in bone marrow, suppressing bone growth rate (P < 0.05) and increasing bone resorption (P < 0.05) which led to lower bone mineral density (P < 0.05) and mineral content (P < 0.05) under Eimeria infection. With the same amount of feed intake, the uninfected pair-fed group showed a distinguished bone formation rate and bone resorption level compared with the Eimeria infected groups. In conclusion, inflammatory immune response and oxidative stress in broilers after Eimeria infection were closely associated with altered bone homeostasis, highlighting the role of inflammation and oxidative stress in broiler bone homeostasis during coccidiosis.
Collapse
Affiliation(s)
- Yuguo Hou Tompkins
- grid.213876.90000 0004 1936 738XDepartment of Poultry Science, University of Georgia, Athens, GA 30602 USA
| | - Janghan Choi
- grid.213876.90000 0004 1936 738XDepartment of Poultry Science, University of Georgia, Athens, GA 30602 USA
| | - Po-Yun Teng
- grid.213876.90000 0004 1936 738XDepartment of Poultry Science, University of Georgia, Athens, GA 30602 USA
| | - Masayoshi Yamada
- grid.260975.f0000 0001 0671 5144Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata, 950-2181 Japan
| | - Toshie Sugiyama
- grid.260975.f0000 0001 0671 5144Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata, 950-2181 Japan
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
8
|
Yan L, Liao L, Su X. Role of mechano-sensitive non-coding RNAs in bone remodeling of orthodontic tooth movement: recent advances. Prog Orthod 2022; 23:55. [PMID: 36581789 PMCID: PMC9800683 DOI: 10.1186/s40510-022-00450-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/31/2022] Open
Abstract
Orthodontic tooth movement relies on bone remodeling and periodontal tissue regeneration in response to the complicated mechanical cues on the compressive and tensive side. In general, mechanical stimulus regulates the expression of mechano-sensitive coding and non-coding genes, which in turn affects how cells are involved in bone remodeling. Growing numbers of non-coding RNAs, particularly mechano-sensitive non-coding RNA, have been verified to be essential for the regulation of osteogenesis and osteoclastogenesis and have revealed how they interact with signaling molecules to do so. This review summarizes recent findings of non-coding RNAs, including microRNAs and long non-coding RNAs, as crucial regulators of gene expression responding to mechanical stimulation, and outlines their roles in bone deposition and resorption. We focused on multiple mechano-sensitive miRNAs such as miR-21, - 29, -34, -103, -494-3p, -1246, -138-5p, -503-5p, and -3198 that play a critical role in osteogenesis function and bone resorption. The emerging roles of force-dependent regulation of lncRNAs in bone remodeling are also discussed extensively. We summarized mechano-sensitive lncRNA XIST, H19, and MALAT1 along with other lncRNAs involved in osteogenesis and osteoclastogenesis. Ultimately, we look forward to the prospects of the novel application of non-coding RNAs as potential therapeutics for tooth movement and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lichao Yan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Carvalho AL, Brooks DJ, Barlow D, Langlais AL, Morrill B, Houseknecht KL, Bouxsein ML, Lian JB, King T, Farina NH, Motyl KJ. Sustained Morphine Delivery Suppresses Bone Formation and Alters Metabolic and Circulating miRNA Profiles in Male C57BL/6J Mice. J Bone Miner Res 2022; 37:2226-2243. [PMID: 36054037 PMCID: PMC9712245 DOI: 10.1002/jbmr.4690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/30/2022] [Accepted: 08/24/2022] [Indexed: 11/05/2022]
Abstract
Opioid use is detrimental to bone health, causing both indirect and direct effects on bone turnover. Although the mechanisms of these effects are not entirely clear, recent studies have linked chronic opioid use to alterations in circulating miRNAs. Here, we developed a model of opioid-induced bone loss to understand bone turnover and identify candidate miRNA-mediated regulatory mechanisms. We evaluated the effects of sustained morphine treatment on male and female C57BL/6J mice by treating with vehicle (0.9% saline) or morphine (17 mg/kg) using subcutaneous osmotic minipumps for 25 days. Morphine-treated mice had higher energy expenditure and respiratory quotient, indicating a shift toward carbohydrate metabolism. Micro-computed tomography (μCT) analysis indicated a sex difference in the bone outcome, where male mice treated with morphine had reduced trabecular bone volume fraction (Tb.BV/TV) (15%) and trabecular bone mineral density (BMD) (14%) in the distal femur compared with vehicle. Conversely, bone microarchitecture was not changed in females after morphine treatment. Histomorphometric analysis demonstrated that in males, morphine reduced bone formation rate compared with vehicle, but osteoclast parameters were not different. Furthermore, morphine reduced bone formation marker gene expression in the tibia of males (Bglap and Dmp1). Circulating miRNA profile changes were evident in males, with 14 differentially expressed miRNAs associated with morphine treatment compared with two differentially expressed miRNAs in females. In males, target analysis indicated hypoxia-inducible factor (HIF) signaling pathway was targeted by miR-223-3p and fatty acid metabolism by miR-484, -223-3p, and -328-3p. Consequently, expression of miR-223-3p targets, including Igf1r and Stat3, was lower in morphine-treated bone. In summary, we have established a model where morphine leads to a lower trabecular bone formation in males and identified potential mediating miRNAs. Understanding the sex-specific mechanisms of bone loss from opioids will be important for improving management of the adverse effects of opioids on the skeleton. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Adriana Lelis Carvalho
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Daniel J Brooks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deborah Barlow
- Department of Pharmacology, University of New England, Biddeford, ME, USA
| | - Audrie L. Langlais
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Breanna Morrill
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
| | - Karen L. Houseknecht
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Mary L. Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, USA
- Larner College of Medicine, University of Vermont Cancer Center, Burlington, VT, USA
- Northern New England Clinical and Translational Research Network, MaineHealth, Portland, ME
| | - Tamara King
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Nicholas H Farina
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, USA
- Larner College of Medicine, University of Vermont Cancer Center, Burlington, VT, USA
- Northern New England Clinical and Translational Research Network, MaineHealth, Portland, ME
| | - Katherine J Motyl
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
- Northern New England Clinical and Translational Research Network, MaineHealth, Portland, ME
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Tufts University School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
10
|
Bordukalo-Nikšić T, Kufner V, Vukičević S. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Front Immunol 2022; 13:869422. [PMID: 35558080 PMCID: PMC9086899 DOI: 10.3389/fimmu.2022.869422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
In response to mechanical forces and the aging process, bone in the adult skeleton is continuously remodeled by a process in which old and damaged bone is removed by bone-resorbing osteoclasts and subsequently is replaced by new bone by bone-forming cells, osteoblasts. During this essential process of bone remodeling, osteoclastic resorption is tightly coupled to osteoblastic bone formation. Bone-resorbing cells, multinuclear giant osteoclasts, derive from the monocyte/macrophage hematopoietic lineage and their differentiation is driven by distinct signaling molecules and transcription factors. Critical factors for this process are Macrophage Colony Stimulating Factor (M-CSF) and Receptor Activator Nuclear Factor-κB Ligand (RANKL). Besides their resorption activity, osteoclasts secrete coupling factors which promote recruitment of osteoblast precursors to the bone surface, regulating thus the whole process of bone remodeling. Bone morphogenetic proteins (BMPs), a family of multi-functional growth factors involved in numerous molecular and signaling pathways, have significant role in osteoblast-osteoclast communication and significantly impact bone remodeling. It is well known that BMPs help to maintain healthy bone by stimulating osteoblast mineralization, differentiation and survival. Recently, increasing evidence indicates that BMPs not only help in the anabolic part of bone remodeling process but also significantly influence bone catabolism. The deletion of the BMP receptor type 1A (BMPRIA) in osteoclasts increased osteoblastic bone formation, suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone-formation activity during bone remodeling. The dual effect of BMPs on bone mineralization and resorption highlights the essential role of BMP signaling in bone homeostasis and they also appear to be involved in pathological processes in inflammatory disorders affecting bones and joints. Certain BMPs (BMP2 and -7) were approved for clinical use; however, increased bone resorption rather than formation were observed in clinical applications, suggesting the role BMPs have in osteoclast activation and subsequent osteolysis. Here, we summarize the current knowledge of BMP signaling in osteoclasts, its role in osteoclast resorption, bone remodeling, and osteoblast–osteoclast coupling. Furthermore, discussion of clinical application of recombinant BMP therapy is based on recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukičević
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
11
|
Durdan MM, Azaria RD, Weivoda MM. Novel insights into the coupling of osteoclasts and resorption to bone formation. Semin Cell Dev Biol 2022; 123:4-13. [PMID: 34756783 PMCID: PMC8840962 DOI: 10.1016/j.semcdb.2021.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Bone remodeling consists of resorption by osteoclasts (OCs) and formation by osteoblasts (OBs). Precise coordination of these activities is required for the resorbed bone to be replaced with an equal amount of new bone in order to maintain skeletal mass throughout the lifespan. This coordination of remodeling processes is referred to as the "coupling" of resorption to bone formation. In this review, we discuss the essential role for OCs in coupling resorption to bone formation, mechanisms for this coupling, and how coupling becomes less efficient or disrupted in conditions of bone loss. Lastly, we provide perspectives on targeting coupling to treat human bone disease.
Collapse
Affiliation(s)
- Margaret M. Durdan
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruth D. Azaria
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megan M. Weivoda
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA,Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Bourgery M, Ekholm E, Fagerlund K, Hiltunen A, Puolakkainen T, Pursiheimo JP, Heino T, Määttä J, Heinonen J, Yatkin E, Laitala T, Säämänen AM. Multiple targets identified with genome wide profiling of small RNA and mRNA expression are linked to fracture healing in mice. Bone Rep 2021; 15:101115. [PMID: 34458508 PMCID: PMC8379442 DOI: 10.1016/j.bonr.2021.101115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022] Open
Abstract
Long-bone fracture is a common injury and its healing process at the fracture site involves several overlapping phases, including inflammation, migration of mesenchymal progenitors into the fracture site, endochondral ossification, angiogenesis and finally bone remodelling. Increasing evidence shows that small noncoding RNAs are important regulators of chondrogenesis, osteogenesis and fracture healing. MicroRNAs are small single-stranded, non-coding RNA-molecules intervening in most physiological and biological processes, including fracture healing. Angiogenin-cleaved 5' tRNA halves, also called as tiRNAs (stress-induced RNAs) have been shown to repress protein translation. In order to gain further understanding on the role of small noncoding RNAs in fracture healing, genome wide expression profiles of tiRNAs, miRNAs and mRNAs were followed up to 14 days after fracture in callus tissue of an in vivo mouse model with closed tibial fracture and, compared to intact bone and articular cartilage at 2 months of age. Total tiRNA expression level in cartilage was only approximately one third of that observed in control D0 bone. In callus tissue, 11 mature 5'end tiRNAs out of 191 tiRNAs were highly expressed, and seven of them were differentially expressed during fracture healing. When comparing the control tissues, 25 miRNAs characteristic to bone and 29 miRNAs characteristic to cartilage tissue homeostasis were identified. Further, a total of 54 out of 806 miRNAs and 5420 out of 18,700 mRNAs were differentially expressed (DE) in callus tissue during fracture healing and, in comparison to control bone. They were associated to gene ontology processes related to mesenchymal tissue development and differentiation. A total of 581 miRNA-mRNA interactions were identified for these 54 DE miRNAs by literature searches in PubMed, thereby linking by Spearman correlation analysis 14 downregulated and 28 upregulated miRNAs to 164 negatively correlating and 168 positively correlating miRNA-mRNA pairs with chondrogenic and osteogenic phases of fracture healing. These data indicated that tiRNAs and miRNAs were differentially expressed in fracture callus tissue, suggesting them important physiological functions during fracture healing. Hence, the data provided by this study may contribute to future clinical applications, such as potential use as biomarkers or as tools in the development of novel therapeutic approaches for fracture healing.
Collapse
Affiliation(s)
| | - Erika Ekholm
- Institute of Biomedicine, University of Turku, Finland
| | | | | | - Tero Puolakkainen
- Institute of Biomedicine, University of Turku, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| | | | - Terhi Heino
- Institute of Biomedicine, University of Turku, Finland
| | - Jorma Määttä
- Institute of Biomedicine, University of Turku, Finland
- Turku Center for Disease Modeling (TCDM), Finland
| | | | - Emrah Yatkin
- Central Animal Laboratory, University of Turku, Turku, Finland
| | - Tiina Laitala
- Institute of Biomedicine, University of Turku, Finland
| | | |
Collapse
|
13
|
Heubel B, Nohe A. The Role of BMP Signaling in Osteoclast Regulation. J Dev Biol 2021; 9:24. [PMID: 34203252 PMCID: PMC8293073 DOI: 10.3390/jdb9030024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The osteogenic effects of Bone Morphogenetic Proteins (BMPs) were delineated in 1965 when Urist et al. showed that BMPs could induce ectopic bone formation. In subsequent decades, the effects of BMPs on bone formation and maintenance were established. BMPs induce proliferation in osteoprogenitor cells and increase mineralization activity in osteoblasts. The role of BMPs in bone homeostasis and repair led to the approval of BMP2 by the Federal Drug Administration (FDA) for anterior lumbar interbody fusion (ALIF) to increase the bone formation in the treated area. However, the use of BMP2 for treatment of degenerative bone diseases such as osteoporosis is still uncertain as patients treated with BMP2 results in the stimulation of not only osteoblast mineralization, but also osteoclast absorption, leading to early bone graft subsidence. The increase in absorption activity is the result of direct stimulation of osteoclasts by BMP2 working synergistically with the RANK signaling pathway. The dual effect of BMPs on bone resorption and mineralization highlights the essential role of BMP-signaling in bone homeostasis, making it a putative therapeutic target for diseases like osteoporosis. Before the BMP pathway can be utilized in the treatment of osteoporosis a better understanding of how BMP-signaling regulates osteoclasts must be established.
Collapse
Affiliation(s)
- Brian Heubel
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
14
|
Ledesma-Colunga MG, Weidner H, Vujic Spasic M, Hofbauer LC, Baschant U, Rauner M. Shaping the bone through iron and iron-related proteins. Semin Hematol 2021; 58:188-200. [PMID: 34389111 DOI: 10.1053/j.seminhematol.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023]
Abstract
Well-controlled iron levels are indispensable for health. Iron deficiency is the most common cause of anemia, whereas iron overload, either hereditary or secondary due to disorders of ineffective erythropoiesis, causes widespread organ failure. Bone is particularly sensitive to fluctuations in systemic iron levels as both iron deficiency and overload are associated with low bone mineral density and fragility. Recent studies have shown that not only iron itself, but also iron-regulatory proteins that are mutated in hereditary hemochromatosis can control bone mass. This review will summarize the current knowledge on the effects of iron on bone homeostasis and bone cell activities, and on the role of proteins that regulate iron homeostasis, i.e. hemochromatosis proteins and proteins of the bone morphogenetic protein pathway, on bone remodeling. As disorders of iron homeostasis are closely linked to bone fragility, deeper insights into common regulatory mechanisms may provide new opportunities to concurrently treat disorders affecting iron homeostasis and bone.
Collapse
Affiliation(s)
- Maria G Ledesma-Colunga
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Maja Vujic Spasic
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Lorenz C Hofbauer
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
15
|
Povoroznyuk VV, Dedukh NV, Bystrytska MA, Shapovalov VS. Bone remodeling stages under physiological conditions and glucocorticoid in excess: Focus on cellular and molecular mechanisms. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review provides a rationale for the cellular and molecular mechanisms of bone remodeling stages under physiological conditions and glucocorticoids (GCs) in excess. Remodeling is a synchronous process involving bone resorption and formation, proceeding through stages of: (1) resting bone, (2) activation, (3) bone resorption, (4) reversal, (5) formation, (6) termination. Bone remodeling is strictly controlled by local and systemic regulatory signaling molecules. This review presents current data on the interaction of osteoclasts, osteoblasts and osteocytes in bone remodeling and defines the role of osteoprogenitor cells located above the resorption area in the form of canopies and populating resorption cavities. The signaling pathways of proliferation, differentiation, viability, and cell death during remodeling are presented. The study of signaling pathways is critical to understanding bone remodeling under normal and pathological conditions. The main signaling pathways that control bone resorption and formation are RANK / RANKL / OPG; M-CSF – c-FMS; canonical and non-canonical signaling pathways Wnt; Notch; MARK; TGFβ / SMAD; ephrinB1/ephrinB2 – EphB4, TNFα – TNFβ, and Bim – Bax/Bak. Cytokines, growth factors, prostaglandins, parathyroid hormone, vitamin D, calcitonin, and estrogens also act as regulators of bone remodeling. The role of non-encoding microRNAs and long RNAs in the process of bone cell differentiation has been established. MicroRNAs affect many target genes, have both a repressive effect on bone formation and activate osteoblast differentiation in different ways. Excess of glucocorticoids negatively affects all stages of bone remodeling, disrupts molecular signaling, induces apoptosis of osteocytes and osteoblasts in different ways, and increases the life cycle of osteoclasts. Glucocorticoids disrupt the reversal stage, which is critical for the subsequent stages of remodeling. Negative effects of GCs on signaling molecules of the canonical Wingless (WNT)/β-catenin pathway and other signaling pathways impair osteoblastogenesis. Under the influence of excess glucocorticoids biosynthesis of biologically active growth factors is reduced, which leads to a decrease in the expression by osteoblasts of molecules that form the osteoid. Glucocorticoids stimulate the expression of mineralization inhibitor proteins, osteoid mineralization is delayed, which is accompanied by increased local matrix demineralization. Although many signaling pathways involved in bone resorption and formation have been discovered and described, the temporal and spatial mechanisms of their sequential turn-on and turn-off in cell proliferation and differentiation require additional research.
Collapse
|
16
|
Fischer NG, Chen X, Astleford-Hopper K, He J, Mullikin AF, Mansky KC, Aparicio C. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112108. [PMID: 33965114 DOI: 10.1016/j.msec.2021.112108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/19/2021] [Accepted: 04/10/2021] [Indexed: 12/21/2022]
Abstract
Functionalization of dental and orthopedic implants with multiple bioactivities is desirable to obtain surfaces with improved biological performance and reduced infection rates. While many approaches have been explored to date, nearly all functionalized surfaces are static, i.e., non-responsive to biological cues. However, tissue remodeling necessary for implant integration features an ever-changing milieu of cells that demands a responsive biomaterial surface for temporal synchronization of interactions between biomaterial and tissue. Here, we successfully synthesized a multi-functional, dynamic coating on titanium by co-immobilizing GL13K antimicrobial peptide and an MMP-9 - a matrix metalloproteinase secreted by bone-remodeling osteoclasts - responsive peptide. Our co-immobilized peptide surface showed potent anti-biofilm activity, enabled effective osteoblast and fibroblast proliferation, and demonstrated stability against a mechanical challenge. Finally, we showed peptide release was triggered for up to seven days when the multi-peptide coatings were cultured with MMP-9-secreting osteoclasts. Our MMP-9 cleavable peptide can be conjugated with osteogenic or immunomodulatory motifs for enhanced bone formation in future work. Overall, we envisage our multifunctional, dynamic surface to reduce infection rates of percutaneous bone-anchored devices via strong anti-microbial activity and enhanced tissue regeneration via temporal synchronization between biomaterial cues and tissue responses.
Collapse
Affiliation(s)
- Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Xi Chen
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Kristina Astleford-Hopper
- Department of Diagnostic and Biological Sciences, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Jiahe He
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Alex F Mullikin
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Kim C Mansky
- Department of Diagnostic and Biological Sciences, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Tang BM, Li ZW, Wang ZY. PERK activator CCT020312 prevents inflammation-mediated osteoporosis in the ovariectomized rats. Gynecol Endocrinol 2021; 37:342-348. [PMID: 33480297 DOI: 10.1080/09513590.2021.1874904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To investigate the therapeutic effects of PERK activator CCT020312 (CCT) on inflammation-mediated osteoporosis (IMO) in ovariectomized rats. METHODS Rats were divided into Sham, IMO, IMO + 1 mg/kg CCT and IMO + 2 mg/kg CCT groups. IMO models were constructed by bilateral ovariectomy (OVX) on 1st day followed by injection with magnesium silicate (Talc) on the 59th day. Sham rats did not undergo OVX surgery and were injected with saline instead of Talc. From 60th to 79th day, rats were treated with DMSO (vehicle control) in the Sham and IMO groups, and 1 or 2 mg/kg CCT020312 in treatment groups. Osteopontin (OPN), osteocalcin (OCN), tartrate-resistant acid phosphatase (TRAP), C-terminal telopeptide of type I collagen (CTX-I), and pro-inflammatory factors were measured on the 80th day. ProdigyDEXA was used to evaluate bone mineral density and content (BMD/BMC). Bone volume/total volume (BV/TV), connectivity density (Conn.D), trabecular number (Tb.N), and trabecular separation (Tb.Sp) was assessed using 3D micro-CT scanner. RESULTS CCT up-regulated Conn.D, BV/TV, and Tb.N, but down-regulated Tb.Sp in IMO rats. Besides, the declined femoral BMD and BMC in IMO rats were elevated after CCT treatment. Besides, IMO rats represented declined OPN and OCN, as well as increased TRAP, CTX-I, and pro-inflammatory factors, whereas those in the treatment groups were ameliorated regarding these indexes, with 2 mg/kg CCT showing better effect. CONCLUSION PERK activator CCT020312 can be served as a new therapeutic option for the protection against bone loss in the OVX rat model associated with inflammation probably by manipulating inflammatory factors.
Collapse
Affiliation(s)
- Bao-Ming Tang
- Department of Orthopedics, Affiliated Hospital of Qinghai University, Xining, China
| | - Zhao-Wei Li
- Department of Orthopedics, Affiliated Hospital of Qinghai University, Xining, China
| | - Zhuo-Ya Wang
- Department of Geriatrics, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
18
|
Long Q, Wang R, Feng M, Zhao X, Liu Y, Ma X, Yu L, Li S, Guo Z, Zhu Y, Teng Z, Zeng Y. Construction and Analysis of a Diagnostic Model Based on Differential Expression Genes in Patients With Major Depressive Disorder. Front Psychiatry 2021; 12:762683. [PMID: 34955918 PMCID: PMC8695921 DOI: 10.3389/fpsyt.2021.762683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Major depressive disorder (MDD) is a common and severe psychiatric disorder with a heavy burden on the individual and society. However, the prevalence varies significantly owing to the lack of auxiliary diagnostic biomarkers. To identify the shared differential expression genes (DEGs) with potential diagnostic value in both the hippocampus and whole blood, a systematic and integrated bioinformatics analysis was carried out. Methods: Two datasets from the Gene Expression Omnibus database (GSE53987 and GSE98793) were downloaded and analyzed separately. A weighted gene co-expression network analysis was performed to construct the co-expression gene network of DEGs from GSE53987, and the most disease-related module was extracted. The shared DEGs from the module and GSE98793 were identified using a Venn diagram. Functional pathway prediction was used to identify the most disease-related DEGs. Finally, several DEGs were chosen, and their potential diagnostic value was determined by receiver operating characteristic curve analysis. Results: After weighted gene co-expression network analysis, the most MDD-related module (MEgrey) was identified, and 623 DEGs were extracted from this module. The intersection between MEgrey and GSE98793 was calculated, and 163 common DEGs were identified. The co-expression network of 163 DEGs from these was then reconstructed. All hub genes were identified based on the connective degree of the reconstructed co-expression network. Based on the results of functional pathway enrichment, 17 candidate hub genes were identified. Finally, logistic regression and receiver operating characteristic curves showed that three candidate hub genes (CEP350, SMAD5, and HSPG2) had relatively high auxiliary value in the diagnosis of MDD. Conclusion: Our results showed that the combination of CEP350, SMAD5, and HSPG2 has a relatively high diagnostic value for MDD. Pathway enrichment analysis also showed that these genes may play an important role in the pathogenesis of MDD. These results suggest a potentially important role for this gene combination in clinical practice.
Collapse
Affiliation(s)
- Qing Long
- Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Rui Wang
- Institute for Health Sciences, Kunming Medical University, Kunming, China
| | - Maoyang Feng
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinling Zhao
- Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Yilin Liu
- Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Xiao Ma
- Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Lei Yu
- Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Shujun Li
- Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Zeyi Guo
- Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Yun Zhu
- Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Zhaowei Teng
- First People's Hospital of Yunnan Province, Kunming, China
| | - Yong Zeng
- Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| |
Collapse
|
19
|
Lademann F, Hofbauer LC, Rauner M. The Bone Morphogenetic Protein Pathway: The Osteoclastic Perspective. Front Cell Dev Biol 2020; 8:586031. [PMID: 33178699 PMCID: PMC7597383 DOI: 10.3389/fcell.2020.586031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022] Open
Abstract
Bone health crucially relies on constant bone remodeling and bone regeneration, both tightly controlled processes requiring bone formation and bone resorption. Plenty of evidence identifies bone morphogenetic proteins (BMP) as major players in osteoblast differentiation and thus, bone formation. However, in recent past years, researchers also increasingly reported on the pivotal role of these multi-functional growth factors in osteoclast formation and activity. This review aims to summarize the current knowledge of BMP signaling within the osteoclast lineage, its role in bone resorption, and osteoblast-osteoclast coupling. Furthermore, subsequent clinical implications for recombinant BMP therapy will be discussed in view of recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C. Hofbauer
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Lademann F, Weidner H, Tsourdi E, Kumar R, Rijntjes E, Köhrle J, Hofbauer LC, Rauner M. Disruption of BMP Signaling Prevents Hyperthyroidism-Induced Bone Loss in Male Mice. J Bone Miner Res 2020; 35:2058-2069. [PMID: 32453466 DOI: 10.1002/jbmr.4092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Thyroid hormones (TH) are key regulators of bone health, and TH excess in mice causes high bone turnover-mediated bone loss. However, the underlying molecular mechanisms of TH actions on bone remain poorly defined. Here, we tested the hypothesis whether TH mediate their effects via the pro-osteogenic bone morphogenetic protein (BMP) signaling pathway in vitro and in vivo. Primary murine osteoblasts treated with 3,3',5-triiodo-L-thyronine (T3 ) showed an enhanced differentiation potential, which was associated with activated canonical BMP/SMAD signaling reflected by SMAD1/5/8 phosphorylation. Blocking BMP signaling at the receptor (LDN193189) and ligand level (noggin, anti-BMP2/BMP4 neutralizing antibodies) inhibited T3 -induced osteogenic differentiation. In vivo, TH excess over 4 weeks in male C57BL/6JRj mice led to severe trabecular bone loss with a high bone turnover that was completely prevented by treatment with the BMP ligand scavenger ALK3-Fc. Thus, TH activate the canonical BMP pathway in osteoblasts to promote their differentiation and function. Importantly, this study indicates that blocking the BMP pathway may be an effective strategy to treat hyperthyroidism-induced bone loss. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Ravi Kumar
- Acceleron Pharma, Inc, Cambridge, MA, USA
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
21
|
Schoenmaker T, Botman E, Sariyildiz M, Micha D, Netelenbos C, Bravenboer N, Kelder A, Eekhoff EMW, De Vries TJ. Activin-A Induces Fewer, but Larger Osteoclasts From Monocytes in Both Healthy Controls and Fibrodysplasia Ossificans Progressiva Patients. Front Endocrinol (Lausanne) 2020; 11:501. [PMID: 32760351 PMCID: PMC7371852 DOI: 10.3389/fendo.2020.00501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a rare genetic disease characterized by heterotopic ossification (HO) that occurs in muscle tissue, tendons, and ligaments. The disease is caused by mutations in the Activin receptor type I (ACVR1) gene resulting in enhanced responsiveness to Activin-A. Binding of this molecule to the mutated receptor induces HO. Bone metabolism normally requires the coupled action of osteoblasts and osteoclasts, which seems to be disturbed during HO. We hypothesize that Activin-A may also counteract the formation of osteoclasts in FOP patients. In this study we investigated the effect of Activin-A on osteoclast differentiation of CD14+ monocytes from FOP patients and healthy controls. The lymphocytic and monocytic cell populations were determined by FACS analysis. Expression of the mutated R206H receptor was assessed and confirmed by allele specific PCR. The effect of Activin-A on osteoclastogenesis was assessed by counting the number and size of multinucleated cells. Osteoclast activity was determined by culturing the cells on Osteo Assay plates. The influence of Activin-A on expression of various osteoclast related genes was studied with QPCR. Blood from FOP patients contained similar percentages of classical, intermediate, or non-classical monocytes as healthy controls. Addition of Activin-A to the osteoclastogenesis cultures resulted in fewer osteoclasts in both control and FOP cultures. The osteoclasts formed in the presence of Activin-A were, however, much larger and more active compared to the cultures without Activin-A. This effect was tempered when the Activin-A inhibitor follistatin was added to the Activin-A containing cultures. Expression of osteoclast specific genes Cathepsin K and TRAcP was upregulated, gene expression of osteoclastogenesis related genes M-CSF and DC-STAMP was downregulated by Activin-A. Since Activin-A is a promising target for inhibiting the formation of HO in FOP, it is important to know its effects on both osteoblasts and osteoclasts. Our study shows that Activin-A induces fewer, but larger and more active osteoclasts independent of the presence of the mutated ACVR1 receptor. When considering FOP as an Activin-A driven disease that acts locally, our findings suggest that Activin-A could cause a more pronounced local resorption by larger osteoclasts. Thus, when targeting Activin-A in patients with neutralizing antibodies, HO formation could potentially be inhibited, and osteoclastic activity could be slightly reduced, but then performed dispersedly by more and smaller osteoclasts.
Collapse
Affiliation(s)
- Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
- *Correspondence: Ton Schoenmaker
| | - Esmée Botman
- Department of Internal Medicine Section Endocrinology, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Merve Sariyildiz
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Coen Netelenbos
- Department of Internal Medicine Section Endocrinology, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angele Kelder
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - E. Marelise W. Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Teun J. De Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
22
|
Li M, Zhang Z, Gu X, Jin Y, Feng C, Yang S, Wei F. MicroRNA-21 affects mechanical force-induced midpalatal suture remodelling. Cell Prolif 2019; 53:e12697. [PMID: 31713930 PMCID: PMC6985676 DOI: 10.1111/cpr.12697] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/29/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
Objectives miR‐21 can promote osteoblast differentiation of periodontal ligament stem cells. However, the effect of miR‐21 on bone remodelling in the midpalatal suture is unclear. This study aimed to elucidate the effects of miR‐21 on the midpalatal suture bone remodelling by expanding the palatal sutures. Materials and methods miR‐21 deficient (miR‐21−/−) and wild‐type (WT) mice were used to establish animal models by expanding the palatal sutures. Micro‐CT, haematoxylin‐eosin (HE) staining, tartrate‐resistant acid phosphatase (TRAP) staining, fluorescence labelling and immunohistochemistry were used to investigate the function of miR‐21 in midpalatal suture bone remodelling. Besides, bone mesenchymal stem cells (BMSCs) derived from both miR‐21−/− and WT mice were cultured. The MTT, CCK8, EdU analysis, transwell and wound healing test were used to assess the effects of miR‐21 on the characteristics of cells. Results The expression of ALP was suppressed in miR‐21‐/‐ mice after expansion except 28 days. The expression of Ocn in WT mice was much higher than that of miR‐21‐/‐ mice. Besides, with mechanical force, miR‐21 deficiency downregulated the expression of Opg, upregulated the expression of Rankl, and induced more osteoclasts as TRAP staining showed. After injecting agomir‐21 to miR‐21‐/‐ mice, the expression of Alp, Ocn and Opg/Rankl were rescued. In vitro, the experiments suggested that miR‐21 deficiency reduced proliferation and migration ability of BMSCs. Conclusions The results showed that miR‐21 deficiency reduced the rate of bone formation and prolonged the process of bone formation. miR‐21 regulated the bone resorption and osteoclastogenesis by affecting the cell abilities of proliferation and migration.
Collapse
Affiliation(s)
- Mengying Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Zijie Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Xiuge Gu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Ye Jin
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | | | - Shuangyan Yang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Fulan Wei
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
23
|
The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci 2019; 20:ijms20225525. [PMID: 31698687 PMCID: PMC6888566 DOI: 10.3390/ijms20225525] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.
Collapse
|
24
|
Dituri F, Cossu C, Mancarella S, Giannelli G. The Interactivity between TGFβ and BMP Signaling in Organogenesis, Fibrosis, and Cancer. Cells 2019; 8:E1130. [PMID: 31547567 PMCID: PMC6829314 DOI: 10.3390/cells8101130] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The Transforming Growth Factor beta (TGFβ) and Bone Morphogenic Protein (BMP) pathways intersect at multiple signaling hubs and cooperatively or counteractively participate to bring about cellular processes which are critical not only for tissue morphogenesis and organogenesis during development, but also for adult tissue homeostasis. The proper functioning of the TGFβ/BMP pathway depends on its communication with other signaling pathways and any deregulation leads to developmental defects or diseases, including fibrosis and cancer. In this review we explore the cellular and physio-pathological contexts in which the synergism or antagonism between the TGFβ and BMP pathways are crucial determinants for the normal developmental processes, as well as the progression of fibrosis and malignancies.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Carla Cossu
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. De Bellis", Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| |
Collapse
|
25
|
Bone morphogenetic proteins: Their role in regulating osteoclast differentiation. Bone Rep 2019; 10:100207. [PMID: 31193008 PMCID: PMC6513777 DOI: 10.1016/j.bonr.2019.100207] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/09/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
The ability to create recombinant bone morphogenetic proteins (BMPs) in recent years has led to their rise as a common clinical adjuvant. Their application varies, from spinal fixation to repairing palatal clefts, to coating implants for osseointegration. In recent years questions have been raised as to the efficacy of BMPs in several of these procedures. These questions are due to the unwanted side effect of BMPs on other cell types, such as osteoclasts which can resorb bone at the graft/implant site. However, most BMP research focuses on the anabolic osteoinductive effects of BMPs on osteoblasts rather than its counterpart- stimulation of the osteoclasts, which are cells responsible for resorbing bone. In this review, we discuss the data available from multiple in-vitro and in-vivo BMP-related knockout models to elucidate the different functions BMPs have on osteoclast differentiation and activity. BMPs can act directly on osteoclasts to regulate differentiation and activity. Osteoclasts express multiple BMP signaling components. BMPs signal through both SMAD independent and dependent mechanisms in osteoclasts. SMAD dependent BMP signaling regulates osteoclast-osteoblast coupling factors.
Collapse
|
26
|
Van Gils M, Nollet L, Verly E, Deianova N, Vanakker OM. Cellular signaling in pseudoxanthoma elasticum: an update. Cell Signal 2019; 55:119-129. [PMID: 30615970 DOI: 10.1016/j.cellsig.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Pseudoxanthoma elasticum is an autosomal recessive genodermatosis with variable expression, due to mutations in the ABCC6 or ENPP1 gene. It is characterized by elastic fiber mineralization and fragmentation, resulting in skin, eye and cardiovascular symptoms. Significant advances have been made in the last 20 years with respect to the phenotypic characterization and pathophysiological mechanisms leading to elastic fiber mineralization. Nonetheless, the substrates of the ABCC6 transporter - the main cause of PXE - remain currently unknown. Though the precise mechanisms linking the ABCC6 transporter to mineralization of the extracellular matrix are unclear, several studies have looked into the cellular consequences of ABCC6 deficiency in PXE patients and/or animal models. In this paper, we compile the evidence on cellular signaling in PXE, which seems to revolve mainly around TGF-βs, BMPs and inorganic pyrophosphate signaling cascades. Where conflicting results or fragmented data are present, we address these with novel signaling data. This way, we aim to better understand the up- and down-stream signaling of TGF-βs and BMPs in PXE and we demonstrate that ANKH deficiency can be an additional mechanism contributing to decreased serum PPi levels in PXE patients.
Collapse
Affiliation(s)
- M Van Gils
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| | - L Nollet
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - E Verly
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - N Deianova
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - O M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium.
| |
Collapse
|