1
|
Roy NS, Kumari M, Alam K, Bhattacharya A, Kaity S, Kaur K, Ravichandiran V, Roy S. Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012007. [PMID: 39662055 DOI: 10.1088/2516-1091/ad9dcb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Three-dimensional (3D) models, such as tumor spheroids and organoids, are increasingly developed by integrating tissue engineering, regenerative medicine, and personalized therapy strategies. These advanced 3Din-vitromodels are not merely endpoint-driven but also offer the flexibility to be customized or modulated according to specific disease parameters. Unlike traditional 2D monolayer cultures, which inadequately capture the complexities of solid tumors, 3D co-culture systems provide a more accurate representation of the tumor microenvironment. This includes critical interactions with mesenchymal stem/stromal cells (MSCs) and induced pluripotent stem cells (iPSCs), which significantly modulate cancer cell behavior and therapeutic responses. Most of the findings from the co-culture of Michigan Cancer Foundation-7 breast cancer cells and MSC showed the formation of monolayers. Although changes in the plasticity of MSCs and iPSCs caused by other cells and extracellular matrix (ECM) have been extensively researched, the effect of MSCs on cancer stem cell (CSC) aggressiveness is still controversial and contradictory among different research communities. Some researchers have argued that CSCs proliferate more, while others have proposed that cancer spread occurs through dormancy. This highlights the need for further investigation into how these interactions shape cancer aggressiveness. The objective of this review is to explore changes in cancer cell behavior within a 3D microenvironment enriched with MSCs, iPSCs, and ECM components. By describing various MSC and iPSC-derived 3D breast cancer models that replicate tumor biology, we aim to elucidate potential therapeutic targets for breast cancer. A particular focus of this review is the Transwell system, which facilitates understanding how MSCs and iPSCs affect critical processes such as migration, invasion, and angiogenesis. The gradient formed between the two chambers is based on diffusion, as seen in the human body. Once optimized, this Transwell model can serve as a high-throughput screening platform for evaluating various anticancer agents. In the future, primary cell-based and patient-derived 3D organoid models hold promise for advancing personalized medicine and accelerating drug development processes.
Collapse
Affiliation(s)
- Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Department of Anatomy & Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| |
Collapse
|
2
|
Uthanaphun T, Manochantr S, Tantrawatpan C, Tantikanlayaporn D, Kheolamai P. PL-hMSC and CH-hMSC derived soluble factors inhibit proliferation but improve hGBM cell migration by activating TGF-β and inhibiting Wnt signaling. Biosci Rep 2024; 44:BSR20231964. [PMID: 38687607 PMCID: PMC11130542 DOI: 10.1042/bsr20231964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and aggressive brain tumors. GBM resists most chemotherapeutic agents, resulting in a high mortality rate in patients. Human mesenchymal stem cells (hMSCs), which are parts of the cancer stroma, have been shown to be involved in the development and progression of GBM. However, different sources of hMSCs might affect GBM cells differently. In the present study, we established hMSCs from placenta (PL-hMSC) and chorion (CH-hMSC) to study the effects of their released soluble factors on the proliferation, migration, invasion, gene expression, and survival of human GBM cells, U251. We found that the soluble factors derived from CH-hMSCs and PL-hMSCs suppressed the proliferation of U251 cells in a dose-dependent manner. In contrast, soluble factors derived from both hMSC sources increased U251 migration without affecting their invasive property. The soluble factors derived from these hMSCs decreased the expression levels of CyclinD1, E2Fs and MYC genes that promote GBM cell proliferation but increased the expression level of TWIST gene, which promotes EMT and GBM cell migration. The functional study suggests that both hMSCs might exert their effects, at least in part, by activating TGF-β and suppressing Wnt/β-catenin signaling in U251 cells. Our study provides a better understanding of the interaction between GBM cells and gestational tissue-derived hMSCs. This knowledge might be used to develop safer and more effective stem cell therapy that improves the survival and quality of life of patients with GBM by manipulating the interaction between hMSCs and GBM cells.
Collapse
Affiliation(s)
- Tanawat Uthanaphun
- Master of Science Program in Stem Cell and Molecular Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Sirikul Manochantr
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Chairat Tantrawatpan
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Duangrat Tantikanlayaporn
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
3
|
Brown MJ, Morris MA, Akam EC. Investigating the Effects of Indirect Coculture of Human Mesenchymal Stem Cells on the Migration of Breast Cancer Cells: A Systematic Review and Meta-Analysis. Breast Cancer (Auckl) 2023; 17:11782234221145385. [PMID: 36710995 PMCID: PMC9875320 DOI: 10.1177/11782234221145385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 01/24/2023] Open
Abstract
Purpose Breast cancer is the most diagnosed cancer and the leading cause of cancer death in women globally, and mesenchymal stem cells have been widely implicated in tumour progression. This systematic review and meta-analysis seeks to identify and summarise existing literature on the effects of human mesenchymal stem cells (hMSCs) on the migration of breast cancer cells (BCCs) in vitro, to determine the direction of this relationship according to existing research and to identify the directions for future research. Methods A systematic literature search was conducting using a collection of databases, using the following search terms: in vitro AND mesenchymal stem cells AND breast cancer. Only studies that investigated the effects of human, unmodified MSCs on the migration of human, unmodified BCCs in vitro were included. Standardised mean differences (SMDs) were calculated to determine pooled effect sizes. Results This meta-analysis demonstrates that hMSCs (different sources combined) increase the migration of both MDA-MB-231 and MCF-7 cell lines in vitro (SMD = 1.84, P = .03 and SMD = 2.69, P < .00001, respectively). Importantly, the individual effects of hMSCs from different sources were also analysed and demonstrated that MSCs derived from human adipose tissue increase BCC migration (SMD = 1.34, P = .0002) and those derived from umbilical cord increased both MDA-MB-231 and MCF-7 migration (SMD = 3.93, P < .00001 and SMD = 3.01, P < .00001, respectively). Conclusions To our knowledge, this is the first systematic review and meta-analysis investigating and summarising the effects of hMSCs from different sources on the migration of BCCs, in vitro.
Collapse
Affiliation(s)
- Marie-Juliet Brown
- School of Sport, Exercise and Health Sciences,
Loughborough University, Loughborough, UK
| | - Mhairi A Morris
- School of Sport, Exercise and Health Sciences,
Loughborough University, Loughborough, UK
| | - Elizabeth C Akam
- School of Sport, Exercise and Health Sciences,
Loughborough University, Loughborough, UK
| |
Collapse
|
4
|
Hajmomeni P, Sisakhtnezhad S, Bidmeshkipour A. Thymoquinone-treated mouse mesenchymal stem cells-derived conditioned medium inhibits human breast cancer cells in vitro. Chem Biol Interact 2023; 369:110283. [PMID: 36450322 DOI: 10.1016/j.cbi.2022.110283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Breast cancer is now the most prevalent cancer in females, therefore, it is essential to identify factors affecting its initiation and progression. Mesenchymal stem cells (MSCs) have received considerable attention in stem cell-based therapies and drug delivery applications. Because the therapeutic potential of MSCs is primarily achieved by their paracrine effects, thus identifying and employing bioactive molecules that promote the paracrine activity of MSCs is crucial for their efficient use in cancer treatment. Thymoquinone (TQ) has many biomedical properties, including anti-inflammatory, anti-diabetic, anti-aging, anti-cancer, etc. In addition, it has been found that TQ affects the self-renewal and immunomodulatory properties of MSCs. The present study aimed to investigate the effect of TQ-treated mouse bone marrow-derived MSCs conditioned medium (TQ-MSC-CM) on the biological characteristics of breast cancer cell line MCF7. MSCs were cultured and treated with TQ for 24 h. The TQ-MSC-CM and MSC-CM were collected, and their effects were investigated on ROS production, mitochondrial membrane potential (MMP), cell death, cell cycle, and migration of MCF7 cells by DCFDA-cellular ROS assay, Rhodamine-123 MMP assay, Annexin-PI staining and Caspase-3/7 activity assays, PI-staining and flow-cytometry, and in vitro wound healing assay, respectively. Moreover, the effects of TQ-MSC-CM and MSC-CM were studied on Cdk4, Sox2, c-Met, and Bcl2 gene expression by real-time PCR. Results demonstrated that MSC-CM and TQ-MSC-CM did not have a significant effect on the apoptosis induction in MCF7 cells; however, they significantly stimulated necrosis in the cells. Although TQ-MSC-CM promoted ROS production in MCF7 cells, it decreased the MMP of the cells. TQ-MSC-CM also induced Bcl2 anti-apoptosis gene expression and Casp-3/7 activity in cells. In addition, although MSC-CM induced MCF7 cells to enter the cell cycle, TQ-MSC-CM inhibited its progression. TQ-MSC-CM also downregulated the Cdk4 and Sox2 gene expression. Furthermore, TQ-MSC-CM induced the migration potential of MCF7 in a c-Met-independent manner. Altogether, we conclude that TQ may induce programmed necrosis and inhibits the proliferation and migration of the breast cancer cells by affecting the paracrine activity of MSCs.
Collapse
Affiliation(s)
- Pouria Hajmomeni
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | | | - Ali Bidmeshkipour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
5
|
Silini AR, Ramuta TŽ, Pires AS, Banerjee A, Dubus M, Gindraux F, Kerdjoudj H, Maciulatis J, Weidinger A, Wolbank S, Eissner G, Giebel B, Pozzobon M, Parolini O, Kreft ME. Methods and criteria for validating the multimodal functions of perinatal derivatives when used in oncological and antimicrobial applications. Front Bioeng Biotechnol 2022; 10:958669. [PMID: 36312547 PMCID: PMC9607958 DOI: 10.3389/fbioe.2022.958669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Perinatal derivatives or PnDs refer to tissues, cells and secretomes from perinatal, or birth-associated tissues. In the past 2 decades PnDs have been highly investigated for their multimodal mechanisms of action that have been exploited in various disease settings, including in different cancers and infections. Indeed, there is growing evidence that PnDs possess anticancer and antimicrobial activities, but an urgent issue that needs to be addressed is the reproducible evaluation of efficacy, both in vitro and in vivo. Herein we present the most commonly used functional assays for the assessment of antitumor and antimicrobial properties of PnDs, and we discuss their advantages and disadvantages in assessing the functionality. This review is part of a quadrinomial series on functional assays for the validation of PnDs spanning biological functions such as immunomodulation, anticancer and antimicrobial, wound healing, and regeneration.
Collapse
Affiliation(s)
- Antonietta R. Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Taja Železnik Ramuta
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Salomé Pires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marie Dubus
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon and Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), Reims, France
| | - Justinas Maciulatis
- The Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Günther Eissner
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città Della Speranza, Padoa, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica Del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Mateja Erdani Kreft,
| |
Collapse
|
6
|
Stromal Co-Cultivation for Modeling Breast Cancer Dormancy in the Bone Marrow. Cancers (Basel) 2022; 14:cancers14143344. [PMID: 35884405 PMCID: PMC9320268 DOI: 10.3390/cancers14143344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers metastasize to the bone marrow before primary tumors can be detected. Bone marrow micrometastases are resistant to therapy, and while they are able to remain dormant for decades, they recur steadily and result in incurable metastatic disease. The bone marrow microenvironment maintains the dormancy and chemoresistance of micrometastases through interactions with multiple cell types and through structural and soluble factors. Modeling dormancy in vitro can identify the mechanisms of these interactions. Modeling also identifies mechanisms able to disrupt these interactions or define novel interactions that promote the reawakening of dormant cells. The in vitro modeling of the interactions of cancer cells with various bone marrow elements can generate hypotheses on the mechanisms that control dormancy, treatment resistance and reawakening in vivo. These hypotheses can guide in vivo murine experiments that have high probabilities of succeeding in order to verify in vitro findings while minimizing the use of animals in experiments. This review outlines the existing data on predominant stromal cell types and their use in 2D co-cultures with cancer cells.
Collapse
|
7
|
Moonshi SS, Adelnia H, Wu Y, Ta HT. Placenta‐Derived Mesenchymal Stem Cells for Treatment of Diseases: A Clinically Relevant Source. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shehzahdi S. Moonshi
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland 4111 Australia
| | - Hossein Adelnia
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland 4111 Australia
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St Lucia Queensland 4072 Australia
| | - Yuao Wu
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland 4111 Australia
| | - Hang T. Ta
- Queensland Micro‐ and Nanotechnology Centre Griffith University Nathan Queensland 4111 Australia
- Bioscience Discipline School of Environment and Science Griffith University Nathan Queensland 4111 Australia
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
8
|
Li W, Zhang S, Wang D, Zhang H, Shi Q, Zhang Y, Wang M, Ding Z, Xu S, Gao B, Yan M. Exosomes Immunity Strategy: A Novel Approach for Ameliorating Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:822149. [PMID: 35223870 PMCID: PMC8870130 DOI: 10.3389/fcell.2021.822149] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Low back pain (LBP), which is one of the most severe medical and social problems globally, has affected nearly 80% of the population worldwide, and intervertebral disc degeneration (IDD) is a common musculoskeletal disorder that happens to be the primary trigger of LBP. The pathology of IDD is based on the impaired homeostasis of catabolism and anabolism in the extracellular matrix (ECM), uncontrolled activation of immunologic cascades, dysfunction, and loss of nucleus pulposus (NP) cells in addition to dynamic cellular and biochemical alterations in the microenvironment of intervertebral disc (IVD). Currently, the main therapeutic approach regarding IDD is surgical intervention, but it could not considerably cure IDD. Exosomes, extracellular vesicles with a diameter of 30–150 nm, are secreted by various kinds of cell types like stem cells, tumor cells, immune cells, and endothelial cells; the lipid bilayer of the exosomes protects them from ribonuclease degradation and helps improve their biological efficiency in recipient cells. Increasing lines of evidence have reported the promising applications of exosomes in immunological diseases, and regarded exosomes as a potential therapeutic source for IDD. This review focuses on clarifying novel therapies based on exosomes derived from different cell sources and the essential roles of exosomes in regulating IDD, especially the immunologic strategy.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shilei Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Dong Wang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Orthopaedics, Affiliated Hospital of Yanan University, Yanan, China
| | - Huan Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Quan Shi
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yuyuan Zhang
- Department of Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Mo Wang
- The First Brigade of Basic Medical College, Air Force Military Medical University, Xi’an, China
| | - Ziyi Ding
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Songjie Xu
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
- *Correspondence: Songjie Xu, ; Bo Gao, ; Ming Yan,
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Songjie Xu, ; Bo Gao, ; Ming Yan,
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Songjie Xu, ; Bo Gao, ; Ming Yan,
| |
Collapse
|
9
|
Eiro N, Fraile M, Fernández-Francos S, Sánchez R, Costa LA, Vizoso FJ. Importance of the origin of mesenchymal (stem) stromal cells in cancer biology: "alliance" or "war" in intercellular signals. Cell Biosci 2021; 11:109. [PMID: 34112253 PMCID: PMC8194017 DOI: 10.1186/s13578-021-00620-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a central role in the intercellular signaling within the tumor microenvironment (TME), exchanging signals with cancer cells and tumor stromal cells, such as cancer-associated fibroblasts and inflammatory mononuclear cells. Research attributes both pro-tumor and anti-tumor actions to MSCs; however, evidence indicates that MSCs specific effect on the tumor depends on the source of the MSCs and the type of tumor. There are consistent data proving that MSCs from reproductive tissues, such as the uterus, umbilical cord or placenta, have potent anti-tumor effects and tropism towards tumor tissues. More interestingly, products derived from MSCs, such as secretome or extracellular vesicles, seem to reproduce the effects of their parental cells, showing a potential advantage for clinical treatments by avoiding the drawbacks associated with cell therapy. Given these perspectives, it appears necessary new research to optimize the production, safety and antitumor potency of the products derived from the MSCs suitable for oncological therapies.
Collapse
Affiliation(s)
- Noemi Eiro
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain.
| | - Maria Fraile
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Silvia Fernández-Francos
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Rosario Sánchez
- Department of Surgery, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain
| | - Luis A Costa
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Francisco J Vizoso
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain. .,Department of Surgery, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain.
| |
Collapse
|
10
|
de la Torre P, Flores AI. Current Status and Future Prospects of Perinatal Stem Cells. Genes (Basel) 2020; 12:6. [PMID: 33374593 PMCID: PMC7822425 DOI: 10.3390/genes12010006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/05/2023] Open
Abstract
The placenta is a temporary organ that is discarded after birth and is one of the most promising sources of various cells and tissues for use in regenerative medicine and tissue engineering, both in experimental and clinical settings. The placenta has unique, intrinsic features because it plays many roles during gestation: it is formed by cells from two individuals (mother and fetus), contributes to the development and growth of an allogeneic fetus, and has two independent and interacting circulatory systems. Different stem and progenitor cell types can be isolated from the different perinatal tissues making them particularly interesting candidates for use in cell therapy and regenerative medicine. The primary source of perinatal stem cells is cord blood. Cord blood has been a well-known source of hematopoietic stem/progenitor cells since 1974. Biobanked cord blood has been used to treat different hematological and immunological disorders for over 30 years. Other perinatal tissues that are routinely discarded as medical waste contain non-hematopoietic cells with potential therapeutic value. Indeed, in advanced perinatal cell therapy trials, mesenchymal stromal cells are the most commonly used. Here, we review one by one the different perinatal tissues and the different perinatal stem cells isolated with their phenotypical characteristics and the preclinical uses of these cells in numerous pathologies. An overview of clinical applications of perinatal derived cells is also described with special emphasis on the clinical trials being carried out to treat COVID19 pneumonia. Furthermore, we describe the use of new technologies in the field of perinatal stem cells and the future directions and challenges of this fascinating and rapidly progressing field of perinatal cells and regenerative medicine.
Collapse
Affiliation(s)
| | - Ana I. Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n, 28041 Madrid, Spain;
| |
Collapse
|
11
|
Papait A, Stefani FR, Cargnoni A, Magatti M, Parolini O, Silini AR. The Multifaceted Roles of MSCs in the Tumor Microenvironment: Interactions With Immune Cells and Exploitation for Therapy. Front Cell Dev Biol 2020; 8:447. [PMID: 32637408 PMCID: PMC7317293 DOI: 10.3389/fcell.2020.00447] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment (TME) plays a critical role in tumorigenesis and is composed of different cellular components, including immune cells and mesenchymal stromal cells (MSCs). In this review, we will discuss MSCs in the TME setting and more specifically their interactions with immune cells and how they can both inhibit (immunosurveillance) and favor (immunoediting) tumor growth. We will also discuss how MSCs are used as a therapeutic strategy in cancer. Due to their unique immunomodulatory properties, MSCs isolated from perinatal tissues are intensely explored as therapeutic interventions in various inflammatory-based disorders with promising results. However, their therapeutic applications in cancer remain for the most part controversial and, importantly, the interactions between administered perinatal MSC and immune cells in the TME remain to be clearly defined.
Collapse
Affiliation(s)
- Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Largo A. Gemelli, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| |
Collapse
|
12
|
Mathew SA, Naik C, Cahill PA, Bhonde RR. Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis. Cell Mol Life Sci 2020; 77:253-265. [PMID: 31468060 PMCID: PMC11104823 DOI: 10.1007/s00018-019-03268-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/24/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Dysregulation of angiogenesis is a phenomenon observed in several disorders such as diabetic foot, critical limb ischemia and myocardial infarction. Mesenchymal stromal cells (MSCs) possess angiogenic potential and have recently emerged as a powerful tool for cell therapy to promote angiogenesis. Although bone marrow-derived MSCs are the primary cell of choice, obtaining them has become a challenge. The placenta has become a popular alternative as it is a highly vascular organ, easily available and ethically more favorable with a rich supply of MSCs. Comparatively, placenta-derived MSCs (PMSCs) are clinically promising due to their proliferative, migratory, clonogenic and immunomodulatory properties. PMSCs release a plethora of cytokines and chemokines key to angiogenic signaling and facilitate the possibility of delivering PMSC-derived exosomes as a targeted therapy to promote angiogenesis. However, there still remains the challenge of heterogeneity in the isolated populations, questions on the maternal or fetal origin of these cells and the diversity in previously reported isolation and culture conditions. Nonetheless, the growing rate of clinical trials using PMSCs clearly indicates a shift in favor of PMSCs. The overall aim of the review is to highlight the importance of this rather poorly understood cell type and emphasize the need for further investigations into their angiogenic potential as an alternative source for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Suja Ann Mathew
- School of Regenerative Medicine, Manipal Academy of Higher Education, MAHE, Allalasandra, Near Royal Orchid, Yellahanka, Bangalore, 560 065, India.
| | - Charuta Naik
- School of Regenerative Medicine, Manipal Academy of Higher Education, MAHE, Allalasandra, Near Royal Orchid, Yellahanka, Bangalore, 560 065, India
| | - Paul A Cahill
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin Dublin 9, Ireland
| | - Ramesh R Bhonde
- Dr. D.Y. Patil Vidyapeeth (DPU), Pimpri, Pune, 411018, India.
| |
Collapse
|
13
|
Khalil C, Moussa M, Azar A, Tawk J, Habbouche J, Salameh R, Ibrahim A, Alaaeddine N. Anti-proliferative effects of mesenchymal stem cells (MSCs) derived from multiple sources on ovarian cancer cell lines: an in-vitro experimental study. J Ovarian Res 2019; 12:70. [PMID: 31351482 PMCID: PMC6660927 DOI: 10.1186/s13048-019-0546-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have surfaced as ideal candidates for treatment of different therapeutically challenging diseases however their effect on cancer cells is not well determined. In this study, we investigated the effect of MSCs derived from human bone marrow (BM), adipose tissue (AT), and umbilical cord derived MSCs (UC-MSCs) on ovarian cancer.Measurements of ovarian tumor marker proteins were computed by ELISA. Proliferative, apoptosis and anti-inflammatory effects of the MSCs were measured by Flow cytometry (FCM). MMPs expression was measured by RT-PCR.The co-culture of cancer cell lines OVCAR3, CAOV3, IGROV3 and SKOV3 with the conditioned media of MSCs (CM-MSC) and MSCs showed an increase in cellular apoptosis, along with a reduction in the level of CA-125 and a decline of LDH and beta-hCG. A decrease in CD24 of the cancer cell lines in co-culture with the CM-MSCs showed a reduction of the cancer tumorigenicity. In addition, the invasion and aggressiveness of cancer cell lines was significantly decreased by CM-MSC; this was translated by a decrease in MMP-2, MMP-9, and CA-125 mRNA expression, and an increase in TIMP 1, 2, and 3 mRNA expression. An increase in IL-4 and IL-10 cytokines, and a decrease in GM-CSF, IL-6, and IL-9, were also noted.In conclusion, mesenchymal stem cells derived from different sources and their conditioned media appear to have a major role in inhibition of cancer aggressiveness and might be considered as a potential therapeutic tool in ovarian cancer.
Collapse
Affiliation(s)
- C Khalil
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
- Reviva Research and Application Center-Lebanese University, Middle East Institute of Health University Hospital, Beirut, Lebanon
| | - M Moussa
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - A Azar
- Reviva Research and Application Center-Lebanese University, Middle East Institute of Health University Hospital, Beirut, Lebanon
| | - J Tawk
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - J Habbouche
- Reviva Research and Application Center-Lebanese University, Middle East Institute of Health University Hospital, Beirut, Lebanon
| | - R Salameh
- Reviva Research and Application Center-Lebanese University, Middle East Institute of Health University Hospital, Beirut, Lebanon
| | - A Ibrahim
- Reviva Research and Application Center-Lebanese University, Middle East Institute of Health University Hospital, Beirut, Lebanon
- Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | - N Alaaeddine
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon.
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|