1
|
Turunen JR, Kumthekar P, Ahmed AU. Beyond the brain: exploring the impact of animal models of leptomeningeal disease from solid tumors. Acta Neuropathol Commun 2025; 13:103. [PMID: 40383789 PMCID: PMC12087207 DOI: 10.1186/s40478-025-01959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/15/2025] [Indexed: 05/20/2025] Open
Abstract
Leptomeningeal disease (LMD) is a devastating manifestation of late-stage cancer which currently suffers from a lack of effective therapeutics. Unfortunately, a significant obstacle preventing the widespread development and testing of therapeutics for LMD is the lack of biologically accurate animal models. We provide overviews of six types of animal models of leptomeningeal metastasis from solid tumors: injection of tumor cells into the cerebrospinal fluid (CSF), blood, or brain parenchyma; subcutaneous or mammary fat pad injection of tumor cells; the LeptoM/LM-phenotype model; and genetic manipulation. We identify the pros and cons of each model and suggest broad areas of future research that could improve each model in terms of its similarity to human LMD.
Collapse
Affiliation(s)
- Jillyn R Turunen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Priya Kumthekar
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, USA.
- Department of Neurology and Medicine, Feinberg School of Medicine, Northwestern University, Abbott Hall Suite 1122, 710 N Lake Shore Drive, Chicago, IL, 60611, USA.
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL, 60611, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, USA.
| |
Collapse
|
2
|
Remsik J, Boire A. The path to leptomeningeal metastasis. Nat Rev Cancer 2024; 24:448-460. [PMID: 38871881 PMCID: PMC11404355 DOI: 10.1038/s41568-024-00700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/15/2024]
Abstract
The leptomeninges, the cerebrospinal-fluid-filled tissues surrounding the central nervous system, play host to various pathologies including infection, neuroinflammation and malignancy. Spread of systemic cancer into this space, termed leptomeningeal metastasis, occurs in 5-10% of patients with solid tumours and portends a bleak clinical prognosis. Previous, predominantly descriptive, clinical studies have provided few insights. Recent development of preclinical leptomeningeal metastasis models, alongside genomic, transcriptomic and proteomic sequencing efforts, has provided groundwork for mechanistic understanding and identification of long-needed therapeutic targets. Although previously understood as an anatomically isolated compartment, the leptomeninges are increasingly appreciated as a major conduit of communication between the systemic circulation and the central nervous system. Despite the unique nature of the leptomeningeal microenvironment, the general principles of metastasis hold true: cells metastasizing to the leptomeninges must gain access to the new environment, survive within the space and evade the immune system. The study of leptomeningeal metastasis has the potential to uncover novel site-specific metastatic principles and illuminate the physiology of the leptomeningeal space. In this Review, we provide a biology-focused overview of how metastatic cells reach the leptomeninges, thrive in this nutritionally sparse environment and evade the detection of the omnipresent immune system.
Collapse
Affiliation(s)
- Jan Remsik
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory for Immunology of Metastatic Ecosystems, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Adrienne Boire
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Brain Tumour Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Ampudia-Mesias E, Cameron CS, Yoo E, Kelly M, Anderson SM, Manning R, Abrahante Lloréns JE, Moertel CL, Yim H, Odde DJ, Saydam N, Saydam O. The OTX2 Gene Induces Tumor Growth and Triggers Leptomeningeal Metastasis by Regulating the mTORC2 Signaling Pathway in Group 3 Medulloblastomas. Int J Mol Sci 2024; 25:4416. [PMID: 38674001 PMCID: PMC11050316 DOI: 10.3390/ijms25084416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.
Collapse
Affiliation(s)
- Elisabet Ampudia-Mesias
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Charles S. Cameron
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Eunjae Yoo
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - Marcus Kelly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Sarah M. Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Riley Manning
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Christopher L. Moertel
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Hyungshin Yim
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| |
Collapse
|
4
|
Wang Q, Xin X, Dai Q, Sun M, Chen J, Mostafavi E, Shen Y, Li X. Medulloblastoma targeted therapy: From signaling pathways heterogeneity and current treatment dilemma to the recent advances in development of therapeutic strategies. Pharmacol Ther 2023; 250:108527. [PMID: 37703952 DOI: 10.1016/j.pharmthera.2023.108527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Medulloblastoma (MB) is a major pediatric malignant brain tumor that arises in the cerebellum. MB tumors exhibit highly heterogeneous driven by diverse genetic alterations and could be divided into four major subgroups based on their different biological drivers and molecular features (Wnt, Sonic hedgehog (Shh), group 3, and group 4 MB). Even though the therapeutic strategies for each MB subtype integrate their pathogenesis and were developed to focus on their specific target sites, the unexpected drug non-selective cytotoxicity, low drug accumulation in the brain, and complexed MB tumor microenvironment still be huge obstacles to achieving satisfied MB therapeutic efficiency. This review discussed the current advances in modern MB therapeutic strategy development. Through the recent advances in knowledge of the origin, molecular pathogenesis of MB subtypes and their current therapeutic barriers, we particularly reviewed the current development in advanced MB therapeutic strategy committed to overcome MB treatment obstacles, focusing on novel signaling pathway targeted therapeutic agents and their combination discovery, advanced drug delivery systems design, and MB immunotherapy strategy development.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qihao Dai
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Mengjuan Sun
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhua Chen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yan Shen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Badalanloo K, Naji T, Ahmadi R. Cytotoxic and Apoptotic Effects of Celecoxib and Topotecan on AGS and HEK 293 Cell Lines. J Gastrointest Cancer 2020; 53:99-104. [PMID: 33200341 DOI: 10.1007/s12029-020-00434-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE This study is aimed to assess the anti-cancer effects of Celecoxib and topotecan against Human Gastric cancer cell line (AGS) in comparison to the control in an in-vitro study. METHODS In this experimental study, Celecoxib and topotecan was prepared at concentrations of 500, 250, 125, 62.5, 31.2, 15.6 and 7.8 mg/ml. The effect of celecoxib and topotecan separately and in mixed form were investigated on AGS and normal HEK cells. To investigate the cell survival, MTT method was used to study the pathway of apoptosis using flowcytometry and Caspase kits based on colorimetric. Finally, one-way ANOVA and t-test were used to analyze the data. RESULTS The results of this study indicated that Celecoxib was cytotoxic against AGS and HEK cell lines. The topotecan indicated a significant cytotoxicity against AGS cells and was not toxic against HEK cell line. Our results indicated that Celecoxib and topotecan have synergist effects against AGS and HEK cell lines and were more effective than separate celecoxib or topotecan. CONCLUSION The mixture of clecoxib and topotecan was more effective than celecoxib and topotecan in separate form. Our results indicated that use mixed forms of treatments can cause excellent therapeutic effects and can cause less side effects.
Collapse
Affiliation(s)
- Kimia Badalanloo
- Department of Basic Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran, Iran
| | - Tahereh Naji
- Department of Basic Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran, Iran.
| | - Rahim Ahmadi
- Department of Physiology, Faculty of Basic Sciences, Hamadan Branch, Islamic Azad University, Hamadan, Iran
| |
Collapse
|