1
|
Hurtado TC, de Medeiros Costa G, de Carvalho GS, Brum BR, Ignácio ÁRA. Mercury and methylmercury concentration in the feathers of two species of Kingfishers Megaceryle torquata and Chloroceryle amazona in the Upper Paraguay Basin and Amazon Basin. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1084-1095. [PMID: 37349507 DOI: 10.1007/s10646-023-02680-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Mercury (Hg) contamination remains a significant environmental concern. In aquatic ecosystems, Hg can undergo methylation, forming its organic form, methylmercury (MeHg), which bioaccumulates and biomagnifies in the food chain, ultimately reaching the top predators, including waterfowl. The objective of this study was to investigate the distribution and levels of Hg in wing feathers, with a specific focus on evaluating heterogeneity in the primary feathers of two kingfisher species (Megaceryle torquata and Chloroceryle amazona). The concentrations of total Hg (THg) in the primary feathers of C. amazona individuals from the Juruena, Teles Pires, and Paraguay rivers were 4.724 ± 1.600, 4.003 ± 1.532, and 2.800 ± 1.475 µg/kg, respectively. The THg concentrations in the secondary feathers were 4.624 ± 1.718, 3.531 ± 1.361, and 2.779 ± 1.699 µg/kg, respectively. For M. torquata, the THg concentrations in the primary feathers from the Juruena, Teles Pires, and Paraguay rivers were 7.937 ± 3.830, 6.081 ± 2.598, and 4.697 ± 2.585 µg/kg, respectively. The THg concentrations in the secondary feathers were 7.891 ± 3.869, 5.124 ± 2.420, and 4.201 ± 2.176 µg/kg, respectively. The percentage of MeHg in the samples increased during THg recovery, with an average of 95% in primary feathers and 80% in secondary feathers. It is crucial to comprehend the current Hg concentrations in Neotropical birds to mitigate potential toxic effects on these species. Exposure to Hg can lead to reduced reproductive rates and behavioral changes, such as motor incoordination and impaired flight ability, ultimately resulting in population decline among bird populations.
Collapse
Affiliation(s)
- Thaysa Costa Hurtado
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil.
| | - Gerlane de Medeiros Costa
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil
| | - Giovani Spínola de Carvalho
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil
| | - Bruno Ramos Brum
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil
| | - Áurea Regina Alves Ignácio
- Center for the Study of Limnology, Biodiversity and Ethnobiology of the Pantanal (CELBE) - Ecotoxicology Laboratory, University of the State of Mato Grosso, Cáceres, Brazil
| |
Collapse
|
2
|
Xia Z, Idowu I, Halldorson T, Lucas AM, Stein C, Kaur M, Tomy T, Marvin C, Thomas PJ, Hebert CE, Smith RA, Dwyer-Samuel F, Provencher JF, Tomy GT. Microbead beating extraction of avian eggs for polycyclic aromatic compounds. CHEMOSPHERE 2023; 335:139059. [PMID: 37268236 DOI: 10.1016/j.chemosphere.2023.139059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Due to their relatively high trophic position and importance as a food source for many communities in the circumpolar north, seabird eggs are an important matrix for monitoring contaminant levels. In fact, many countries, including Canada, have established long-term seabird egg contaminant monitoring programs, with oil related compounds a contaminant of emerging concern for seabirds in several regions. Current approaches to measuring many contaminant burdens in seabird eggs are time-consuming and often require large volumes of solvent. Here we propose an alternative approach, based on the principle of microbead beating tissue extraction using custom designed stainless-steel extraction tubes and lids, to measure a suite of 75 polycyclic aromatic compounds (polycyclic aromatic hydrocarbons (PAHs), alkyl-PAHs, halogenated-PAHs and some heterocyclic compounds) comprising a wide-range of chemical properties. Our method was conducted in strict accordance with ISO/IEC 17025 guidelines for method validation. Accuracies for our analytes generally ranged from 70 to 120%, and intra and inter-day repeatability for most analytes were <30%. Limits of detection/quantitation for the 75 target analytes were <0.2/0.6 ng g-1. The level of contamination in our method blanks was significantly smaller in our stainless-steel tubes/lids relative to commercially available high-density plastic alternatives. Overall, our method meets our data quality objectives and results in a notable reduction in sample processing times relative to current approaches.
Collapse
Affiliation(s)
- Zhe Xia
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2.
| | - Ifeoluwa Idowu
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Thor Halldorson
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Amica-Mariae Lucas
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Claire Stein
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Manpreet Kaur
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Thane Tomy
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2
| | - Chris Marvin
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, Canada, L7S 1A1
| | - Philippe J Thomas
- Wildlife Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, Canada, K1A 0H3
| | - Craig E Hebert
- Wildlife Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, Canada, K1A 0H3
| | - Reyd A Smith
- Carleton University, Department of Biology, Ottawa, ON, Canada K1S 5B6
| | | | - Jennifer F Provencher
- Wildlife Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON, Canada, K1A 0H3
| | - Gregg T Tomy
- University of Manitoba, Department of Chemistry, Winnipeg, MB, Canada, R3T 2N2.
| |
Collapse
|
3
|
Chételat J, Cousens B, Hebert CE, Jung TS, Mundy L, Thomas PJ, Zhang S. Isotopic evidence for bioaccumulation of aerosol lead in fish and wildlife of western Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119074. [PMID: 35231539 DOI: 10.1016/j.envpol.2022.119074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Lead (Pb) is a toxic element which is released as a result of anthropogenic activities, and Pb stable isotope ratios provide a means to distinguish sources and transport pathways in receiving environments. In this study, isotopes of bioaccumulated Pb (204Pb, 206Pb, 207Pb, 208Pb) were examined for diverse terrestrial and aquatic biota from three areas in western Canada: (a) otter, marten, gulls, terns, and wood frogs in the Alberta Oil Sands Region (AOSR), (b) fish, plankton, and gulls of Great Slave Lake (Yellowknife, Northwest Territories), and (c) wolverine from the Yukon. Aquatic and terrestrial biota from different habitats and a broad geographic area showed a remarkable similarity in their Pb isotope composition (grand mean ± 1 standard deviation: 206Pb/207Pb = 1.189 ± 0.007, 208Pb/207Pb = 2.435 ± 0.009, n = 116). Comparisons with Pb isotope ratios of local sources and environmental receptors showed that values in biota were most similar to those of atmospheric Pb, either measured in local aerosols influenced by industrial activities in the AOSR or in lichens (an aerosol proxy) near Yellowknife and in the Yukon. Biotic Pb isotope ratios were different from those of local geogenic Pb. Although the Pb isotope measurements could not unambiguously identify the specific anthropogenic sources of atmospheric Pb in biota, initial evidence points to the importance of fossil fuels currently used in transportation and power generation. Further research should characterize bioavailable chemical species of Pb in aerosols and important emission sources in western Canada.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, K1A 0H3, Canada.
| | - Brian Cousens
- Isotope Geochemistry and Geochronology Research Centre, Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Craig E Hebert
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, K1A 0H3, Canada
| | - Thomas S Jung
- Yukon Department of Environment, Whitehorse, Yukon, Y1A 2C6, Canada
| | - Lukas Mundy
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, K1A 0H3, Canada
| | - Philippe J Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, K1A 0H3, Canada
| | - Shuangquan Zhang
- Isotope Geochemistry and Geochronology Research Centre, Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
4
|
Arciszewski TJ, Hazewinkel RRO, Dubé MG. A critical review of the ecological status of lakes and rivers from Canada's oil sands region. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:361-387. [PMID: 34546629 PMCID: PMC9298303 DOI: 10.1002/ieam.4524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 05/05/2023]
Abstract
We synthesize the information available from the peer-reviewed literature on the ecological status of lakes and rivers in the oil sands region (OSR) of Canada. The majority of the research from the OSR has been performed in or near the minable region and examines the concentrations, flux, or enrichment of contaminants of concern (CoCs). Proximity to oil sands facilities and the beginning of commercial activities tend to be associated with greater estimates of CoCs across studies. Research suggests the higher measurements of CoCs are typically associated with wind-blown dust, but other sources also contribute. Exploratory analyses further suggest relationships with facility production and fuel use data. Exceedances of environmental quality guidelines for CoCs are also reported in lake sediments, but there are no indications of toxicity including those within the areas of the greatest atmospheric deposition. Instead, primary production has increased in most lakes over time. Spatial differences are observed in streams, but causal relationships with industrial activity are often confounded by substantial natural influences. Despite this, there may be signals associated with site preparation for new mines, potential persistent differences, and a potential effect of petroleum coke used as fuel on some indices of health in fish captured in the Steepbank River. There is also evidence of improvements in the ecological condition of some rivers. Despite the volume of material available, much of the work remains temporally, spatially, or technically isolated. Overcoming the isolation of studies would enhance the utility of information available for the region, but additional recommendations for improving monitoring can be made, such as a shift to site-specific analyses in streams and further use of industry-reported data. Integr Environ Assess Manag 2022;18:361-387. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Tim J. Arciszewski
- Environmental Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | | | - Monique G. Dubé
- Environmental Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
- Present address: Cumulative Effects Environmental Inc.CalgaryAlbertaCanada
| |
Collapse
|
5
|
Roberts DR, Bayne EM, Beausoleil D, Dennett J, Fisher JT, Hazewinkel RO, Sayanda D, Wyatt F, Dubé MG. A synthetic review of terrestrial biological research from the Alberta oil sands region: 10 years of published literature. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:388-406. [PMID: 34510725 PMCID: PMC9292629 DOI: 10.1002/ieam.4519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 05/05/2023]
Abstract
In the past decade, a large volume of peer-reviewed papers has examined the potential impacts of oil and gas resource extraction in the Canadian oil sands (OS). A large proportion focuses on terrestrial biology: wildlife, birds, and vegetation. We provide a qualitative synthesis of the condition of the environment in the oil sands region (OSR) from 2009 to 2020 to identify gaps and progress cumulative effects assessments. Our objectives were to (1) qualitatively synthesize and critically review knowledge from the OSR; (2) identify consistent trends and generalizable conclusions; and (3) pinpoint gaps in need of greater monitoring or research effort. We visualize knowledge and terrestrial monitoring foci by allocating papers to a conceptual model for the OS. Despite a recent increase in publications, focus has remained concentrated on a few key stressors, especially landscape disturbance, and a few taxa of interest. Stressor and response monitoring is well represented, but direct monitoring of pathways (linkages between stressors and responses) is limited. Important knowledge gaps include understanding effects at multiple spatial scales, mammal health effects monitoring, focused monitoring of local resources important to Indigenous communities, and geospatial coverage and availability, including higher attribute resolution in human footprint, comprehensive land cover mapping, and up-to-date LiDAR coverage. Causal attribution based on spatial proximity to operations or spatial orientation of monitoring in the region is common but may be limited in the strength of inference that it provides. Integr Environ Assess Manag 2022;18:388-406. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Erin M. Bayne
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Jacqueline Dennett
- Department of Renewable ResourcesUniversity of AlbertaEdmontonAlbertaCanada
| | - Jason T. Fisher
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | | | | | | | | |
Collapse
|
6
|
Roberts DR, Hazewinkel RO, Arciszewski TJ, Beausoleil D, Davidson CJ, Horb EC, Sayanda D, Wentworth GR, Wyatt F, Dubé MG. An integrated knowledge synthesis of regional ambient monitoring in Canada's oil sands. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:428-441. [PMID: 34331737 PMCID: PMC9291055 DOI: 10.1002/ieam.4505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/23/2021] [Accepted: 07/27/2021] [Indexed: 05/20/2023]
Abstract
The desire to document and understand the cumulative implications of oil sands (OS) development in the ambient environment of northeastern Alberta has motivated increased investment and release of information in the past decade. Here, we summarize the knowledge presented in the theme-based review papers in this special series, including air, surface water, terrestrial biology, and Indigenous community-based monitoring in order to (1) consolidate knowledge gained to date, (2) highlight key commonalities and gaps, and (3) leverage this knowledge to assess the state of integration in environmental monitoring efforts in the OS region and suggest next steps. Among air, water, and land studies, the individual reviews identified a clear focus on describing stressors, including primarily (1) contaminant emission, transport, transformation, deposition, and exposure, and (2) landscape disturbance. These emphases are generally partitioned by theme; air and water studies focus heavily on chemical stressors, whereas terrestrial monitoring focuses on biological change and landscape disturbance. Causal attribution is often stated as a high priority objective across all themes. However, studies often rely on spatial proximity to attribute cause to industrial activity, leaving causal attribution potentially confounded by spatial covariance of both OS- and non-OS-related stressors in the region, and by the complexity of interacting pathways between sources of environmental change and ecological receptors. Geospatial and modeling approaches are common across themes and may represent clear integration opportunities, particularly to help inform investigation-of-cause, but are not a replacement for robust field monitoring designs. Cumulative effects assessment remains a common focus of regional monitoring, but is limited in the peer-reviewed literature, potentially reflecting a lack of integration among monitoring efforts beyond narrow integrated interpretations of results. Addressing this requires greater emphasis on a priori integrated data collection and integrated analyses focused on the main residual exposure pathways, such as atmospheric deposition. Integr Environ Assess Manag 2022;18:428-441. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | | | | | | | - Erin C. Horb
- Alberta Environment and ParksCalgaryAlbertaCanada
| | | | | | | | | |
Collapse
|
7
|
Campeau A, Eklöf K, Soerensen AL, Åkerblom S, Yuan S, Hintelmann H, Bieroza M, Köhler S, Zdanowicz C. Sources of riverine mercury across the Mackenzie River Basin; inferences from a combined HgC isotopes and optical properties approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150808. [PMID: 34637879 DOI: 10.1016/j.scitotenv.2021.150808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The Arctic environment harbors a complex mosaic of mercury (Hg) and carbon (C) reservoirs, some of which are rapidly destabilizing in response to climate warming. The sources of riverine Hg across the Mackenzie River basin (MRB) are uncertain, which leads to a poor understanding of potential future release. Measurements of dissolved and particulate mercury (DHg, PHg) and carbon (DOC, POC) concentration were performed, along with analyses of Hg stable isotope ratios (incl. ∆199Hg, δ202Hg), radiocarbon content (∆14C) and optical properties of DOC of river water. Isotopic ratios of Hg revealed a closer association to terrestrial Hg reservoirs for the particulate fraction, while the dissolved fraction was more closely associated with atmospheric deposition sources of shorter turnover time. There was a positive correlation between the ∆14C-OC and riverine Hg concentration for both particulate and dissolved fractions, indicating that waters transporting older-OC (14C-depleted) also contained higher levels of Hg. In the dissolved fraction, older DOC was also associated with higher molecular weight, aromaticity and humic content, which are likely associated with higher Hg-binding potential. Riverine PHg concentration increased with turbidity and SO4 concentration. There were large contrasts in Hg concentration and OC age and quality among the mountain and lowland sectors of the MRB, which likely reflect the spatial distribution of various terrestrial Hg and OC reservoirs, including weathering of sulfate minerals, erosion and extraction of coal deposits, thawing permafrost, forest fires, peatlands, and forests. Results revealed major differences in the sources of particulate and dissolved riverine Hg, but nonetheless a common positive association with older riverine OC. These findings reveal that a complex mixture of Hg sources, supplied across the MRB, will contribute to future trends in Hg export to the Arctic Ocean under rapid environmental changes.
Collapse
Affiliation(s)
- Audrey Campeau
- Department of Earth Sciences, Uppsala University, Sweden; Depatment of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Sweden
| | - Staffan Åkerblom
- Statistiska centralbyrån (SCB), Statistic Sweden, Stockholm, Sweden
| | - Shengliu Yuan
- Water Quality Center, Trent University, Peterborough, Ontario, Canada
| | - Holger Hintelmann
- Water Quality Center, Trent University, Peterborough, Ontario, Canada
| | - Magdalena Bieroza
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stephan Köhler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
8
|
Ekblad C, Eulaers I, Schulz R, Stjernberg T, Søndergaard J, Zubrod J, Laaksonen T. Spatial and dietary sources of elevated mercury exposure in white-tailed eagle nestlings in an Arctic freshwater environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117952. [PMID: 34425374 DOI: 10.1016/j.envpol.2021.117952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Human-induced mercury (Hg) contamination is of global concern and its effects on wildlife remain of high concern, especially in environmental hotspots such as inland aquatic ecosystems. Mercury biomagnifies through the food web resulting in high exposure in apex predators, such as the white-tailed eagle (Haliaeetus albicilla), making them excellent sentinel species for environmental Hg contamination. An expanding population of white-tailed eagles is inhabiting a sparsely populated inland area in Lapland, northern Finland, mainly around two large reservoirs flooded 50 years ago. As previous preliminary work revealed elevated Hg levels in this population, we measured Hg exposure along with dietary proxies (δ13C and δ15N) in body feathers collected from white-tailed eagle nestlings in this area between 2007 and 2018. Mercury concentrations were investigated in relation to territory characteristics, proximity to the reservoirs and dietary ecology as potential driving factors of Hg contamination. Mercury concentrations in the nestlings (4.97-31.02 μg g-1 dw) were elevated, compared to earlier reported values in nestlings from the Finnish Baltic coast, and exceeded normal background levels (≤5.00 μg g-1) while remaining below the tentative threshold of elevated risk for Hg exposure mediated health effect (>40.00 μg g-1). The main drivers of Hg contamination were trophic position (proxied by δ15N), the dietary proportion of the predatory fish pike (Esox lucius), and the vicinity to the Porttipahta reservoir. We also identified a potential evolutionary trap, as increased intake of the preferred prey, pike, increases exposure. All in all, we present results for poorly understood freshwater lake environments and show that more efforts should be dedicated to further unravel potentially complex pathways of Hg exposure to wildlife.
Collapse
Affiliation(s)
- Camilla Ekblad
- Section of Ecology, Department of Biology, University of Turku, 20014, Turku, Finland.
| | - Igor Eulaers
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Ralf Schulz
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, DE-76829, Landau, Germany
| | - Torsten Stjernberg
- Finnish Museum of Natural History, University of Helsinki, PO Box 17, FI-00014, Helsinki, Finland
| | - Jens Søndergaard
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Jochen Zubrod
- IES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, DE-76829, Landau, Germany
| | - Toni Laaksonen
- Section of Ecology, Department of Biology, University of Turku, 20014, Turku, Finland
| |
Collapse
|
9
|
Ward EM, Solari KA, Varudkar A, Gorelick SM, Hadly EA. Muskrats as a bellwether of a drying delta. Commun Biol 2021; 4:750. [PMID: 34168255 PMCID: PMC8225612 DOI: 10.1038/s42003-021-02288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/02/2021] [Indexed: 11/09/2022] Open
Abstract
Wetlands worldwide are under threat from anthropogenic impacts. In large protected North American areas such as Yellowstone and Wood Buffalo National Parks, aquatic habitats are disappearing and wetland-dependent fauna are in decline1-3. Here we investigate population dynamics of an indicator species in Canada's Peace-Athabasca Delta ("the delta"), a World Heritage Site. Based on population surveys, habitat mapping and genetic data from 288 muskrats, we use agent-based modeling and genetic analyses to explain population expansion and decline of the semi-aquatic muskrat (Ondatra zibethicus). Simulations quantify a large population (~500,000 individuals) following flood-induced habitat gains, with decreased size (~10,000 individuals) during drying. Genetic analyses show extremely low long-term effective population size (Ne: 60-127), supporting a legacy of population bottlenecks. Our simulations indicate that the muskrat population in the delta is a metapopulation with individuals migrating preferentially along riparian pathways. Related individuals found over 40 km apart imply dispersal distances far greater than their typical home range (130 m). Rapid metapopulation recovery is achieved via riparian corridor migration and passive flood-transport of individuals. Source-sink dynamics show wetland loss impacts on the muskrat metapopulation's spatial extent. Dramatic landscape change is underway, devastating local fauna, including this generalist species even in a protected ecosystem.
Collapse
Affiliation(s)
- Ellen M Ward
- Department of Earth System Science, Stanford University, Stanford, CA, USA.
| | | | - Amruta Varudkar
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Steven M Gorelick
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
10
|
Hebert CE, Chételat J, Beck R, Dolgova S, Fordy K, Kirby P, Martin P, Rabesca M. Inter-annual variation of mercury in aquatic bird eggs and fish from a large subarctic lake under a warming climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144614. [PMID: 33421792 DOI: 10.1016/j.scitotenv.2020.144614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Understanding changes in environmental mercury concentrations is important for assessing the risk to human and wildlife populations from this potent toxicant. Here, we use herring gull (Larus argentatus) eggs to evaluate temporal changes in total mercury (THg) availability from two locations on Great Slave Lake (GSL), Northwest Territories, Canada. Egg THg concentrations increased through time, but this change was due to shifts in gull diets. Stable nitrogen isotopes allowed adjustment of egg THg concentrations for dietary changes. Diet-adjusted egg THg concentrations showed no long-term trend. Consistent with that result, new statistical analysis of THg concentrations in three species of GSL fish showed minor or no temporal changes. Although a long-term trend was absent, inter-year differences in adjusted egg THg concentrations persisted. Contributions of environmental variables (i.e., river flow, lake level, air temperature, precipitation, and wildfire) to these differences were investigated. Egg THg concentrations were greater following years of lower lake levels and greater wildfire extent. Lake level could have affected mercury methylation. Increased wildfire could have enhanced terrestrial Hg releases to the atmosphere where it was transported long distances to GSL. Climate change may increase wildfire extent with impacts on Hg bioaccumulation in northern ecosystems. Egg Hg levels reported here are unlikely to pose health risks to gulls, but in light of ongoing environmental change, monitoring should continue. Our study emphasizes the importance of ancillary datasets in elucidating Hg trends; such information will be critical for evaluating the effectiveness of Hg mitigation strategies implemented as part of the Minamata Convention.
Collapse
Affiliation(s)
- Craig E Hebert
- Environment and Climate Change Canada, Science and Technology Branch, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Ottawa, ON K1S 5B6, Canada.
| | - John Chételat
- Environment and Climate Change Canada, Science and Technology Branch, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Ottawa, ON K1S 5B6, Canada
| | - Roger Beck
- Fort Resolution Métis Council, Fort Resolution, NT X0E 0M0, Canada
| | - Svetlana Dolgova
- Environment and Climate Change Canada, Science and Technology Branch, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Ottawa, ON K1S 5B6, Canada
| | - Kathleen Fordy
- Deninu Kųę́ First Nation, Fort Resolution, NT X0E 0M0, Canada
| | - Patrick Kirby
- Environment and Climate Change Canada, Science and Technology Branch, Landscape Science and Technology Division, National Wildlife Research Centre, Ottawa, ON K1S 5B6, Canada
| | - Pamela Martin
- Environment and Climate Change Canada, Science and Technology Branch, Ecotoxicology and Wildlife Health Division, Burlington, ON L7R 4A6, Canada
| | | |
Collapse
|
11
|
King MD, Elliott JE, Williams TD. Effects of petroleum exposure on birds: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142834. [PMID: 33109373 DOI: 10.1016/j.scitotenv.2020.142834] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Birds are vulnerable to petroleum pollution, and exposure has a range of negative effects resulting from plumage fouling, systemic toxicity, and embryotoxicity. Recent research has not been synthesized since Leighton's 1993 review despite the continued discharge of conventional petroleum, including high-volume oil spills and chronic oil pollution, as well as the emergence of understudied unconventional crude oil types. To address this, we reviewed the individual-level effects of crude oil and refined fuel exposure in avifauna with peer-reviewed articles published 1993-2020 to provide a critical synthesis of the state of the science. We also sought to answer how unconventional crude petroleum effects compare with conventional crude oil. Relevant knowledge gaps and research challenges were identified. The resulting review examines avian exposure to petroleum and synthesizes advances regarding the physical effects of oil hydrocarbons on feather structure and function, as well the toxic effects of inhaled or ingested oil, embryotoxicity, and how exposure affects broader scale endpoints related to behavior, reproduction, and survival. Another outcome of the review was the knowledge gaps and challenges identified. The first finding was a paucity of oil ingestion rate estimates in birds. Characterizing environmentally realistic exposure and ingestion rates is a higher research priority than additional conventional oral dosing experiments. Second, there is an absence of toxicity data for unconventional crude petroleum. Although the effects of air and water contamination in the Canadian oil sands region have received attention, toxicity data for direct exposure to unrefined bitumen produced there in high volumes and other such unconventional oil types are needed. Third, we encountered barriers to the interpretation, replication, broad relevance, and comparability of studies. We therefore propose best practices and promising technological advancements for researchers. This review consolidates our understanding of petroleum's effects on birds and points a way forward for researchers and resource managers.
Collapse
Affiliation(s)
- Mason D King
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - John E Elliott
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Environment and Climate Change Canada, Science and Technology Division, 5421 Robertson Road, Delta, BC V4K 3N2, Canada.
| | - Tony D Williams
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
12
|
Thomas PJ, Newell EE, Eccles K, Holloway AC, Idowu I, Xia Z, Hassan E, Tomy G, Quenneville C. Co-exposures to trace elements and polycyclic aromatic compounds (PACs) impacts North American river otter (Lontra canadensis) baculum. CHEMOSPHERE 2021; 265:128920. [PMID: 33213878 DOI: 10.1016/j.chemosphere.2020.128920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 05/05/2023]
Abstract
Environmental loadings of polycyclic aromatic compounds (PACs) and trace elements are increasing in areas with marked oil and gas extraction, such as in the Athabasca oil sands region, Alberta, Canada. Some of these chemicals are recognized as potent endocrine disrupting compounds (EDCs). The impacts of co-exposure to PACs and metals on free-ranging wildlife is of considerable concern. River otters (Lontra canadensis) are sentinel species of aquatic ecosystem health. The baculum (penile bone) is an important part of the reproductive system in otters that ensures successful copulation. Although baculum health is critical to male reproductive success and is sensitive to exposure to EDCs, there is no information available regarding the impact of PAC and metal exposures on measures of baculum health. River otter baculum and livers were dissected from carcasses obtained from the fur trade. Trace element and PAC analyses were carried out in liver with matching baculums subjected to dimensional analysis, bone mineral density (BMD) and mechanical loading testing. Trace elements and select PACs exhibited both protective and deleterious effects on baculum bone health metrics. Alkylated four ring PACs were negatively associated with baculum bone material properties (ex: C4-Chrysene and C4-pyrene). The same compounds have been shown to exhibit strong anti-androgenic activities. Few comparable studies exist related to contamination and adverse effects of PACs in wild terrestrial mammals. Baculum health metrics may be an important tool to include in biomonitoring studies as to date, there are limited means to assess male reproductive performance in wildlife biomonitoring programs.
Collapse
Affiliation(s)
- Philippe J Thomas
- Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Center, 1125 Colonel By Drive, Raven Road, Ottawa, ON, Canada, K1A 0H3.
| | - Emily E Newell
- Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4L8
| | - Kristin Eccles
- Department of Geography, Geomatics and Environment, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, 1280 Main Street W, Hamilton, ON, L8S 4L8, Canada
| | - Ifeoluwa Idowu
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, 584 Parker Building, Winnipeg, MB, R3T 2N2, Canada
| | - Zhe Xia
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, 584 Parker Building, Winnipeg, MB, R3T 2N2, Canada
| | - Elizabeth Hassan
- Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4L8
| | - Gregg Tomy
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, 584 Parker Building, Winnipeg, MB, R3T 2N2, Canada
| | - Cheryl Quenneville
- Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4L8; School of Biomedical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4L8
| |
Collapse
|
13
|
Geospatial analysis of the patterns of chemical exposures among biota in the Canadian Oil Sands Region. PLoS One 2020; 15:e0239086. [PMID: 32997667 PMCID: PMC7526876 DOI: 10.1371/journal.pone.0239086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/29/2020] [Indexed: 11/21/2022] Open
Abstract
Understanding the patterns of chemical exposure among biota across a landscape is challenging due to the spatial heterogeneity and complexity of the sources, pathways, and fate of the different chemicals. While spatially-driven relationships between contaminant sources and biota body burdens of a single chemical are commonly modelled, there has been little effort on modelling chemical mixtures across multiple wildlife species in the Canadian Oil Sands region. In this study, we used spatial principal components analysis (sPCA) to assess spatial patterns of the body burdens of 22 metals and Potentially Toxic Elements (PTEs) in 492 individual wildlife, including fur-bearing mammals, colonial waterbirds, and amphibians collected from the Canadian Oil Sands region in Canada. Spatial analysis and mapping both indicate that some of the complex exposures in the studied biota are distributed randomly across a landscape, which suggests background or non-point source exposures. In contrast, the pattern of exposure for seven metals and PTEs, including mercury, vanadium, lead, rubidium, lithium, strontium, and barium, exhibited a clustered pattern to the east of the open-pit mining area and in regions downstream of oil sands development which indicates point-source input. This analysis demonstrated useful methods for integrating monitoring datasets and identifying sources and potential drivers of exposure to chemical mixtures in biota across a landscape. These results can be used to support an adaptive monitoring program by identifying regions needing additional monitoring, health impact assessments, and possible intervention strategies.
Collapse
|
14
|
Chételat J, Ackerman JT, Eagles-Smith CA, Hebert CE. Methylmercury exposure in wildlife: A review of the ecological and physiological processes affecting contaminant concentrations and their interpretation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135117. [PMID: 31831233 DOI: 10.1016/j.scitotenv.2019.135117] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 05/12/2023]
Abstract
Exposure to methylmercury (MeHg) can result in detrimental health effects in wildlife. With advances in ecological indicators and analytical techniques for measurement of MeHg in a variety of tissues, numerous processes have been identified that can influence MeHg concentrations in wildlife. This review presents a synthesis of theoretical principals and applied information for measuring MeHg exposure and interpreting MeHg concentrations in wildlife. Mercury concentrations in wildlife are the net result of ecological processes influencing dietary exposure combined with physiological processes that regulate assimilation, transformation, and elimination. Therefore, consideration of both physiological and ecological processes should be integrated when formulating biomonitoring strategies. Ecological indicators, particularly stable isotopes of carbon, nitrogen, and sulfur, compound-specific stable isotopes, and fatty acids, can be effective tools to evaluate dietary MeHg exposure. Animal species differ in their physiological capacity for MeHg elimination, and animal tissues can be inert or physiologically active, act as sites of storage, transformation, or excretion of MeHg, and vary in the timing of MeHg exposure they represent. Biological influences such as age, sex, maternal transfer, and growth or fasting are also relevant for interpretation of tissue MeHg concentrations. Wildlife tissues that represent current or near-term bioaccumulation and in which MeHg is the predominant mercury species (such as blood and eggs) are most effective for biomonitoring ecosystems and understanding landscape drivers of MeHg exposure. Further research is suggested to critically evaluate the use of keratinized external tissues to measure MeHg bioaccumulation, particularly for less-well studied wildlife such as reptiles and terrestrial mammals. Suggested methods are provided to effectively use wildlife for quantifying patterns and drivers of MeHg bioaccumulation over time and space, as well as for assessing the potential risk and toxicological effects of MeHg on wildlife.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, ON K1A 0H3, Canada.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA 95620, United States
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, Oregon, 97331, United States
| | - Craig E Hebert
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, ON K1A 0H3, Canada
| |
Collapse
|
15
|
Brook JR, Cober SG, Freemark M, Harner T, Li SM, Liggio J, Makar P, Pauli B. Advances in science and applications of air pollution monitoring: A case study on oil sands monitoring targeting ecosystem protection. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:661-709. [PMID: 31082314 DOI: 10.1080/10962247.2019.1607689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potential environmental impact of air pollutants emitted from the oil sands industry in Alberta, Canada, has received considerable attention. The mining and processing of bitumen to produce synthetic crude oil, and the waste products associated with this activity, lead to significant emissions of gaseous and particle air pollutants. Deposition of pollutants occurs locally (i.e., near the sources) and also potentially at distances downwind, depending upon each pollutant's chemical and physical properties and meteorological conditions. The Joint Oil Sands Monitoring Program (JOSM) was initiated in 2012 by the Government of Canada and the Province of Alberta to enhance or improve monitoring of pollutants and their potential impacts. In support of JOSM, Environment and Climate Change Canada (ECCC) undertook a significant research effort via three components: the Air, Water, and Wildlife components, which were implemented to better estimate baseline conditions related to levels of pollutants in the air and water, amounts of deposition, and exposures experienced by the biota. The criteria air contaminants (e.g., nitrogen oxides [NOx], sulfur dioxide [SO2], volatile organic compounds [VOCs], particulate matter with an aerodynamic diameter <2.5 μm [PM2.5]) and their secondary atmospheric products were of interest, as well as toxic compounds, particularly polycyclic aromatic compounds (PACs), trace metals, and mercury (Hg). This critical review discusses the challenges of assessing ecosystem impacts and summarizes the major results of these efforts through approximately 2018. Focus is on the emissions to the air and the findings from the Air Component of the ECCC research and linkages to observations of contaminant levels in the surface waters in the region, in aquatic species, as well as in terrestrial and avian species. The existing evidence of impact on these species is briefly discussed, as is the potential for some of them to serve as sentinel species for the ongoing monitoring needed to better understand potential effects, their potential causes, and to detect future changes. Quantification of the atmospheric emissions of multiple pollutants needs to be improved, as does an understanding of the processes influencing fugitive emissions and local and regional deposition patterns. The influence of multiple stressors on biota exposure and response, from natural bitumen and forest fires to climate change, complicates the current ability to attribute effects to air emissions from the industry. However, there is growing evidence of the impact of current levels of PACs on some species, pointing to the need to improve the ability to predict PAC exposures and the key emission source involved. Although this critical review attempts to integrate some of the findings across the components, in terms of ECCC activities, increased coordination or integration of air, water, and wildlife research would enhance deeper scientific understanding. Improved understanding is needed in order to guide the development of long-term monitoring strategies that could most efficiently inform a future adaptive management approach to oil sands environmental monitoring and prevention of impacts. Implications: Quantification of atmospheric emissions for multiple pollutants needs to be improved, and reporting mechanisms and standards could be adapted to facilitate such improvements, including periodic validation, particularly where uncertainties are the largest. Understanding of baseline conditions in the air, water and biota has improved significantly; ongoing enhanced monitoring, building on this progress, will help improve ecosystem protection measures in the oil sands region. Sentinel species have been identified that could be used to identify and characterize potential impacts of wildlife exposure, both locally and regionally. Polycyclic aromatic compounds are identified as having an impact on aquatic and terrestrial wildlife at current concentration levels although the significance of these impacts and attribution to emissions from oil sands development requires further assessment. Given the improvement in high resolution air quality prediction models, these should be a valuable tool to future environmental assessments and cumulative environment impact assessments.
Collapse
Affiliation(s)
- J R Brook
- a Dalla Lana School of Public Health and Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto , Ontario , Canada
| | - S G Cober
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - M Freemark
- c National Wildlife Research Centre, Environment and Climate Change, Ottawa , Canada
| | - T Harner
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - S M Li
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - J Liggio
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - P Makar
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - B Pauli
- c National Wildlife Research Centre, Environment and Climate Change, Ottawa , Canada
| |
Collapse
|