1
|
Reddy CS, Natarajan P, Nimmakayala P, Hankins GR, Reddy UK. From Fruit Waste to Medical Insight: The Comprehensive Role of Watermelon Rind Extract on Renal Adenocarcinoma Cellular and Transcriptomic Dynamics. Int J Mol Sci 2023; 24:15615. [PMID: 37958599 PMCID: PMC10647773 DOI: 10.3390/ijms242115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cancer researchers are fascinated by the chemistry of diverse natural products that show exciting potential as anticancer agents. In this study, we aimed to investigate the anticancer properties of watermelon rind extract (WRE) by examining its effects on cell proliferation, apoptosis, senescence, and global gene expression in human renal cell adenocarcinoma cells (HRAC-769-P) in vitro. Our metabolome data analysis of WRE exhibited untargeted phyto-constituents and targeted citrulline (22.29 µg/mg). HRAC-769-P cells were cultured in RPMI-1640 media and treated with 22.4, 44.8, 67.2, 88.6, 112, 134.4, and 156.8 mg·mL-1 for 24, 48, and 72 h. At 24 h after treatment, (88.6 mg·mL-1 of WRE) cell proliferation significantly reduced, more than 34% compared with the control. Cell viability decreased 48 and 72 h after treatment to 45% and 37%, respectively. We also examined poly caspase, SA-beta-galactosidase (SA-beta-gal), and wound healing activities using WRE. All treatments induced an early poly caspase response and a significant reduction in cell migration. Further, we analyzed the transcript profile of the cells grown at 44.8 mg·mL-1 of WRE after 6 h using RNA sequencing (RNAseq) analysis. We identified 186 differentially expressed genes (DEGs), including 149 upregulated genes and 37 downregulated genes, in cells treated with WRE compared with the control. The differentially expressed genes were associated with NF-Kappa B signaling and TNF pathways. Crucial apoptosis-related genes such as BMF, NPTX1, NFKBIA, NFKBIE, and NFKBID might induce intrinsic and extrinsic apoptosis. Another possible mechanism is a high quantity of citrulline may lead to induction of apoptosis by the production of increased nitric oxide. Hence, our study suggests the potential anticancer properties of WRE and provides insights into its effects on cellular processes and gene expression in HRAC-769-P cells.
Collapse
Affiliation(s)
| | | | | | - Gerald R. Hankins
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (C.S.R.); (P.N.); (P.N.)
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (C.S.R.); (P.N.); (P.N.)
| |
Collapse
|
2
|
Lopez-Ortiz C, Edwards M, Natarajan P, Pacheco-Valenciana A, Nimmakayala P, Adjeroh DA, Sirbu C, Reddy UK. Peppers in Diet: Genome-Wide Transcriptome and Metabolome Changes in Drosophila melanogaster. Int J Mol Sci 2022; 23:9924. [PMID: 36077322 PMCID: PMC9455967 DOI: 10.3390/ijms23179924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The habanero pepper (Capsicum chinense) is an increasingly important spice and vegetable crop worldwide because of its high capsaicin content and pungent flavor. Diets supplemented with the phytochemicals found in habanero peppers might cause shifts in an organism's metabolism and gene expression. Thus, understanding how these interactions occur can reveal the potential health effects associated with such changes. We performed transcriptomic and metabolomic analyses of Drosophila melanogaster adult flies reared on a habanero pepper diet. We found 539 genes/59 metabolites that were differentially expressed/accumulated in flies fed a pepper versus control diet. Transcriptome results indicated that olfactory sensitivity and behavioral responses to the pepper diet were mediated by olfactory and nutrient-related genes including gustatory receptors (Gr63a, Gr66a, and Gr89a), odorant receptors (Or23a, Or59a, Or82a, and Orco), and odorant-binding proteins (Obp28a, Obp83a, Obp83b, Obp93a, and Obp99a). Metabolome analysis revealed that campesterol, sitosterol, and sucrose were highly upregulated and azelaic acid, ethyl phosphoric acid, and citric acid were the major metabolites downregulated in response to the habanero pepper diet. Further investigation by integration analysis between transcriptome and metabolome data at gene pathway levels revealed six unique enriched pathways, including phenylalanine metabolism; insect hormone biosynthesis; pyrimidine metabolism; glyoxylate, and dicarboxylate metabolism; glycine, serine, threonine metabolism; and glycerolipid metabolism. In view of the transcriptome and metabolome findings, our comprehensive analysis of the response to a pepper diet in Drosophila have implications for exploring the molecular mechanism of pepper consumption.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Mary Edwards
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Armando Pacheco-Valenciana
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Cristian Sirbu
- Charleston Area Medical Center, Institute for Academic Medicine, Charleston, WV 25304, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Charleston Division, Charleston, WV 25304, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| |
Collapse
|
3
|
Que T, Ren B, Fan Y, Liu T, Hou T, Dan W, Liu B, Wei Y, Lei Y, Zeng J, Li L. Capsaicin inhibits the migration, invasion and EMT of renal cancer cells by inducing AMPK/mTOR-mediated autophagy. Chem Biol Interact 2022; 366:110043. [PMID: 36044967 DOI: 10.1016/j.cbi.2022.110043] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022]
Abstract
Capsaicin (CAP), extracted from Capsicum fruits, has been reported to exhibit antitumor effects in various lines of cancer cells. However, the mechanism underlying its antitumor efficiency is not fully understood. Autophagy is a fundamental self-degradation process of cells that maintains homeostasis and plays a controversial role in tumor initiation and progression. The EMT is defined as a system regulating cells transformed from an epithelial-like phenotype into a mesenchymal phenotype by several internal and external factors, following the metastatic performance of the cells developed. The present study aimed to investigate the potential role of autophagy in CAP-induced antitumor effects in renal cell carcinoma (RCC) 786-O and CAKI-1 cell lines. The results revealed that CAP remarkably inhibited the migration and invasion of RCC cells in vitro and metastasis in vivo. Moreover, we found that the CAP treatment increased the formation of autophagolysosome vacuoles and LC3 yellow and red fluorescent puncta in RCC cells and upregulated the expression of LC3, suggesting that autophagy was induced by CAP in 786-O and CAKI-1 cell lines. Our further results demonstrated that CAP-induced autophagy was mediated by the AMPK/mTOR pathway. In conclusion, our study provides new knowledge of the potential relationship between autophagy and metastasis inhibition induced by CAP, which might be a promising therapeutic strategy in RCC.
Collapse
Affiliation(s)
- Taotao Que
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Bingyi Ren
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Tao Hou
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Weichao Dan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Bo Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Yi Wei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Yuzeshi Lei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China.
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China.
| |
Collapse
|
4
|
Nogia P, Pati PK. Plant Secondary Metabolite Transporters: Diversity, Functionality, and Their Modulation. FRONTIERS IN PLANT SCIENCE 2021; 12:758202. [PMID: 34777438 PMCID: PMC8580416 DOI: 10.3389/fpls.2021.758202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 05/04/2023]
Abstract
Secondary metabolites (SMs) play crucial roles in the vital functioning of plants such as growth, development, defense, and survival via their transportation and accumulation at the required site. However, unlike primary metabolites, the transport mechanisms of SMs are not yet well explored. There exists a huge gap between the abundant presence of SM transporters, their identification, and functional characterization. A better understanding of plant SM transporters will surely be a step forward to fulfill the steeply increasing demand for bioactive compounds for the formulation of herbal medicines. Thus, the engineering of transporters by modulating their expression is emerging as the most viable option to achieve the long-term goal of systemic metabolic engineering for enhanced metabolite production at minimum cost. In this review article, we are updating the understanding of recent advancements in the field of plant SM transporters, particularly those discovered in the past two decades. Herein, we provide notable insights about various types of fully or partially characterized transporters from the ABC, MATE, PUP, and NPF families including their diverse functionalities, structural information, potential approaches for their identification and characterization, several regulatory parameters, and their modulation. A novel perspective to the concept of "Transporter Engineering" has also been unveiled by highlighting its potential applications particularly in plant stress (biotic and abiotic) tolerance, SM accumulation, and removal of anti-nutritional compounds, which will be of great value for the crop improvement program. The present study creates a roadmap for easy identification and a better understanding of various transporters, which can be utilized as suitable targets for transporter engineering in future research.
Collapse
Affiliation(s)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
5
|
Nimmakayala P, Lopez-Ortiz C, Shahi B, Abburi VL, Natarajan P, Kshetry AO, Shinde S, Davenport B, Stommel J, Reddy UK. Exploration into natural variation for genes associated with fruit shape and size among Capsicum chinense collections. Genomics 2021; 113:3002-3014. [PMID: 34229041 DOI: 10.1016/j.ygeno.2021.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Abstract
Phenotype diversity within cultivated Capsicum chinense is particularly evident for fruit shape and size. We used this diversity in C. chinense to further unravel the genetic mechanisms underlying fruit shape variation in pepper and related Solanaceous species. We identified candidate genes for C. chinense fruit shape, explored their contribution to population structure, and characterized their potential function in pepper fruit shape. Using genotyping by sequencing, we identified 43,081 single nucleotide polymorphisms (SNPs) from diverse collections of C. chinense. Principal component, neighbor-joining tree, and population structure analyses resolved 3 phylogenetically robust clusters associated with fruit shapes. Genome-wide association study (GWAS) was used to identify associated genomic regions with various fruit shape traits obtained from image analysis with Tomato Analyzer software. In our GWAS, we selected 12 SNPs associated with locule number trait and 8 SNP markers associated with other fruit shape traits such as perimeter, area, obovoid, ellipsoid and morphometrics (5y, 6y and 7y). The SNPs in CLAVATA1, WD-40, Auxin receptor, AAA type ATPase family protein, and RNA polymerase III genes were the major markers identified for fruit locule number from our GWAS results. Furthermore, we found SNPs in tetratricopeptide-repeat thioredoxin-like 3, enhancer of ABA co-receptor 1, subunit of exocyst complex 8 and pleiotropic drug resistance proteins associated with various fruit shape traits. CLAVATA1, WD-40 and Auxin receptor genes are known genes that affect tomato fruit shape. In this study, we used Arabidopsis thaliana T-DNA insertion knockout mutants and expression profiles for functional characterization of newly identified genes and to understand their role in fruit shape.
Collapse
Affiliation(s)
- Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Bhagarathi Shahi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Venkata L Abburi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Purushothaman Natarajan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Arjun Ojha Kshetry
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Suhas Shinde
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - Brittany Davenport
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA
| | - John Stommel
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA, ARS, Beltsville MD-20705, USA
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV-25112, USA.
| |
Collapse
|
6
|
Lopez-Ortiz C, Peña-Garcia Y, Bhandari M, Abburi VL, Natarajan P, Stommel J, Nimmakayala P, Reddy UK. Identification of miRNAs and Their Targets Involved in Flower and Fruit Development across Domesticated and Wild Capsicum Species. Int J Mol Sci 2021; 22:ijms22094866. [PMID: 34064462 PMCID: PMC8125703 DOI: 10.3390/ijms22094866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) are regulators of the post-transcription stage of gene activity documented to play central roles in flower and fruit development in model plant species. However, little is known about their roles and differences in domesticated and wild Capsicum species. In this study, we used high-throughput sequencing to analyze the miRNA content at three developmental stages (flower, small fruit, and middle fruit) from two cultivated (C. baccatum and C. annuum) and two wild (C. chacoense and C. eximium) pepper species. This analysis revealed 22 known and 27 novel miRNAs differentially expressed across species and tissues. A number of stage- and species-specific miRNAs were identified, and Gene Ontology terms were assigned to 138 genes targeted by the miRNAs. Most Gene Ontology terms were for the categories "genetic information processing", "signaling and cellular processes", "amino acid metabolism", and "carbohydrate metabolism". Enriched KEGG analysis revealed the pathways amino acids, sugar and nucleotide metabolism, starch and sucrose metabolism, and fructose-mannose metabolism among the principal ones regulated by miRNAs during pepper fruit ripening. We predicted miRNA-target gene interactions regulating flowering time and fruit development, including miR156/157 with SPL genes, miR159 with GaMYB proteins, miR160 with ARF genes, miR172 with AP2-like transcription factors, and miR408 with CLAVATA1 gene across the different Capsicum species. In addition, novel miRNAs play an important role in regulating interactions potentially controlling plant pathogen defense and fruit quality via fructokinase, alpha-L-arabinofuranosidase, and aromatic and neutral amino acid transporter. Overall, the small RNA-sequencing results from this study represent valuable information that provides a solid foundation for uncovering the miRNA-mediated mechanisms of flower and fruit development between domesticated and wild Capsicum species.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Yadira Peña-Garcia
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Menuka Bhandari
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Venkata Lakshmi Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - John Stommel
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA, ARS, Beltsville, MD 20705, USA;
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
- Correspondence:
| |
Collapse
|
7
|
Baruah PM, Krishnatreya DB, Bordoloi KS, Gill SS, Agarwala N. Genome wide identification and characterization of abiotic stress responsive lncRNAs in Capsicum annuum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:221-236. [PMID: 33706183 DOI: 10.1016/j.plaphy.2021.02.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 05/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding transcripts having length of more than 200 nucleotides lacking protein-coding ability. In the present study, 12807 lncRNAs were identified in Capsicum annuum tissues exposed to abiotic stress conditions viz. heat, cold, osmotic and salinity stress. Expression analysis of lncRNAs in different treatment conditions demonstrates their stress-specific expression. Thirty lncRNAs were found to act as precursors for 10 microRNAs (miRNAs) of C. annuum. Additionally, a total of 1807 lncRNAs were found to interact with 194 miRNAs which targeted 621 mRNAs of C. annuum. Among these, 344 lncRNAs were found to act as target mimics for 621 genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that out of those 621 gene sequences, 546 were tagged with GO terms, 105 Enzyme Code (EC) numbers were assigned to 246 genes and 223 genes are found to be involved in 63 biological pathways. In this report, we have highlighted the prospective role of lncRNAs in different abiotic stress conditions by interacting with miRNAs and regulating stress responsive transcription factors (TFs) such as DoF, WRKY, MYB, bZIP and ERF in C. annuum.
Collapse
Affiliation(s)
- Pooja Moni Baruah
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam, 781014, India
| | | | | | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam, 781014, India.
| |
Collapse
|
8
|
Xu S, Cheng X, Wu L, Zheng J, Wang X, Wu J, Yu H, Bao J, Zhang L. Capsaicin induces mitochondrial dysfunction and apoptosis in anaplastic thyroid carcinoma cells via TRPV1-mediated mitochondrial calcium overload. Cell Signal 2020; 75:109733. [PMID: 32771398 DOI: 10.1016/j.cellsig.2020.109733] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
Anaplastic thyroid cancer (ATC) is a rare malignancy and has a poor prognosis due to its aggressive behavior and resistance to treatments. Calcium (Ca2+) serves as a ubiquitous cellular second messenger and influences several tumor behaviors. Therefore, Ca2+ modulation is expected to be a novel therapeutic target in cancers. However, whether Ca2+ modulation is effective in ATC therapy remains unknown. In this study, we reported that capsaicin (CAP), a transient receptor potential vanilloid type1 (TRPV1) agonist, inhibited the viability of anaplastic thyroid cancer cells. Capsaicin treatment triggered Ca2+ influx by TRPV1 activation, resulting in disequilibrium of intracellular calcium homeostasis. The rapidly increased cytosolic Ca2+ concentration was mirrored in the mitochondria and caused a severe condition of mitochondrial calcium overload in ATC cells. In addition, the disruption of mitochondrial calcium homeostasis caused by capsaicin led to mitochondrial dysfunction in ATC cells, as evidenced by the production of mitochondrial reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (ΔΨm), and opening of mitochondrial permeability transition pore (mPTP). Next, the resulting release of cyt c into the cytosol triggered apoptosome assembly and subsequent caspase activation and apoptosis. It was worth noting that both TRPV1 antagonist (capsazepine) and calcium chelator (BAPTA) could attenuate aberrant Ca2+ homeostasis, mitochondrial dysfunction and apoptosis induced by capsaicin treatment. Thus, our study demonstrated that capsaicin induced mitochondrial calcium overload and apoptosis in ATC cells through a TRPV1-mediated pathway. The better understanding of the anti-cancer mechanisms of calcium modulation provides a potential target for the ATC therapy.
Collapse
Affiliation(s)
- Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Liying Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiangxia Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowen Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; School of Life science and Technology, Southeast University, Nanjing 210096, China.
| |
Collapse
|
9
|
Lopez-Ortiz C, Dutta SK, Natarajan P, Peña-Garcia Y, Abburi V, Saminathan T, Nimmakayala P, Reddy UK. Genome-wide identification and gene expression pattern of ABC transporter gene family in Capsicum spp. PLoS One 2019; 14:e0215901. [PMID: 31039176 PMCID: PMC6490891 DOI: 10.1371/journal.pone.0215901] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 04/10/2019] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporter genes act as transporters for different molecules across biological membranes and are involved in a diverse range of biological processes. In this study, we performed a genome-wide identification and expression analysis of genes encoding ABC transporter proteins in three Capsicum species, i.e., Capsicum annuum, Capsicum baccatum and Capsicum chinense. Capsicum is a valuable horticultural crop worldwide as an important constituent of many foods while containing several medicinal compounds including capsaicin and dihydrocapsaicin. Our results identified the presence of a total of 200, 185 and 187 ABC transporter genes in C. annuum, C. baccatum and C. chinense genomes, respectively. Capsaicin and dihydrocapsaicin content were determined in green pepper fruits (16 dpa). Additionally, we conducted different bioinformatics analyses including ABC genes classification, gene chromosomal location, Cis elements, conserved motifs identification and gene ontology classification, as well as profile expression of selected genes. Based on phylogenetic analysis and domain organization, the Capsicum ABC gene family was grouped into eight subfamilies. Among them, members within the ABCG, ABCB and ABCC subfamilies were the most abundant, while ABCD and ABCE subfamilies were less abundant throughout all species. ABC members within the same subfamily showed similar motif composition. Furthermore, common cis-elements involved in the transcriptional regulation were also identified in the promoter regions of all Capsicum ABC genes. Gene expression data from RNAseq and reverse transcription-semi-quantitative PCR analysis revealed development-specific stage expression profiles in placenta tissues. It suggests that ABC transporters, specifically the ABCC and ABCG subfamilies, may be playing important roles in the transport of secondary metabolites such as capsaicin and dihydrocapsaicin to the placenta vacuoles, effecting on their content in pepper fruits. Our results provide a more comprehensive understanding of ABC transporter gene family in different Capsicum species while allowing the identification of important candidate genes related to capsaicin content for subsequent functional validation.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Sudip Kumar Dutta
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
- ICAR RC NEH Region, Mizoram Centre, Kolasib, Mizoram, India
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Yadira Peña-Garcia
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Venkata Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Thangasamy Saminathan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| |
Collapse
|