1
|
Yilmaz B, Erdogan CS, Sandal S, Kelestimur F, Carpenter DO. Obesogens and Energy Homeostasis: Definition, Mechanisms of Action, Exposure, and Adverse Effects on Human Health. Neuroendocrinology 2024; 115:72-100. [PMID: 39622213 DOI: 10.1159/000542901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/28/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND Obesity is a major risk factor for noncommunicable diseases and is associated with a reduced life expectancy of up to 20 years, as well as with other consequences such as unemployment and increased economic burden for society. It is a multifactorial disease, and physiopathology of obesity involves dysregulated calorie utilization and energy balance, disrupted homeostasis of appetite and satiety, lifestyle factors including sedentary lifestyle, lower socioeconomic status, genetic predisposition, epigenetics, and environmental factors. Some endocrine-disrupting chemicals (EDCs) have been proposed as "obesogens" that stimulate adipogenesis leading to obesity. In this review, definition of obesogens, their adverse effects, underlying mechanisms, and metabolic implications will be updated and discussed. SUMMARY Disruption of lipid homeostasis by EDCs involves multiple mechanisms including increase in the number and size of adipocytes, disruption of endocrine-regulated adiposity and metabolism, alteration of hypothalamic regulation of appetite, satiety, food preference and energy balance, and modification of insulin sensitivity in the liver, skeletal muscle, pancreas, gastrointestinal system, and the brain. At a cellular level, obesogens can exert their endocrine disruptive effects by interfering with peroxisome proliferator-activated receptors and steroid receptors. Human exposure to chemical obesogens mainly occurs by ingestion and, to some extent, by inhalation and dermal uptake, usually in an unconscious manner. Persistent pollutants are lipophilic features; thus, they bioaccumulate in adipose tissue. KEY MESSAGES Although there are an increasing number of reports studying the effects of obesogens, their mechanisms of action remain to be elucidated. In addition, epidemiological studies are needed in order to evaluate human exposure to obesogens.
Collapse
Affiliation(s)
- Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Physiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | | | - Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Fahrettin Kelestimur
- Department of Clinical Endocrinology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - David O Carpenter
- Institute for Health and the Environment, 5 University Place, University at Albany, Rensselaer, New York, USA
| |
Collapse
|
2
|
Assari S, Sheikhattari P. Sex Differences in the Relationship Between Nucleus Accumbens Volume and Youth Tobacco or Marijuana Use Following Stressful Life Events. JOURNAL OF MENTAL HEALTH & CLINICAL PSYCHOLOGY 2024; 8:1-13. [PMID: 38751734 PMCID: PMC11095827 DOI: 10.29245/2578-2959/2024/2.1305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Background Exposure to stressful life events (SLEs) can upset balance and affect the healthy brain development of children and youths. These events may influence substance use by altering brain reward systems, especially the nucleus accumbens (NAc), which plays a key role in motivated behaviors and reward processing. The interaction between sensitization to SLEs, depression, and substance use might vary between male and female youths, potentially due to differences in how each sex responds to SLEs. Aims This study aims to examine the effect of sex on the relationship between SLEs, Nucleus Accumbens activity, and substance use in a nationwide sample of young individuals. Methods We utilized data from the Adolescent Brain Cognitive Development study (ABCD), a longitudinal study of pre-adolescents aged 9-10 years, comprising 11,795 participants tracked over 36 months. Structured interviews measuring SLEs were conducted using the Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS). Initial linear regression analyses explored if SLEs could predict volumes of the right and left NAc. Subsequently, Cox regression models were used to investigate how SLEs and NAc volume might predict the initiation of tobacco and marijuana use, with the analysis stratified by sex to address potential sex differences. Results Our findings reveal that SLEs significantly predicted marijuana use in males but not in females, and tobacco use was influenced by SLEs in both sexes. A higher number of SLEs was linked with decreased left NAc volume in males, a trend not seen in females. The right NAc volume did not predict substance use in either sex. However, volumes of both the right and left NAc were significant predictors of future tobacco use, with varying relationships across sexes. In females, an inverse relationship was observed between both NAc volumes and the risk of tobacco use. In contrast, a positive correlation existed between the left NAc volume and tobacco and marijuana use in males, with no such relationship for females. Conclusion This study underscores that the associations between SLEs, NAc volume, and subsequent substance use are influenced by a nuanced interplay of sex, brain hemisphere, and substance type.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
- Department of Family Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
- Department of Urban Public Health, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | | |
Collapse
|
3
|
Hounchonou HF, Tang H, Paulat R, Kühn A, Spranger J, van Riesen C, Maurer L. Continuous deep brain stimulation of the nucleus accumbens reduces food intake but does not affect body weight in mice fed a high-fat diet. Sci Rep 2023; 13:18952. [PMID: 37919311 PMCID: PMC10622429 DOI: 10.1038/s41598-023-45511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
Obesity is an enormous health problem, and many patients do not respond to any of the available therapies. Deep brain stimulation (DBS) is currently investigated as a potential treatment for morbid obesity. In this study, we tested the hypothesis that high-frequency DBS targeting the nucleus accumbens (NAc) shell region reduces food intake and weight gain in mice fed a high-fat diet. We implanted male C57BL/6J mice with bilateral electrodes and a head-mounted microstimulator enabling continuous stimulation for up to 5 weeks. In successfully operated animals (n = 9 per group, high-frequency vs. sham stimulation), we investigated immediate and long-term stimulation effects on metabolic and behavioral phenotypes. Here we show that stimulation acutely induced a transient reduction in energy expenditure and locomotor activity but did not significantly affect spontaneous food intake, social interaction, anxiety or exploratory behaviors. In contrast, continuous stimulation over 5 weeks led to a decrease in food intake and thigmotaxis (the tendency to stay near walls in an open lit arena). However, chronic stimulation did not substantially change weight gain in mice fed a high-fat diet. Our results do not support the use of continuous high-frequency NAc shell DBS as a treatment for obesity. However, DBS can alter obesity-related parameters with differing short and long-term effects. Therefore, future research should employ time and context-sensitive experimental designs to assess the potential of DBS for clinical translation in this area.
Collapse
Affiliation(s)
- Harold F Hounchonou
- Department of Endocrinology and Metabolism, Charité University Medicine Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Hui Tang
- Department of Endocrinology and Metabolism, Charité University Medicine Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, Berlin, Germany
| | - Raik Paulat
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Andrea Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité University Medicine Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph van Riesen
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Maurer
- Department of Endocrinology and Metabolism, Charité University Medicine Berlin, Berlin, Germany.
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Szalanczy AM, Key CCC, Woods LCS. Genetic variation in satiety signaling and hypothalamic inflammation: merging fields for the study of obesity. J Nutr Biochem 2022; 101:108928. [PMID: 34936921 PMCID: PMC8959400 DOI: 10.1016/j.jnutbio.2021.108928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Although obesity has been a longstanding health crisis, the genetic architecture of the disease remains poorly understood. Genome-wide association studies have identified many genomic loci associated with obesity, with genes being enriched in the brain, particularly in the hypothalamus. This points to the role of the central nervous system (CNS) in predisposition to obesity, and we emphasize here several key genes along the satiety signaling pathway involved in genetic susceptibility. Interest has also risen regarding the chronic, low-grade obesity-associated inflammation, with a growing concern toward inflammation in the hypothalamus as a precursor to obesity. Recent studies have found that genetic variation in inflammatory genes play a role in obesity susceptibility, and we highlight here several key genes. Despite the interest in the genetic variants of these pathways individually, there is a lack of research that investigates the relationship between the two. Understanding the interplay between genetic variation in obesity genes enriched in the CNS and inflammation genes will advance our understanding of obesity etiology and heterogeneity, improve genetic risk prediction analyses, and highlight new drug targets for the treatment of obesity. Additionally, this increased knowledge will assist in physician's ability to develop personalized nutrition and medication strategies for combating the obesity epidemic. Though it often seems to present universally, obesity is a highly individual disease, and there remains a need in the field to develop methods to treat at the individual level.
Collapse
|
5
|
Casquero-Veiga M, Bueno-Fernandez C, Romero-Miguel D, Lamanna-Rama N, Nacher J, Desco M, Soto-Montenegro ML. Exploratory study of the long-term footprint of deep brain stimulation on brain metabolism and neuroplasticity in an animal model of obesity. Sci Rep 2021; 11:5580. [PMID: 33692388 PMCID: PMC7946931 DOI: 10.1038/s41598-021-82987-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) is a powerful neurostimulation therapy proposed for the treatment of several neuropsychiatric disorders. However, DBS mechanism of action remains unclear, being its effects on brain dynamics of particular interest. Specifically, DBS reversibility is a major point of debate. Preclinical studies in obesity showed that the stimulation of the lateral hypothalamus (LH) and nucleus accumbens (NAcc), brain centers involved in satiety and reward circuits, are able to modulate the activity of brain structures impaired in this pathology. Nevertheless, the long-term persistence of this modulation after DBS withdrawal was unexplored. Here we examine the in vivo presence of such changes 1 month after LH- and NAcc-DBS, along with differences in synaptic plasticity, following an exploratory approach. Thus, both stimulated and non-stimulated animals with electrodes in the NAcc showed a common pattern of brain metabolism modulation, presumably derived from the electrodes' presence. In contrast, animals stimulated in the LH showed a relative metabolic invariance, and a reduction of neuroplasticity molecules, evidencing long-lasting neural changes. Our findings suggest that the reversibility or persistence of DBS modulation in the long-term depends on the selected DBS target. Therefore, the DBS footprint would be influenced by the stability achieved in the neural network involved during the stimulation.
Collapse
Affiliation(s)
- Marta Casquero-Veiga
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.
| | - Clara Bueno-Fernandez
- Neurobiology Unit, Cell Biology Department, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Madrid, Spain
| | - Diego Romero-Miguel
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Nicolás Lamanna-Rama
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Juan Nacher
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.,Neurobiology Unit, Cell Biology Department, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Madrid, Spain
| | - Manuel Desco
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain. .,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain. .,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| | - María Luisa Soto-Montenegro
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.
| |
Collapse
|
6
|
Ramadi KB, Srinivasan SS, Traverso G. Electroceuticals in the Gastrointestinal Tract. Trends Pharmacol Sci 2020; 41:960-976. [PMID: 33127099 PMCID: PMC8186669 DOI: 10.1016/j.tips.2020.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
The field of electroceuticals has attracted considerable attention over the past few decades as a novel therapeutic modality. The gastrointestinal (GI) tract (GIT) holds significant potential as a target for electroceuticals as the intersection of neural, endocrine, and immune systems. We review recent developments in electrical stimulation of various portions of the GIT (including esophagus, stomach, and small and large intestine) and nerves projecting to the GIT and supportive organs. This has been tested with varying degrees of success for several dysmotility, inflammatory, hormonal, and neurologic disorders. We outline a vision for the future of GI electroceuticals, building on advances in mechanistic understanding of GI physiology coupled with novel ingestible technologies. The next wave of electroceutical therapies will be minimally invasive and more targeted than current approaches, making them an indispensable tool in the clinical armamentarium.
Collapse
Affiliation(s)
- Khalil B Ramadi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shriya S Srinivasan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Assari S, Boyce S, Bazargan M. Nucleus Accumbens Functional Connectivity with the Frontoparietal Network Predicts Subsequent Change in Body Mass Index for American Children. Brain Sci 2020; 10:brainsci10100703. [PMID: 33022949 PMCID: PMC7600639 DOI: 10.3390/brainsci10100703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Nucleus accumbens (NAc) is a brain structure with a well-established role in the brain reward processing system. Altered function of the NAc is shown to have a role in the development of food addiction and obesity. However, less is known about sex differences in the role of NAc function as a predictor of children’s change in body mass index (BMI) over time. Aim: We used the Adolescent Brain Cognitive Development data (version 2.01) to investigate sex differences in the predictive role of the NAc functional connectivity with the frontoparietal network on children’s BMI change over a one-year follow-up period. Methods: This 1-year longitudinal study successfully followed 3784 9–10-year-old children. Regression models were used to analyze the data. The predictor variable was NAc functional connectivity with the frontoparietal network measured using resting-state functional magnetic resonance imaging (fMRI). The primary outcome was BMI at the end of the 1-year follow up. Covariates included race, ethnicity, age, socioeconomic factors, and baseline BMI. Sex was the effect modifier. Results: NAc functional connectivity with the frontoparietal network was predictive of BMI changes over time. This association remained significant above and beyond all covariates. The above association, however, was only significant in female, not male children. Conclusion: The epidemiological observation that NAc functional connectivity is associated with BMI changes in children is an extension of well-controlled laboratory studies that have established the role of the NAc in the brain reward processing. More research is needed on sex differences in the brain regions that contribute to childhood obesity.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, Charles Drew University, Los Angeles, CA 90059, USA;
- Department of Urban Public Health, Charles Drew University, Los Angeles, CA 90059, USA
- Correspondence: ; Tel.: +(734)-232-0445; Fax: +734-615-8739
| | - Shanika Boyce
- Department of Pediatrics, Charles Drew University, Los Angeles, CA 90059, USA;
| | - Mohsen Bazargan
- Department of Family Medicine, Charles Drew University, Los Angeles, CA 90059, USA;
- Department of Family Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Assari S. Parental Education and Nucleus Accumbens Response to Reward Anticipation: Minorities' Diminished Returns. ACTA ACUST UNITED AC 2020; 2:132-153. [PMID: 34308362 DOI: 10.22158/assc.v2n4p132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Considerable research has documented the effects of race and socioeconomic status (SES) on reward-seeking behaviors; however, less is known about the multiplicative effects of race and family SES on brain response to reward anticipation. Marginalization-related Diminished Returns (MDRs) suggest that family SES would show weaker effects on brain development of children in non-White families than in White families. Objective To test race by SES variation in Nucleus Accumbens (NAcc) response to reward anticipation (NAcc-RA) among American children. Methods For this cross-sectional analysis, data came from the Adolescent Brain Cognitive Development (ABCD) study which included 6,419, 9-10 year old children. The independent variable was parental education. The moderator was race. The primary outcome was the right NAcc-RA. Age, sex, ethnicity, household income, and family structure were the covariates. We used mixed effects regression models that adjusted for the nested nature of the ABCD data. Results While high parental education was associated with a higher amount of right NAcc-RA, this effect was stronger for White than non-White children. This finding was evident in the observed interactions between race and parental education on the right NAcc-RA. Discussion For American children, NAcc-RA is not shaped by race or family SES, but by their intersection. As a result of the interaction between race and SES (diminished return of SES for non-Whites), middle-class racial minority children may remain susceptible to high-risk behaviors. Disparities in high-risk behaviors in children should not be reduced to economic disparities. Structural inequalities may reduce the return of SES resources for non-White families.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, Charles Drew University, Los Angeles, CA 90059, USA.,Department of Urban Public Health, Charles Drew University, Los Angeles, CA 90059, USA
| |
Collapse
|
9
|
Casquero-Veiga M, García-García D, MacDowell KS, Pérez-Caballero L, Torres-Sánchez S, Fraguas D, Berrocoso E, Leza JC, Arango C, Desco M, Soto-Montenegro ML. Risperidone administered during adolescence induced metabolic, anatomical and inflammatory/oxidative changes in adult brain: A PET and MRI study in the maternal immune stimulation animal model. Eur Neuropsychopharmacol 2019; 29:880-896. [PMID: 31229322 DOI: 10.1016/j.euroneuro.2019.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/30/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
Inflammation and oxidative stress (IOS) are considered key pathophysiological elements in the development of mental disorders. Recent studies demonstrated that the antipsychotic risperidone elicits an antiinflammatory effect in the brain. We administered risperidone for 2-weeks at adolescence to assess its role in preventing brain-related IOS changes in the maternal immune stimulation (MIS) model at adulthood. We also investigated the development of volumetric and neurotrophic abnormalities in areas related to the HPA-axis. Poly I:C (MIS) or saline (Sal) were injected into pregnant Wistar rats on GD15. Male offspring received risperidone or vehicle daily from PND35-PND49. We studied 4 groups (8-15 animals/group): Sal-vehicle, MIS-vehicle, Sal-risperidone and MIS-risperidone. [18F]FDG-PET and MRI studies were performed at adulthood and analyzed using SPM12 software. IOS and neurotrophic markers were measured using WB and ELISA assays in brain tissue. Risperidone elicited a protective function of schizophrenia-related IOS deficits. In particular, risperidone elicited the following effects: reduced volume in the ventricles and the pituitary gland; reduced glucose metabolism in the cerebellum, periaqueductal gray matter, and parietal cortex; higher FDG uptake in the cingulate cortex, hippocampus, thalamus, and brainstem; reduced NFκB activity and iNOS expression; and increased enzymatic activity of CAT and SOD in some brain areas. Our study suggests that some schizophrenia-related IOS changes can be prevented in the MIS model. It also stresses the need to search for novel strategies based on anti-inflammatory compounds in risk populations at early stages in order to alter the course of the disease.
Collapse
Affiliation(s)
- Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| | - David García-García
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain; Facultad de Ciencia y Tecnología, Universidad Isabel I, Burgos, Spain
| | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Laura Pérez-Caballero
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Neuropsychopharmacology & Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Sonia Torres-Sánchez
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain; Neuropsychopharmacology & Psychobiology Research Group, Universidad de Cádiz, Cádiz, Spain
| | - David Fraguas
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense (UCM), Madrid, Spain
| | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Neuropsychopharmacology & Psychobiology Research Group, Psychobiology Area, Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, Spain
| | - Celso Arango
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense (UCM), Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain; CIBER de Salud Mental (CIBERSAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain.
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
10
|
How Deep Brain Stimulation of the Nucleus Accumbens Affects the Cingulate Gyrus and Vice Versa. Brain Sci 2019; 9:brainsci9010005. [PMID: 30621216 PMCID: PMC6356752 DOI: 10.3390/brainsci9010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022] Open
Abstract
The nucleus accumbens (NA) and the cingulate gyrus (CG) are two vital limbic brain structures. They have attracted attention as deep brain stimulation (DBS) targets in the treatment of common refractory psychiatric illness. The primary purpose of this article was to review the current knowledge regarding the way that NA DBS affects the CG and vice versa. Methodologically, a thorough literature review was performed. According to the current literature, NA DBS modulates the function of several brain areas including the CG cortex. It specifically causes activation in the ipsilateral CG cortex and voltage-dependent reduction of its blood oxygenation. It also reverses anterior mid-CG cortex dysfunction and decreases metabolism in the subgenual CG. Moreover, NA DBS that induces mirth inhibits the function of the anterior CG cortex and enhances effective connectivity from anterior CG to the ventral striatum. On the other hand, although it is highly probable that CG DBS affects the NA, the exact nature of its effects remains unclear. Despite the increasing interest in psychiatric DBS, the available data on how NA DBS affects the CG and vice versa are restricted. This conclusion probably reflects the high complexity of the limbic circuits and necessitates further research.
Collapse
|