1
|
Bawin Y, Zewdie B, Ayalew B, Roldán-Ruiz I, Janssens SB, Tack AJM, Nemomissa S, Tesfaye K, Hylander K, Honnay O, Ruttink T. A Molecular Survey of the Occurrence of Coffee Berry Disease Resistant Coffee Cultivars Near the Wild Gene Pool of Arabica Coffee in Its Region of Origin in Southwest Ethiopia. Mol Ecol Resour 2025:e14085. [PMID: 39981739 DOI: 10.1111/1755-0998.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/12/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025]
Abstract
Cultivation of crops close to their wild relatives may jeopardise the integrity of wild genetic resources. Detecting cultivars among wild plants is necessary to characterise crop-wild gene flow, but can be challenging if cultivars and wild plants are phenotypically highly similar. Genomics tools can be used instead, but the selection of diagnostic loci for cultivar identification can be difficult if the wild and cultivated genepools are closely related. In Ethiopia, Arabica coffee cultivars resistant to coffee berry disease (CBD) occur near wild Coffea arabica plants and local landraces. However, the abundance and distribution of these cultivars across coffee sites remains unclear. Here, we present a new module of the SMAP package called SMAP relatedness pairwise to characterise pairwise genetic relationships between individuals based on haplotype calls and to identify diagnostic loci that distinguish (sets of) individuals from each other. Next, we estimate the relative abundance of CBD-resistant cultivars across 60 Ethiopian Arabica coffee sites using a genome-wide fingerprinting approach. We confirm the presence of these cultivars in around 75% of the coffee sites with a high agreement between a field survey and our DNA fingerprinting approach. At least 20 out of 60 sites with supposedly wild C. arabica individuals contain signatures of the cultivated genepool. Overall, we conclude that CBD-resistant cultivars are widespread in Ethiopian coffee sites. The development of SMAP relatedness pairwise opens opportunities to assess the distribution of coffee cultivars in other regions in Ethiopia and to apply similar screenings near wild relatives from other crops.
Collapse
Affiliation(s)
- Yves Bawin
- Agronomic Ecology and Conservation Biology, KU Leuven, Leuven, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Crop Wild Relatives and Useful Plants, Meise Botanic Garden, Meise, Belgium
| | - Beyene Zewdie
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Biruk Ayalew
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Hawassa University College of Agriculture, School of Plant and Horticultural sciences, Hawassa, Ethiopia
| | - Isabel Roldán-Ruiz
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Steven B Janssens
- Crop Wild Relatives and Useful Plants, Meise Botanic Garden, Meise, Belgium
- Leuven Plant Institute, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Sileshi Nemomissa
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Kristoffer Hylander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Olivier Honnay
- Agronomic Ecology and Conservation Biology, KU Leuven, Leuven, Belgium
- Leuven Plant Institute, Leuven, Belgium
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Chen K, Wang L, Liu J, Zheng H, Wu X, Liao X. The ant that may well destroy a whole dam: a systematic review of the health implication of nanoplastics/microplastics through gut microbiota. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39831655 DOI: 10.1080/10408398.2025.2453632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Since the widespread usage of plastic materials and inadequate handling of plastic debris, nanoplastics (NPs) and microplastics (MPs) have become global hazards. Recent studies prove that NPs/MPs can induce various toxicities in organisms, with these adverse effects closely related to gut microbiota changes. This review thoroughly summarized the interactions between NPs/MPs and gut microbiota in various hosts, speculated on the potential factors affecting these interactions, and outlined the impacts on hosts' health caused by NPs/MPs exposure and gut microbiota dysbiosis. Firstly, different characteristics and conditions of NPs/MPs often led to complicated hazardous effects on gut microbiota. Alterations of gut microbiota composition at the phylum level were complex, while changes at the genus level exhibited a pattern of increased pathogens and decreased probiotics. Generally, the smaller size, the rougher surface, the longer shape, the higher concentration, and the longer exposure of NPs/MPs induced more severe damage to gut microbiota. Then, different adaptation and tolerance degrees of gut microbiota to NPs/MPs exposure might contribute to gut microbiota dysbiosis. Furthermore, NPs/MPs could be carriers of other hazards to generally exert more severe damage on gut microbiota. In summary, both pristine and contaminated NPs/MPs posed severe threats to hosts through inducing gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Kun Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Lei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Jingyang Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing Key Laboratory of Food Non-Thermal Processing, Beijing, China
| |
Collapse
|
3
|
Wolff B, Julier B, Louarn G. Impact of intraspecific genetic variation on interspecific competition: a theoretical case study of forage binary mixtures. FRONTIERS IN PLANT SCIENCE 2024; 15:1356506. [PMID: 39416476 PMCID: PMC11482038 DOI: 10.3389/fpls.2024.1356506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Introduction Increasing intraspecific genetic variation (IV) has been identified as a potential factor to improve productivity and stabilise botanical composition in plant communities. In grasslands systems, this could offer a lever to manage uncertainties of production and variability in the harvested species balance. However, little is known about the conditions to favour IV impact and the mechanisms at play. Methods The dependency of IV impact on traits holding it and environmental stressors were analysed using a spatially-explicit individual-based model (IBM) of grassland communities. Sixty-three binary mixtures were defined to reflect a gradient of functional divergence between species regarding light and nitrogen (N) acquisition. The growth and dynamics of these communities were simulated for one year with three possible IV levels under two environments contrasting in terms of soil N fertility. Results and discussion The model predicted a positive impact of moderate and high IV levels on maintaining the species balance over time, but no marked effects on mixture productivity. This stabilising effect increased at higher IV levels and under low soil N fertility. It also tended to be more pronounced in communities with intermediate functional divergence offering a significant overlap between light and N acquisition parameter values of both species. The major traits involved in the plant response to neighbours differed depending on the most contested resource, as indicated by the within-population selection of individuals with favourable N-related parameters under low N and light-related parameters under high N environments. The hypothesis that IV favours a complementarity of resource use between species was not supported. Rather, a greater spatial heterogeneity in competitive interactions was demonstrated, leading to a higher probability of growth and survival for individuals within the subordinate species. These results highlight the potential usefulness of IV to design forage mixtures with improved stability and resilience.
Collapse
|
4
|
Li Z, Wang T, Yun L, Ren X, Wang Y, Shi F. Association Analysis of Tiller-Related Traits with EST-SSR Markers in Psathyrostachys juncea. Genes (Basel) 2023; 14:1970. [PMID: 37895319 PMCID: PMC10606050 DOI: 10.3390/genes14101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Psathyrostachys juncea is a long-lived perennial Gramineae grass with dense basal tillers and soft leaves. It is used widely in cold and dry areas of Eurasia and North America to establish grazing pasture and is even used as an ideal plant for revegetation and ecological restoration. Plant architecture, especially tillering traits, is critical for bunch grasses in breeding programs, and these traits in plants are mostly quantitative traits. In this study, the genetic diversity, population structure, and linkage disequilibrium of 480 individual lines were analyzed using 127 pairs of the EST-SSR marker, and a significant association between ten plant-architecture-related traits of P. juncea and molecular markers was found. The results of the genetic diversity analysis showed that the number of observed alleles was 1.957, the number of effective alleles was 1.682, Shannon's information index was 0.554, observed heterozygosity was 0.353, expected heterozygosity was 0.379, and the polymorphism information content was 0.300. A total of 480 individual lines were clustered into five groups based on population genetic structure, principal coordinate analysis, and unweighted pair group method with arithmetic mean analysis (UPGMA). The linkage disequilibrium coefficient (r2) was between 0.00 and 0.68, with an average of 0.04, which indicated a relatively low level of linkage disequilibrium among loci. The results of the association analysis revealed 55 significant marker-trait associations (MTA). Moreover, nine SSR markers were associated with multiple traits. This study provides tools with promising applications in the molecular selection and breeding of P. juncea germplasm.
Collapse
Affiliation(s)
- Zhen Li
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (Z.L.)
| | - Tian Wang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (Z.L.)
| | - Lan Yun
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (Z.L.)
- Key Laboratory of Grassland Resources Ministry of Education, Hohhot 010010, China
| | - Xiaomin Ren
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (Z.L.)
| | - Yong Wang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (Z.L.)
| | - Fengling Shi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China; (Z.L.)
| |
Collapse
|
5
|
Zewdie B, Bawin Y, Tack AJM, Nemomissa S, Tesfaye K, Janssens SB, Van Glabeke S, Roldán-Ruiz I, Ruttink T, Honnay O, Hylander K. Genetic composition and diversity of Arabica coffee in the crop's center of origin and its impact on four major fungal diseases. Mol Ecol 2022; 32:2484-2503. [PMID: 35377502 DOI: 10.1111/mec.16458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
Conventional wisdom states that genetic variation reduces disease levels in plant populations. Nevertheless, crop species have been subject to a gradual loss of genetic variation through selection for specific traits during breeding, thereby increasing their vulnerability to biotic stresses such as pathogens. We explored how genetic variation in Arabica coffee sites in southwestern Ethiopia was related to the incidence of four major fungal diseases. Sixty sites were selected along a gradient of management intensity, ranging from nearly wild to intensively managed coffee stands. We used genotyping-by-sequencing of pooled leaf samples (pool-GBS) derived from 16 individual coffee shrubs in each of the sixty sites to assess the variation in genetic composition (multivariate: reference allele frequency) and genetic diversity (univariate: mean expected heterozygosity) between sites. We found that genetic composition had a clear spatial pattern and that genetic diversity was higher in less managed sites. The incidence of the four fungal diseases was related to the genetic composition of the coffee stands, but in a specific way for each disease. In contrast, genetic diversity was only related to the within-site variation of coffee berry disease, but not to the mean incidence of any of the four diseases across sites. Given that fungal diseases are major challenges of Arabica coffee in its native range, our findings that genetic composition of coffee sites impacted the major fungal diseases may serve as baseline information to study the molecular basis of disease resistance in coffee. Overall, our study illustrates the need to consider both host genetic composition and genetic diversity when investigating the genetic basis for variation in disease levels.
Collapse
Affiliation(s)
- Beyene Zewdie
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Yves Bawin
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium.,Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Zwijnaarde, Belgium.,Crop Wild Relatives and Useful Plants, Meise Botanic Garden, Meise, Belgium
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sileshi Nemomissa
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Steven B Janssens
- Crop Wild Relatives and Useful Plants, Meise Botanic Garden, Meise, Belgium.,Department of Biology, KU Leuven, Leuven, Belgium.,Leuven Plant Institute, Heverlee, Belgium
| | - Sabine Van Glabeke
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Isabel Roldán-Ruiz
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Zwijnaarde, Belgium
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Olivier Honnay
- Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium.,Leuven Plant Institute, Heverlee, Belgium
| | - Kristoffer Hylander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
6
|
Thomas BJ, Fychan R, McCalman HM, Sanderson R, Thomas H, Marley CL. Vicia sativa
as a grazed forage for lactating ewes in a temperate grassland production system. Food Energy Secur 2022. [DOI: 10.1002/fes3.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Benjamin J. Thomas
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan Ceredigion UK
| | - Rhun Fychan
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan Ceredigion UK
| | - Heather M. McCalman
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan Ceredigion UK
| | - Ruth Sanderson
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan Ceredigion UK
| | - Howard Thomas
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan Ceredigion UK
| | - Christina L. Marley
- Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan Ceredigion UK
| |
Collapse
|
7
|
Barre P, Asp T, Byrne S, Casler M, Faville M, Rognli OA, Roldan-Ruiz I, Skøt L, Ghesquière M. Genomic Prediction of Complex Traits in Forage Plants Species: Perennial Grasses Case. Methods Mol Biol 2022; 2467:521-541. [PMID: 35451789 DOI: 10.1007/978-1-0716-2205-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The majority of forage grass species are obligate outbreeders. Their breeding classically consists of an initial selection on spaced plants for highly heritable traits such as disease resistances and heading date, followed by familial selection on swards for forage yield and quality traits. The high level of diversity and heterozygosity, and associated decay of linkage disequilibrium (LD) over very short genomic distances, has hampered the implementation of genomic selection (GS) in these species. However, next generation sequencing technologies in combination with the development of genomic resources have recently facilitated implementation of GS in forage grass species such as perennial ryegrass (Lolium perenne L.), switchgrass (Panicum virgatum L.), and timothy (Phleum pratense L.). Experimental work and simulations have shown that GS can increase significantly the genetic gain per unit of time for traits with different levels of heritability. The main reasons are (1) the possibility to select single plants based on their genomic estimated breeding values (GEBV) for traits measured at sward level, (2) a reduction in the duration of selection cycles, and less importantly (3) an increase in the selection intensity associated with an increase in the genetic variance used for selection. Nevertheless, several factors should be taken into account for the successful implementation of GS in forage grasses. For example, it has been shown that the level of relatedness between the training and the selection population is particularly critical when working with highly structured meta-populations consisting of several genetic groups. A sufficient number of markers should be used to estimate properly the kinship between individuals and to reflect the variability of major QTLs. It is also important that the prediction models are trained for relevant environments when dealing with traits with high genotype × environment interaction (G × E). Finally, in these outbreeding species, measures to reduce inbreeding should be used to counterbalance the high selection intensity that can be achieved in GS.
Collapse
Affiliation(s)
| | - Torben Asp
- Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse, Denmark
| | - Stephen Byrne
- Teagasc, Crop Science Department, Oak Park, Carlow, Ireland
| | - Michael Casler
- U.S. Dairy Forage Research Center, USDA-ARS, Madison, WI, USA
| | - Marty Faville
- AgResearch Ltd , Grasslands Research Centre, Palmerston North, New Zealand
| | - Odd Arne Rognli
- Department of Plant Sciences, Faculty of Biosciences, Norwegian, University of Life Sciences (NMBU), Ås, Norway
| | - Isabel Roldan-Ruiz
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO)-Plant Sciences Unit, Melle, Belgium
| | - Leif Skøt
- IBERS, Aberystwyth University, Ceredigion, UK
| | | |
Collapse
|
8
|
Sun XS, Chen YH, Zhuo N, Cui Y, Luo FL, Zhang MX. Effects of salinity and concomitant species on growth of Phragmites australis populations at different levels of genetic diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146516. [PMID: 33765469 DOI: 10.1016/j.scitotenv.2021.146516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
In plant communities, genetic diversity among dominant species can not only affect the fitness of the population, but also interactions with concomitant species. Soil salinity is a common factor that influences plant growth in estuarine wetlands. However, few studies have tested whether their high genetic diversity will be beneficial for the resistance of plant populations to salinity and the presence of concomitant plants. Four different genotypes of Phragmites australis, a dominant species of the Yellow River Delta in China, were selected to construct populations with three different genotypic levels. These populations were planted either with or without concomitant species and were subjected to control or salinity treatments. At the end of treatments, growth variables of P. australis populations were measured. In response to soil salinity, the total biomass of 1-, 2-, and 4-genotype populations decreased by 35%, 24%, and 13%, respectively, indicating higher resistance of P. australis populations with high genetic diversity. Correspondingly, 2-, and 4-genotype populations showed higher biomass allocation to roots, which can maintain adequate water uptake for plants. The biomass accumulation of 1-genotype populations with concomitant plants was significantly lower compared with populations without concomitant plants; however, no significant difference was found for 4-genotype populations between both control and salinity treatments, suggesting their higher capacities when coexisting with concomitant species. However, the genotypic level of populations did not significantly affect their biomass accumulation. High genetic diversity is greatly beneficial for the resistance of P. australis populations to salinity and coexistence with other plants. This information should be considered in the construction or restoration of this species in estuarine wetlands.
Collapse
Affiliation(s)
- Xin-Sheng Sun
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yu-Han Chen
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Na Zhuo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yuan Cui
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Fang-Li Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Ming-Xiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|