1
|
Zhong K, Chen X, Zhang J, Jiang X, Zhang J, Huang M, Bi S, Ju C, Luo Y. Recent Advances in Oral Vaccines for Animals. Vet Sci 2024; 11:353. [PMID: 39195807 PMCID: PMC11360704 DOI: 10.3390/vetsci11080353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Compared to traditional injected vaccines, oral vaccines offer significant advantages for the immunization of livestock and wildlife due to their ease of use, high compliance, improved safety, and potential to stimulate mucosal immune responses and induce systemic immunity against pathogens. This review provides an overview of the delivery methods for oral vaccines, and the factors that influence their immunogenicity. We also highlight the global progress and achievements in the development and use of oral vaccines for animals, shedding light on potential future applications in this field.
Collapse
Affiliation(s)
- Kaining Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Xinting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Junhao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Xiaoyu Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Junhui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Minyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Shuilian Bi
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Chunmei Ju
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
- Key Laboratory of Animal Vaccine Development of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510640, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
- Key Laboratory of Animal Vaccine Development of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
2
|
Robertson A, Palphramand KL, McDonald RA, Middleton S, Chambers MA, Delahay RJ, Carter SP. Uptake of baits by wild badgers: Influences of deployment method, badger age and activity patterns on potential delivery of an oral vaccine. Prev Vet Med 2022; 206:105702. [DOI: 10.1016/j.prevetmed.2022.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
|
3
|
Payne A, Ruette S, Jacquier M, Richomme C, Lesellier S, Middleton S, Duhayer J, Rossi S. Estimation of Bait Uptake by Badgers, Using Non-invasive Methods, in the Perspective of Oral Vaccination Against Bovine Tuberculosis in a French Infected Area. Front Vet Sci 2022; 9:787932. [PMID: 35359678 PMCID: PMC8961513 DOI: 10.3389/fvets.2022.787932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/07/2022] [Indexed: 11/14/2022] Open
Abstract
Although France is officially declared free of bovine tuberculosis (TB), Mycobacterium bovis infection is still observed in several regions in cattle and wildlife, including badgers (Meles meles). In this context, vaccinating badgers should be considered as a promising strategy for the reduction in M. bovis transmission between badgers and other species, and cattle in particular. An oral vaccine consisting of live Bacille Calmette–Guérin (BCG) contained in bait is currently under assessment for badgers, for which testing bait deployment in the field and assessing bait uptake by badgers are required. This study aimed to evaluate the bait uptake by badgers and determine the main factors influencing uptake in a TB-infected area in Burgundy, north-eastern France. The baits were delivered at 15 different setts located in the vicinity of 13 pastures within a TB-infected area, which has been subject to intense badger culling over the last decade. Pre-baits followed by baits containing a biomarker (Rhodamine B; no BCG vaccine) were delivered down sett entrances in the spring (8 days of pre-baiting and 4 days of baiting) and summer (2 days of pre-baiting and 2 days of baiting) of 2018. The consumption of the marked baits was assessed by detecting fluorescence, produced by Rhodamine B, in hair collected in hair traps positioned at the setts and on the margins of the targeted pastures. Collected hairs were also genotyped to differentiate individuals using 24 microsatellites markers and one sex marker. Bait uptake was estimated as the proportion of badgers consuming baits marked by the biomarker over all the sampled animals (individual level), per badger social group, and per targeted pasture. We found a bait uptake of 52.4% (43 marked individuals of 82 genetically identified) at the individual level and a mean of 48.9 and 50.6% at the social group and pasture levels, respectively. The bait uptake was positively associated with the presence of cubs (social group level) and negatively influenced by the intensity of previous trapping (social group and pasture levels). This study is the first conducted in France on bait deployment in a badger population of intermediate density after several years of intensive culling. The results are expected to provide valuable information toward a realistic deployment of oral vaccine baits to control TB in badger populations.
Collapse
Affiliation(s)
- Ariane Payne
- Wildlife Disease Unit, French Office for Biodiversity, Orléans, France
- Groupement de Défense Sanitaire de Côte d'Or, Breteniere, France
- *Correspondence: Ariane Payne
| | - Sandrine Ruette
- French Office for Biodiversity, Predators and Alien Species Unit, Birieux, France
| | - Mickaël Jacquier
- French Office for Biodiversity, Predators and Alien Species Unit, Birieux, France
- Claude Bernard Lyon 1 University, CNRS UMR5558, LBBE, Villeurbanne, France
| | - Céline Richomme
- ANSES, Nancy Laboratory for Rabies and Wildlife, Malzéville, France
| | - Sandrine Lesellier
- ANSES, Nancy Laboratory for Rabies and Wildlife, Malzéville, France
- Animal and Plant Health Agency, Woodham Lane, United Kingdom
| | - Sonya Middleton
- Animal and Plant Health Agency, Woodham Lane, United Kingdom
| | - Jeanne Duhayer
- Claude Bernard Lyon 1 University, CNRS UMR5558, LBBE, Villeurbanne, France
| | - Sophie Rossi
- Wildlife Disease Unit, French Office for Biodiversity, Orléans, France
| |
Collapse
|
4
|
Breaking down population density into different components to better understand its spatial variation. BMC Ecol Evol 2021; 21:82. [PMID: 33975536 PMCID: PMC8111954 DOI: 10.1186/s12862-021-01809-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Population size and densities are key parameters in both fundamental and applied ecology, as they affect population resilience to density-dependent processes, habitat changes and stochastic events. Efficient management measures or species conservation programs thus require accurate estimates of local population densities across time and space, especially for continuously distributed species. For social species living in groups, population density depends on different components, namely the number of groups and the group size, for which relative variations in space may originate from different environmental factors. Whether resulting spatial variations in density are mostly triggered by one component or the other remains poorly known. Here, we aimed at determining the magnitude of the spatial variation in population densities of a social, group-living species, i.e. the European badger Meles meles, in 13 different sites of around 50 km2 across France, to decipher whether sett density, group size or proportion of occupied sett variation is the main factor explaining density variation. Besides the intrinsic factors of density variation, we also assessed whether habitat characteristics such as habitat fragmentation, urbanisation, and resource availability, drove both the spatial variation of density components and local population densities. RESULTS We proposed a new standardised approach combining use of multiple methods, namely distance sampling for estimating the density of occupied sett clusters, i.e. group density, and camera and hair trapping for genetic identification to determine the mean social group size. The density of adult badgers was on average 3.8 per km2 (range 1.7-7.9 per km2) and was positively correlated with the density of sett clusters. The density of adult badgers per site was less related to the social group size or to the proportion of occupied sett clusters. Landscape fragmentation also explained the spatial variation of adult badger density, with highly fragmented landscapes supporting lower adult densities. Density components were linked differently to environmental variables. CONCLUSIONS These results underline the need to break down population density estimates into several components in group-living species to better understand the pattern of temporal and spatial variation in population density, as different components may vary due to different ecological factors.
Collapse
|
5
|
van Oosterwijk JG. Anti-tick and pathogen transmission blocking vaccines. Parasite Immunol 2021; 43:e12831. [PMID: 33704804 DOI: 10.1111/pim.12831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Abstract
Ticks and tick-borne diseases are a challenge for medical and veterinary public health and often controlled through the use of repellents and acaricides. Research on vaccination strategies to protect humans, companion animals, and livestock from ticks and tick-transmitted pathogens has accelerated through the use of proteomic and transcriptomic analyses. Comparative analyses of unfed versus engorged and uninfected versus infected ticks have provided valuable insights into candidates for anti-tick and pathogen transmission blocking vaccines. An intricate interplay between tick saliva and the host's immune system has revealed potential antigens to be used in vaccination strategies. Immunization of hosts with targeted anti-tick vaccines would ideally lead to a reduction in tick numbers and prevent transmission of tick-borne pathogens. Comprehensive control of tick-borne diseases would come from successful anti-tick vaccination, vaccination preventing transmission of tick-borne diseases or a combination. Due to the close interaction with wildlife and ticks, with wildlife reservoirs enabling propagation of pathogens between ticks, the vaccination of these reservoirs is an attractive target to reduce human contact with ticks and tick-borne diseases through a one-health approach. Wildlife vaccination presents formulation and regulatory challenges which should be considered early in the development of reservoir-targeted vaccines.
Collapse
|
6
|
Lesellier S, Birch CPD, Davé D, Dalley D, Gowtage S, Palmer S, McKenna C, Williams GA, Ashford R, Weyer U, Beatham S, Coats J, Nunez A, Sanchez-Cordon P, Spiropoulos J, Powell S, Sawyer J, Pascoe J, Hendon-Dunn C, Bacon J, Chambers MA. Bioreactor-Grown Bacillus of Calmette and Guérin (BCG) Vaccine Protects Badgers against Virulent Mycobacterium bovis When Administered Orally: Identifying Limitations in Baited Vaccine Delivery. Pharmaceutics 2020; 12:pharmaceutics12080782. [PMID: 32824778 PMCID: PMC7463497 DOI: 10.3390/pharmaceutics12080782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/23/2023] Open
Abstract
Bovine tuberculosis (TB) in Great Britain adversely affects animal health and welfare and is a cause of considerable economic loss. The situation is exacerbated by European badgers (Meles meles) acting as a wildlife source of recurrent Mycobacterium bovis infection to cattle. Vaccination of badgers against TB is a possible means to reduce and control bovine TB. The delivery of vaccine in oral bait holds the best prospect for vaccinating badgers over a wide geographical area. There are practical limitations over the volume and concentration of Bacillus of Calmette and Guérin (BCG) that can be prepared for inclusion in bait. The production of BCG in a bioreactor may overcome these issues. We evaluated the efficacy of oral, bioreactor-grown BCG against experimental TB in badgers. We demonstrated repeatable protection through the direct administration of at least 2.0 × 108 colony forming units of BCG to the oral cavity, whereas vaccination via voluntary consumption of bait containing the same preparation of BCG did not result in demonstrable protection at the group-level, although a minority of badgers consuming bait showed immunological responses and protection after challenge equivalent to badgers receiving oral vaccine by direct administration. The need to deliver oral BCG in the context of a palatable and environmentally robust bait appears to introduce such variation in BCG delivery to sites of immune induction in the badger as to render experimental studies variable and inconsistent.
Collapse
Affiliation(s)
- Sandrine Lesellier
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; (S.L.); (D.D.); (D.D.); (S.G.); (S.P.); (C.M.); (G.A.W.); (R.A.); (J.S.)
- Laboratoire de la Rage et de la Faune Sauvage de Nancy (LRFSN), Technopole Agricole et Vétérinaire, Domaine de Pixérécourt-Bât. H., CS 40009-54220 Malzéville, France
| | - Colin P. D. Birch
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK;
| | - Dipesh Davé
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; (S.L.); (D.D.); (D.D.); (S.G.); (S.P.); (C.M.); (G.A.W.); (R.A.); (J.S.)
| | - Deanna Dalley
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; (S.L.); (D.D.); (D.D.); (S.G.); (S.P.); (C.M.); (G.A.W.); (R.A.); (J.S.)
| | - Sonya Gowtage
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; (S.L.); (D.D.); (D.D.); (S.G.); (S.P.); (C.M.); (G.A.W.); (R.A.); (J.S.)
| | - Simonette Palmer
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; (S.L.); (D.D.); (D.D.); (S.G.); (S.P.); (C.M.); (G.A.W.); (R.A.); (J.S.)
| | - Claire McKenna
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; (S.L.); (D.D.); (D.D.); (S.G.); (S.P.); (C.M.); (G.A.W.); (R.A.); (J.S.)
| | - Gareth A. Williams
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; (S.L.); (D.D.); (D.D.); (S.G.); (S.P.); (C.M.); (G.A.W.); (R.A.); (J.S.)
| | - Roland Ashford
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; (S.L.); (D.D.); (D.D.); (S.G.); (S.P.); (C.M.); (G.A.W.); (R.A.); (J.S.)
| | - Ute Weyer
- Animal Services Unit, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK;
| | - Sarah Beatham
- Animal and Plant Health Agency, Sand Hutton Campus, York, North Yorkshire YO41 1LZ, UK; (S.B.); (J.C.)
| | - Julia Coats
- Animal and Plant Health Agency, Sand Hutton Campus, York, North Yorkshire YO41 1LZ, UK; (S.B.); (J.C.)
| | - Alex Nunez
- Department of Pathology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; (A.N.); (P.S.-C.); (J.S.)
| | - Pedro Sanchez-Cordon
- Department of Pathology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; (A.N.); (P.S.-C.); (J.S.)
| | - John Spiropoulos
- Department of Pathology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; (A.N.); (P.S.-C.); (J.S.)
| | - Stephen Powell
- Data Systems Group, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK;
| | - Jason Sawyer
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; (S.L.); (D.D.); (D.D.); (S.G.); (S.P.); (C.M.); (G.A.W.); (R.A.); (J.S.)
| | - Jordan Pascoe
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, UK; (J.P.); (C.H.-D.); (J.B.)
| | - Charlotte Hendon-Dunn
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, UK; (J.P.); (C.H.-D.); (J.B.)
| | - Joanna Bacon
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire SP4 0JG, UK; (J.P.); (C.H.-D.); (J.B.)
| | - Mark A. Chambers
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK; (S.L.); (D.D.); (D.D.); (S.G.); (S.P.); (C.M.); (G.A.W.); (R.A.); (J.S.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
- Correspondence:
| |
Collapse
|
7
|
Jacquier M, Vandel JM, Léger F, Duhayer J, Pardonnet S, Queney G, Kaerle C, Say L, Ruette S, Devillard S. Population genetic structures at multiple spatial scales: importance of social groups in European badgers. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AbstractPopulation viability and metapopulation dynamics are strongly affected by gene flow. Identifying ecological correlates of genetic structure and gene flow in wild populations is therefore a major issue both in evolutionary ecology and species management. Studying the genetic structure of populations also enables identification of the spatial scale at which most gene flow occurs, hence the scale of the functional connectivity, which is of paramount importance for species ecology. In this study, we examined the genetic structure of a social, continuously distributed mammal, the European badger (Meles meles), both at large spatial scales (among populations) and fine (within populations) spatial scales. The study was carried out in 11 sites across France utilizing a noninvasive hair trapping protocol at 206 monitored setts. We identified 264 badgers genotyped at 24 microsatellite DNA loci. At the large scale, we observed high and significant genetic differentiation among populations (global Fst = 0.139; range of pairwise Fst [0.046–0.231]) that was not related to the geographic distance among sites, suggesting few large-scale dispersal events. Within populations, we detected a threshold value below which badgers were genetically close (< 400 m), highlighting that sociality is the major structuring process within badger populations at the fine scale.
Collapse
Affiliation(s)
- Mickaël Jacquier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
- Office Français de la Biodiversité, Unité-PAD, Montfort, Birieux, France
| | - Jean-Michel Vandel
- Office Français de la Biodiversité, Unité-PAD, Montfort, Birieux, France
| | - François Léger
- Office Français de la Biodiversité, Unité-PAD, Gerstheim, France
| | - Jeanne Duhayer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
| | - Sylvia Pardonnet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
| | | | | | - Ludovic Say
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
| | - Sandrine Ruette
- Office Français de la Biodiversité, Unité-PAD, Montfort, Birieux, France
| | - Sébastien Devillard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558 LBBE, Villeurbanne, France
| |
Collapse
|
8
|
Benton CH, Phoenix J, Smith FAP, Robertson A, McDonald RA, Wilson G, Delahay RJ. Badger vaccination in England: Progress, operational effectiveness and participant motivations. PEOPLE AND NATURE 2020. [DOI: 10.1002/pan3.10095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Clare H. Benton
- Animal & Plant Health Agency National Wildlife Management Centre Stonehouse UK
| | - Jess Phoenix
- Centre for Science Studies, Sociology Lancaster University Lancaster UK
| | - Freya A. P. Smith
- Animal & Plant Health Agency National Wildlife Management Centre Stonehouse UK
| | - Andrew Robertson
- Animal & Plant Health Agency National Wildlife Management Centre Stonehouse UK
- Environment & Sustainability Institute University of Exeter Penryn UK
| | | | - Gavin Wilson
- Animal & Plant Health Agency National Wildlife Management Centre Stonehouse UK
| | - Richard J. Delahay
- Animal & Plant Health Agency National Wildlife Management Centre Stonehouse UK
| |
Collapse
|
9
|
Ashford MA, Palackdharry SM, Sadd BM, Bowden RM, Vogel LA. Intestinal B cells in the red-eared slider turtle, Trachemys scripta: Anatomical distribution and implications for ecological interactions with pathogenic microbes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:407-415. [PMID: 31328906 DOI: 10.1002/jez.2307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
Disease is a significant threat in the global decline of reptile species. Many aquatic reptiles live in habitats with high levels of opportunistic microbial pathogens, yet little is known about their immune system. Gut-associated lymphoid tissue is vital for protection against ingested pathogens and maintenance of normal gut microbiota. In mammals, gut mucosal immunity is well-characterized and mucosal surfaces are coated in protective antibodies. However, reptiles lack lymph nodes and Peyer's patches, which are the major sites of mammalian B cell responses. The presence or distribution of mucosal B cells in reptiles is unknown. In this study, we first set out to determine if B cells could be detected in intestinal tissues of red-eared slider turtles, Trachemys scripta. Using whole-mount immunochemistry and a primary antibody to turtle antibody light chains, we identified widely distributed B cell aggregates within the small intestine of hatchling turtles. These aggregates appeared similar to isolated lymphoid follicles (ILFs) in mammals and the frequency was much higher in distal intestinal sections than in proximal sections. To determine if these structures were inducible in the presence of microbes, we introduced an enteric Salmonella species through oral gavage. Analysis of intestinal tissues revealed that hatchlings exposed to Salmonella exhibited significantly more of these aggregates when compared with those that did not receive bacteria. These studies provide the first evidence for B cell-containing ILF-like structures in reptiles and provide novel information about gut immunity in nonmammalian vertebrates that could have important implications for ecological interactions with pathogens.
Collapse
Affiliation(s)
- Marc A Ashford
- School of Biological Sciences, Illinois State University, Normal, IIlinois
| | | | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IIlinois
| | - Rachel M Bowden
- School of Biological Sciences, Illinois State University, Normal, IIlinois
| | - Laura A Vogel
- School of Biological Sciences, Illinois State University, Normal, IIlinois
| |
Collapse
|