1
|
Caroselli S, Poli M, Gatta V, Stuppia L, Capalbo A. Preconception carrier screening and preimplantation genetic testing in the infertility management. Andrology 2024. [PMID: 39166614 DOI: 10.1111/andr.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Genetic testing serves as a valuable element of reproductive care, applicable at various stages of the reproductive journey: (i) before pregnancy, when a couple's genetic reproductive risk can be evaluated; (ii) before embryo implantation, as part of in vitro fertilization (IVF) treatment, to ascertain several inherited or de novo genetic/chromosomal diseases of the embryo before transfer; (iii) during the prenatal period, to assess the genetic costitution of the fetus. Preconception carrier screening (CS) is a genetic test typically performed on couples planning a pregnancy. The primary purpose of CS is to identify couples at-risk of conceiving a child affected by a severe genetic disorder with autosomal recessive or X-linked inheritance. Detection of high reproductive risk through CS allows prospective parents to be informed of their predisposition and improve reproductive decision-making. These include undergoing IVF with preimplantation genetic testing (PGT) or donor gametes, prenatal diagnosis, adoption, remaining childless, taking no actions. Both the presence of the affected gene (PGT-M) and chromosomal status (PGT-A) of the embryo can be comprehensively assessed through modern approaches. OBJECTIVES We provide a review of CS and PGT applications to equip healthcare providers with up-to-date information regarding their opportunities and complexities. RESULTS AND DISCUSSION The use of CS and PGT is currently considered the most effective intervention for avoiding both an affected pregnancy whilst using autologous gametes in couples with known increased risk, and chromosomal abnormalities. As our understanding in the genetic component in pathological conditions increases, the number of tested disorders will expand, offering a more thorough assessment of one's genetic inheritance. Nevertheless, implementation and development in this field must be accompanied by scientific and ethical considerations to ensure this approach serves the best long-term interests of individuals and society, promoting justice and autonomy and preserving parenthood and the healthcare system. CONCLUSION The combination of CS and PGT aligns with principles of personalized medicine by offering reproductive care tailored to the individual's genetic makeup.
Collapse
Affiliation(s)
- Silvia Caroselli
- Juno Genetics, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Valentina Gatta
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti-Pescara, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti-Pescara, Italy
| | - Liborio Stuppia
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti-Pescara, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti-Pescara, Italy
| | - Antonio Capalbo
- Juno Genetics, Rome, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti-Pescara, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti-Pescara, Italy
| |
Collapse
|
2
|
Volozonoka L, Miskova A, Gailite L. Whole Genome Amplification in Preimplantation Genetic Testing in the Era of Massively Parallel Sequencing. Int J Mol Sci 2022; 23:4819. [PMID: 35563216 PMCID: PMC9102663 DOI: 10.3390/ijms23094819] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
Successful whole genome amplification (WGA) is a cornerstone of contemporary preimplantation genetic testing (PGT). Choosing the most suitable WGA technique for PGT can be particularly challenging because each WGA technique performs differently in combination with different downstream processing and detection methods. The aim of this review is to provide insight into the performance and drawbacks of DOP-PCR, MDA and MALBAC, as well as the hybrid WGA techniques most widely used in PGT. As the field of PGT is moving towards a wide adaptation of comprehensive massively parallel sequencing (MPS)-based approaches, we especially focus our review on MPS parameters and detection opportunities of WGA-amplified material, i.e., mappability of reads, uniformity of coverage and its influence on copy number variation analysis, and genomic coverage and its influence on single nucleotide variation calling. The ability of MDA-based WGA solutions to better cover the targeted genome and the ability of PCR-based solutions to provide better uniformity of coverage are highlighted. While numerous comprehensive PGT solutions exploiting different WGA types and adjusted bioinformatic pipelines to detect copy number and single nucleotide changes are available, the ones exploiting MDA appear more advantageous. The opportunity to fully analyse the targeted genome is influenced by the MPS parameters themselves rather than the solely chosen WGA.
Collapse
Affiliation(s)
- Ludmila Volozonoka
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Anna Miskova
- Department of Obstetrics and Gynaecology, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia;
| |
Collapse
|
3
|
Long N, Qiao Y, Xu Z, Tu J, Lu Z. Recent advances and application in whole-genome multiple displacement amplification. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0217-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
De Rycke M, Berckmoes V. Preimplantation Genetic Testing for Monogenic Disorders. Genes (Basel) 2020; 11:E871. [PMID: 32752000 PMCID: PMC7463885 DOI: 10.3390/genes11080871] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
Preimplantation genetic testing (PGT) has evolved into a well-established alternative to invasive prenatal diagnosis, even though genetic testing of single or few cells is quite challenging. PGT-M is in theory available for any monogenic disorder for which the disease-causing locus has been unequivocally identified. In practice, the list of indications for which PGT is allowed may vary substantially from country to country, depending on PGT regulation. Technically, the switch from multiplex PCR to robust generic workflows with whole genome amplification followed by SNP array or NGS represents a major improvement of the last decade: the waiting time for the couples has been substantially reduced since the customized preclinical workup can be omitted and the workload for the laboratories has decreased. Another evolution is that the generic methods now allow for concurrent analysis of PGT-M and PGT-A. As innovative algorithms are being developed and the cost of sequencing continues to decline, the field of PGT moves forward to a sequencing-based, all-in-one solution for PGT-M, PGT-SR, and PGT-A. This will generate a vast amount of complex genetic data entailing new challenges for genetic counseling. In this review, we summarize the state-of-the-art for PGT-M and reflect on its future.
Collapse
Affiliation(s)
- Martine De Rycke
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium;
| | | |
Collapse
|
5
|
Combined Preimplantation Genetic Testing for Autosomal Dominant Polycystic Kidney Disease: Consequences for Embryos Available for Transfer. Genes (Basel) 2020; 11:genes11060692. [PMID: 32599795 PMCID: PMC7349812 DOI: 10.3390/genes11060692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and presents with genetic and clinical heterogeneity. ADPKD can also manifest extra-renally, and seminal cysts have been associated with male infertility in some cases. ADPKD-linked male infertility, along with female age, have been proposed as factors that may influence the clinical outcomes of preimplantation genetic testing (PGT) for monogenic disorders (PGT-M). Large PGT for aneuploidy assessment (PGT-A) studies link embryo aneuploidy to increasing female age; other studies suggest that embryo aneuploidy is also linked to severe male-factor infertility. We aimed to assess the number of aneuploid embryos and the number of cycles with transferable embryos in ADPKD patients after combined-PGT. The combined-PGT protocol, involving PGT-M by PCR and PGT-A by next-generation sequencing, was performed in single trophectoderm biopsies from 289 embryos in 83 PGT cycles. Transferable embryos were obtained in 69.9% of cycles. The number of aneuploid embryos and cycles with transferable embryos did not differ when the male or female had the ADPKD mutation. However, a significantly higher proportion of aneuploid embryos was found in the advanced maternal age (AMA) group, but not in the male factor (MF) group, when compared to non-AMA and non-MF groups, respectively. Additionally, no significant differences in the percentage of cycles with transferable embryos were found in any of the groups. Our results indicate that AMA couples among ADPKD patients have an increased risk of aneuploid embryos, but ADPKD-linked male infertility does not promote an increased aneuploidy rate.
Collapse
|
6
|
Preimplantation Genetic Testing for Chromosomal Abnormalities: Aneuploidy, Mosaicism, and Structural Rearrangements. Genes (Basel) 2020; 11:genes11060602. [PMID: 32485954 PMCID: PMC7349251 DOI: 10.3390/genes11060602] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
There is a high incidence of chromosomal abnormalities in early human embryos, whether they are generated by natural conception or by assisted reproductive technologies (ART). Cells with chromosomal copy number deviations or chromosome structural rearrangements can compromise the viability of embryos; much of the naturally low human fecundity as well as low success rates of ART can be ascribed to these cytogenetic defects. Chromosomal anomalies are also responsible for a large proportion of miscarriages and congenital disorders. There is therefore tremendous value in methods that identify embryos containing chromosomal abnormalities before intrauterine transfer to a patient being treated for infertility—the goal being the exclusion of affected embryos in order to improve clinical outcomes. This is the rationale behind preimplantation genetic testing for aneuploidy (PGT-A) and structural rearrangements (-SR). Contemporary methods are capable of much more than detecting whole chromosome abnormalities (e.g., monosomy/trisomy). Technical enhancements and increased resolution and sensitivity permit the identification of chromosomal mosaicism (embryos containing a mix of normal and abnormal cells), as well as the detection of sub-chromosomal abnormalities such as segmental deletions and duplications. Earlier approaches to screening for chromosomal abnormalities yielded a binary result of normal versus abnormal, but the new refinements in the system call for new categories, each with specific clinical outcomes and nuances for clinical management. This review intends to give an overview of PGT-A and -SR, emphasizing recent advances and areas of active development.
Collapse
|
7
|
Toft CLF, Ingerslev HJ, Kesmodel US, Diemer T, Degn B, Ernst A, Okkels H, Kjartansdóttir KR, Pedersen IS. A systematic review on concurrent aneuploidy screening and preimplantation genetic testing for hereditary disorders: What is the prevalence of aneuploidy and is there a clinical effect from aneuploidy screening? Acta Obstet Gynecol Scand 2020; 99:696-706. [PMID: 32039470 DOI: 10.1111/aogs.13823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION In assisted reproductive technology, aneuploidy is considered a primary cause of failed embryo implantation. This has led to the implementation of preimplantation genetic testing for aneuploidy in some clinics. The prevalence of aneuploidy and the use of aneuploidy screening during preimplantation genetic testing for inherited disorders has not previously been reviewed. Here, we systematically review the literature to investigate the prevalence of aneuploidy in blastocysts derived from patients carrying or affected by an inherited disorder, and whether screening for aneuploidy improves clinical outcomes. MATERIAL AND METHODS PubMed and Embase were searched for articles describing preimplantation genetic testing for monogenic disorders and/or structural rearrangements in combination with preimplantation genetic testing for aneuploidy. Original articles reporting aneuploidy rates at the blastocyst stage and/or clinical outcomes (positive human chorionic gonadotropin, gestational sacs/implantation rate, fetal heartbeat/clinical pregnancy, ongoing pregnancy, miscarriage, or live birth/delivery rate on a per transfer basis) were included. Case studies were excluded. RESULTS Of the 26 identified studies, none were randomized controlled trials, three were historical cohort studies with a reference group not receiving aneuploidy screening, and the remaining were case series. In weighted analysis, 34.1% of 7749 blastocysts were aneuploid. Screening for aneuploidy reduced the proportion of embryos suitable for transfer, thereby increasing the risk of experiencing a cycle without transferable embryos. In pooled analysis the percentage of embryos suitable for transfer was reduced from 57.5% to 37.2% following screening for aneuploidy. Among historical cohort studies, one reported significantly improved pregnancy and birth rates but did not control for confounding, one did not report any statistically significant difference between groups, and one properly designed study concluded that preimplantation genetic testing for aneuploidy enhanced the chance of achieving a pregnancy while simultaneously reducing the chance of miscarriage following single embryo transfer. CONCLUSIONS On average, aneuploidy is detected in 34% of embryos when performing a single blastocyst biopsy derived from patients carrying or affected by an inherited disorder. Accordingly, when screening for aneuploidy, the risk of experiencing a cycle with no transferable embryos increases. Current available data on the clinical effect of preimplantation genetic testing for aneuploidy performed concurrently with preimplantation genetic testing for inherited disorders are sparse, rendering the clinical effect from preimplantation genetic testing for aneuploidy difficult to access.
Collapse
Affiliation(s)
- Christian Liebst Frisk Toft
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Ulrik Schiøler Kesmodel
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Fertility Unit, Aalborg University Hospital, Aalborg, Denmark
| | - Tue Diemer
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Birte Degn
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Anja Ernst
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Okkels
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | | | - Inge Søkilde Pedersen
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Xiong L, Huang L, Tian F, Lu S, Xie XS. Bayesian model for accurate MARSALA (mutated allele revealed by sequencing with aneuploidy and linkage analyses). J Assist Reprod Genet 2019; 36:1263-1271. [PMID: 31187331 PMCID: PMC6602990 DOI: 10.1007/s10815-019-01451-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 04/09/2019] [Indexed: 11/28/2022] Open
Abstract
Purpose This study is aimed at increasing the accuracy of preimplantation genetic test for monogenic defects (PGT-M). Methods We applied Bayesian statistics to optimize data analyses of the mutated allele revealed by sequencing with aneuploidy and linkage analyses (MARSALA) method for PGT-M. In doing so, we developed a Bayesian algorithm for linkage analyses incorporating PCR SNV detection with genome sequencing around the known mutation sites in order to determine quantitatively the probabilities of having the disease-carrying alleles from parents with monogenic diseases. Both recombination events and sequencing errors were taken into account in calculating the probability. Results Data of 28 in vitro fertilized embryos from three couples were retrieved from two published research articles by Yan et al. (Proc Natl Acad Sci. 112:15964–9, 2015) and Wilton et al. (Hum Reprod. 24:1221–8, 2009). We found the embryos deemed “normal” and selected for transfer in the previous publications were actually different in error probability of 10−4–4%. Notably, our Bayesian model reduced the error probability to 10−6–10−4%. Furthermore, a proband sample is no longer required by our new method, given a minimum of four embryos or sperm cells. Conclusion The error probability of PGT-M can be significantly reduced by using the Bayesian statistics approach, increasing the accuracy of selecting healthy embryos for transfer with or without a proband sample. Electronic supplementary material The online version of this article (10.1007/s10815-019-01451-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luoxing Xiong
- Peking-Tsinghua Center for Life Sciences (CLS), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China
| | - Lei Huang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 01238, USA
| | - Feng Tian
- Peking-Tsinghua Center for Life Sciences (CLS), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China
| | - Sijia Lu
- Yikon Genomics Co., Ltd., 1698 Wangyuan Road, Building #26, Fengxian District, Shanghai, 201400, China
| | - Xiaoliang Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China. .,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 01238, USA.
| |
Collapse
|