1
|
Sokołowski A, Piskorski P, Dybowski M, Szerement J, Oleszczuk P, Gao Y, Czech B. Corn-derived biochar mitigates oxidative stress and increases the content of essential elements in lettuce leaves grown in phthalate-polluted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 986:179803. [PMID: 40449352 DOI: 10.1016/j.scitotenv.2025.179803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/27/2025] [Accepted: 05/29/2025] [Indexed: 06/03/2025]
Abstract
Phthalic acid esters (PAEs) are recognized markers of microplastic pollution of the environment. The study assessed the effects of different biochars (BC) derived from sewage sludge (SS), corn residues (CR), sunflower (SF), and residues from biogas production (BG) on lettuce grown in PAEs-polluted soil. The BC varied in composition, porosity, and carbon structure, with CR-BC exhibiting the highest surface area and optimal aliphatic carbon content, making it the most effective for soil application. SS had the highest heavy metal and PAHs content, though within safe limits. Elevated phosphate levels in lettuce leaves, influenced by high PAHs, ash, and metal content in BC, were associated with increased CAT activity, indicating oxidative stress. A strong positive correlation was found between Cd and phosphate content, especially in SS-treated plants, and between phosphate and B. CR-BC limited heavy metal uptake while promoting beneficial nutrient interactions (such as between Ca and Mg). PAEs accumulation in lettuce was strongly negatively correlated with phosphate and B levels, suggesting these elements reduce pollutant uptake. Among treatments, CR-BC significantly reduced PAEs accumulation in lettuce leaves, which is critical for food safety. CR-BC also enhanced lettuce biomass, chlorophyll content, and nutrient uptake, and it decreased oxidative stress (lower levels of MDA and enhanced antioxidant enzyme activity of SOD and CAT). Conversely, BG-BC negatively affected plant growth, likely due to its high pH. Overall, the findings highlight the importance of BC feedstock properties, with corn-derived BC offering the most beneficial effects on plant health and pollutant mitigation in polluted soils.
Collapse
Affiliation(s)
- Artur Sokołowski
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Patryk Piskorski
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Michał Dybowski
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Justyna Szerement
- Environmental Analysis Laboratory, Faculty of Environmental and Energy Engineering, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
2
|
Shen J, Cai B, Zhou Y, Chinfak N, Li Q, Zhao H. Pollution characteristics, spatial variation, and ecological risks of phthalate esters in seawater and sediment from nine estuaries and their adjacent areas of Hainan Island, China. MARINE ENVIRONMENTAL RESEARCH 2025; 207:107062. [PMID: 40056858 DOI: 10.1016/j.marenvres.2025.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
Phthalate esters (PAEs) are omnipresent emerging contaminants, garnering increasing public attention. Nevertheless, the occurrence and potential risks of PAEs in tropical estuarine and coastal regions remain largely unexplored. This study investigated the occurrence, spatial distribution, and ecological risks of 12 PAEs in seawater and sediment samples collected from 9 estuaries and their adjacent areas around Hainan Island. All the 12 PAEs were examined through solid-phase extraction followed by Gas Chromatography-Mass Spectrometry (GC-MS) analyses. The total concentrations of 12 PAEs (∑12PAEs) in the seawater and sediment samples were 25.6-3280.6 ng/L (mean: 721.0 ± 216.2 ng/L) and 27.0-1503.8 μg/kg dry weight (dw) (mean: 242.6 ± 272.6 μg/kg dw), respectively. Dimethyl phthalate (DMP), Dibutyl phthalate (DBP), Di(2-ethylhexyl) phthalate (DEHP), and Dimethoxyethyl phthalate (DMEP) were identified as primary homologs in both the seawater and the sediments. Additionally, the concentrations of ∑12PAEs showed a decreasing trend from estuarine sites to offshore sites, indicating that riverine input may be a primary pathway for PAEs pollution in the coastal areas around Hainan Island. Preliminary risk assessment implied that DBP, DEHP, DMEP, and Bis(2-ethoxyethyl) phthalate (DEEP), pose potential threats to sensitive aquatic organisms in this region. Collectively, our findings provide valuable insights for source control and serve as a critical reference for establishing water quality criteria to mitigate PAEs pollution in tropical marine.
Collapse
Affiliation(s)
- Jiashun Shen
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China
| | - Bing Cai
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China
| | - Yanyu Zhou
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China
| | - Narainrit Chinfak
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Qipei Li
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; Hainan International Joint Research Center for Coral Reef Ecology, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Cui Z, Shi C, Zha L, Liu J, Guo Y, Li X, Zhang E, Yin Z. Phthalates in the environment of China: A scoping review of distribution, anthropogenic impact, and degradation based on meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117659. [PMID: 39778321 DOI: 10.1016/j.ecoenv.2024.117659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Phthalates (PAEs) are a group of endocrine-disrupting environmental chemicals (EEDs) that pose significant risks to human health. PAEs are widespread in various environmental media, including air, dust, water, and soil, and are subject to both horizontal and vertical migration. Human activities significantly influence the distribution of PAEs, yet current research on this relationship remains limited. In this study, we first describe the hot issues of PAEs in the environment through bibliometrics, and then review published related studies. We outline the global distribution of PAEs in different media and conducted a comparative analysis of their composition. Principal component analysis (PCA) revealed PAEs differences in environmental mediums and geographic locations. Correlation analysis between PAEs composition and human activities in China further demonstrated that PAE concentrations were closely linked to agricultural and industrial activities. We also discussed the biodegradation and abiotic degradation of PAEs, finding that bacteria play a crucial role in their degradation in soil. This study aims to assess the distribution, transfer, impact, and degradation of PAEs, providing insights for the prevention and remediation of PAE pollution.
Collapse
Affiliation(s)
- Zhigang Cui
- School of Nursing, China Medical University, Shenyang 110122, PR China
| | - Ce Shi
- School of Stomatology, China Medical University, Shenyang 110002, PR China
| | - Lanting Zha
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jiaman Liu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yinchu Guo
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiaohan Li
- School of Nursing, China Medical University, Shenyang 110122, PR China.
| | - Enjiao Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, PR China.
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
4
|
Yang YJ, Zhu MJ. Influences of bisphenol A on hydrogen production from food waste by thermophilic dark fermentation. ENVIRONMENTAL RESEARCH 2024; 260:119625. [PMID: 39019138 DOI: 10.1016/j.envres.2024.119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
The extensive use of plastic products in food packaging and daily life makes them inevitably enter the treatment process of food waste (FW). Plasticizer as a new pollutant is threatening the dark fermentation of FW. Our study showed that bisphenol A (BPA) at > 250 mg/L had a significant inhibition on hydrogen production from FW by thermophilic dark fermentation. The endogenous ATP content and lactate dehydrogenase (LDH) release showed that high level of BPA not only inhibited the growth of hydrogen-producing consortium, but also led to cell death. In addition, BPA mainly affects the hydrogen-producing consortium by reducing cell membrane fluidity, damaging cell membrane integrity and reducing cell membrane potential, resulting in cell death. This study provides some new insights into the mechanism of the effect of BPA on hydrogen production from FW by thermophilic dark fermentation, and lays the foundation on the utilization of FW.
Collapse
Affiliation(s)
- Yong-Jun Yang
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities Under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, 844006, China.
| |
Collapse
|
5
|
Virachabadoss VRA, Appavoo MS, Paramasivam KS, Karthikeyan SV, Govindan D. The addition of humic acid into soil contaminated with microplastics enhanced the growth of black gram (Vigna mungo L. Hepper) and modified the rhizosphere microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63343-63359. [PMID: 39482414 DOI: 10.1007/s11356-024-35441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
Microplastics have polluted agricultural soils, posing a substantial risk to crop productivity. Moreover, the presence of microplastic pollution has caused a disturbance in the composition of the microbial community in the soil surrounding plant roots, therefore impacting the growth of beneficial bacteria. A study was conducted to examine if humic acid (HA) can counteract the harmful effects of microplastics (MPs) on the growth of black gram crops and the composition of the rhizosphere soil microbial community, to reduce the negative impacts of microplastics on these microorganisms and crops. The research was carried out using mud pots and the plastic utilized for the experiment consisted of 60% high-density polyethylene (HDPE) and 40% polypropylene (PP). The soil was enriched with lignite-based potassium humate, which had a pH range of 8.0-9.5 and with 65% humic acid. The experiment consisted of six treatments: T1, which served as the control without HA and MP; T2, which involved the use of HA at a concentration of 0.15% w/w; T3, which involved the use of MP at a concentration of 0.2% w/w; T4, which involved the use of MP at a concentration of 0.4% w/w; T5, which involved the combination of HA at a concentration of 0.15% w/w and MP at a concentration of 0.2% w/w; and T6, which involved the combination of HA at a concentration of 0.15% w/w and MP at a concentration of 0.4% w/w. The plant growth characteristics, including germination percentage, nodule number, and chlorophyll content, were measured. In addition, the DNA obtained from the rhizosphere soil was analyzed using metagenomics techniques to investigate the organization of the microbial population. Seedlings in soil polluted with MP exhibited delayed germination compared to seedlings in uncontaminated soil. Following 60 days of growth, the soil samples treated with T5 (0.2% MP and 0.15% HA w/w) had the highest population of bacteria and rhizobium, with counts 5.58 ± 0.02 and 4.90 ± 0.02 CFU g-1 soil. The plants cultivated in T5 had the most elevated chlorophyll-a concentration (1.340 ± 0.06 mg g-1), and chlorophyll-b concentration (0.62 ± 0.02 mg g-1) while those cultivated in T3 displayed the lowest concentration of chlorophyll-a (0.59 ± 0.02 mg g-1) and chlorophyll-b (0.21 ± 0.04 mg g-1). Within the phylum, Proteobacteria had the highest prevalence in all treatments. However, when the soil was polluted with MPs, its relative abundance was reduced by 8.4% compared to the control treatment (T1). Conversely, treatment T5 had a 3.76% rise in relative abundance when compared to treatment T3. The predominant taxa found in soil polluted with MP were Sphingomonas and Bacillus, accounting for 19.3% of the total. Sphingomonas was the predominant genus (21.2%) in soil polluted with MP and supplemented with humic acid. Humic acid can be used as a soil amendment to mitigate the negative effects of MPs and enhance their positive advantages. Research has demonstrated that incorporating humic acid into soil is a viable method for maintaining the long-term integrity of soil's physical, chemical, and biological characteristics.
Collapse
Affiliation(s)
| | - Merline Sheela Appavoo
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India.
| | - Kumara Sashidara Paramasivam
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India
| | - Sri Vishnu Karthikeyan
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India
| | - Dhinagaran Govindan
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India
| |
Collapse
|
6
|
Pereyra-Camacho MA, Balderas-Hernández VE, Barba-de la Rosa AP, De Leon-Rodriguez A. Whole-cell biocatalysis for phthalate esters biodegradation in wastewater by a saline soil bacteria SSB-consortium. CHEMOSPHERE 2024; 364:143243. [PMID: 39233295 DOI: 10.1016/j.chemosphere.2024.143243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Phthalic acid esters (PAE) are widely used as plasticizers and have been classified as ubiquitous environmental contaminants of primary concern. PAE have accumulated intensively in surface water, groundwater, and wastewaters; thus, PAE degradation is essential. In the present study, the ability of a saline soil bacteria (SSB)-consortium to degrade synthetic wastewater-phthalates with alkyl chains of different lengths, such as diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), and di (2-ethylhexyl) phthalate (DEHP) was characterized. A central composite design-response surface methodology was applied to optimize the degradation of each phthalate, where the independent variables were temperature (21-41 °C), pH (5.3-8.6) and PAE concentration (79.5-920.4 mg L-1), and Gas Chromatography-Mass Spectrometry was used to identify the metabolites generated during phthalate degradation. Optimal conditions were 31 °C, pH 7.0, and an initial PAE concentration of 500 mg L-1, where the SSB-consortium removed 84.9%, 98.47%, 99.09% and 98.25% of initial DEP, DBP, BBP, and DEHP, respectively, in 168h. A first-order kinetic model explained - the biodegradation progression, while the half-life of PAE degradation ranged from 12.8 to 29.8 h. Genera distribution of the SSB-consortium was determined by bacterial meta-taxonomic analysis. Serratia, Methylobacillus, Acrhomobacter, and Pseudomonas were the predominant genera; however, the type of phthalate directly affected their distribution. Scanning electron microscopy analysis showed that high concentrations (1000 mg L-1) of phthalates induced morphological alterations in the bacterial SSB-consortium. The metabolite profiling showed that DEP, DBP, BBP, and DEHP could be fully metabolized through the de-esterification and β-oxidation pathways. Therefore, the SSB-consortium can be considered a potential candidate for bioremediation of complex phthalate-contaminated water resources.
Collapse
Affiliation(s)
- Marco A Pereyra-Camacho
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San José No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216 Mexico
| | - Victor E Balderas-Hernández
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San José No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216 Mexico
| | - Ana P Barba-de la Rosa
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San José No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216 Mexico
| | - Antonio De Leon-Rodriguez
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San José No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216 Mexico.
| |
Collapse
|
7
|
Zhuang H, Li Z, Wang M, Liu B, Chu Y, Lin Z. Effects of microplastics and combined pollution of polystyrene and di-n-octyl phthalate on photosynthesis of cucumber (Cucumis sativus L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174426. [PMID: 38969123 DOI: 10.1016/j.scitotenv.2024.174426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Photosynthesis provides carbon sources and energy for crop growth and development, and the widespread presence of microplastics and plastic plasticisers in agricultural soils affects crop photosynthesis, but the mechanism of the effect is not clear. This study aims to investigate the effects of different microplastics and plasticizers on cucumber photosynthesis. Using polyvinyl chloride (PVC), polyethylene (PE), polystyrene (PS), and di-n-octyl phthalate (DOP) as representative microplastics and plasticizers, we assessed their impact on cucumber photosynthesis. Our results reveal significant alterations in key parameters: intercellular CO2 concentration (Ci) and transpiration rate (Tr) increased across all treatments, whereas stomatal limit value (Ls) and water use efficiency (WUE) decreased. Notably, PS + DOP treatment led to a significant reduction in the maximum efficiency of photosystem II (Fv/Fm) and ATP accumulation. Furthermore, PE and PS + DOP treatments decreased lycopene and ɛ-carotene synthesis rates, as well as abscisic acid (ABA) accumulation. All treatments inhibited the conversion of β-carotene into strigolactone (SL) and decreased chlorophyll synthesis rates, with PS + DOP exhibiting the most severe impact. Regarding chlorophyll degradation pathways, PVC and PE treatments reduced chlorophyll decomposition rates, whereas DOP with PS promoted degradation. PE and PS treatments also impaired light energy capture, electron transport, and the structural stability of photosystems I and II, as well as photosynthetic capacity and NADPH and ATP synthesis rates. Our findings underscore the differential impacts of microplastics and plasticizers on cucumber photosynthesis, with PS + DOP having the most detrimental effect. These results shed light on the complex interactions between microplastics and plant physiology, highlighting the urgent need for mitigation strategies in agricultural practices to safeguard crop productivity and environmental sustainability.
Collapse
Affiliation(s)
- Haoran Zhuang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhenxia Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan 453003, China.
| | - Menglin Wang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Bo Liu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yiwen Chu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ziyu Lin
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan 453003, China
| |
Collapse
|
8
|
Jang M, Lee M, Chung S, Park SA, Park H, Jeon H, Jegal J, Park SB, Oh DX, Shin G, Kim HJ. Ecotoxicity assessment of additives in commercial biodegradable plastic products: Implications for sustainability and environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172903. [PMID: 38697526 DOI: 10.1016/j.scitotenv.2024.172903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/11/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Biodegradable plastics have gained popularity as environmentally friendly alternatives to conventional petroleum-based plastics, which face recycling and degradation challenges. Although the biodegradability of these plastics has been established, research on their ecotoxicity remains limited. Biodegradable plastics may still contain conventional additives, including toxic and non-degradable substances, to maintain their functionality during production and processing. Despite degrading the polymer matrix, these additives can persist in the environment and potentially harm ecosystems and humans. Therefore, this study aimed to assess the potential ecotoxicity of biodegradable plastics by analyzing the phthalate esters (PAEs) leaching out from biodegradable plastics through soil leachate. Sixteen commercial biodegradable plastic products were qualitatively and quantitatively analyzed using gas chromatography-mass spectrometry to determine the types and amounts of PAE used in the products and evaluate their ecotoxicity. Among the various PAEs analyzed, non-regulated dioctyl isophthalate (DOIP) was the most frequently detected (ranging from 40 to 212 μg g-1). Although the DOIP is considered one of PAE alternatives, the detected amount of it revealed evident ecotoxicity, especially in the aquatic environment. Other additives, including antioxidants, lubricants, surfactants, slip agents, and adhesives, were also qualitatively detected in commercial products. This is the first study to quantify the amounts of PAEs leached from biodegradable plastics through water mimicking PAE leaching out from biodegradable plastics to soil leachate when landfilled and evaluate their potential ecotoxicity. Despite their potential toxicity, commercial biodegradable plastics are currently marketed and promoted as environmentally friendly materials, which could lead to indiscriminate public consumption. Therefore, in addition to improving biodegradable plastics, developing eco-friendly additives is significant. Future studies should investigate the leaching kinetics in soil leachate over time and toxicity of biodegradable plastics after landfill disposal.
Collapse
Affiliation(s)
- Min Jang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Minkyung Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Seonghyn Chung
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seul-A Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Huijeong Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Sung Bae Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
| |
Collapse
|
9
|
Zhao L, Wang P, Li Y, Yu M, Zheng Y, Ren L, Wang Y, Li J. Feasibility of anaerobic co-digestion of biodegradable plastics with food waste, investigation of microbial diversity and digestate phytotoxicity. BIORESOURCE TECHNOLOGY 2024; 393:130029. [PMID: 37977495 DOI: 10.1016/j.biortech.2023.130029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The effects of biodegradable plastics of different thicknesses (30 and 40 μm) and sizes (20 × 20, 2 × 2, and 1 × 1 mm) on anaerobic digestion of food waste and digestate phytotoxicity were investigated. Methane productions (38 days) for the groups with 20 × 20, 2 × 2, and 1 × 1 mm of 30 μm plastics were 92.46, 138.27, and 259.95 mL/gVSremoval, respectively which are nearly 58 % higher than the control group (58.86 mL/gVSremoval). Methane production in 40 μm plastics groups was lower than in 30 μm groups of equal size. All sizes of 30 µm plastics promoted substrate hydrolysis, acidification, and relative abundance of key hydrolytic bacteria and methanogens. Phytotoxicity tests results showed that seed root elongation was inhibited in groups with 40 μm plastics. In conclusion, 30 μm biodegradable plastics were more suitable for anaerobic digestion with food waste than 40 μm.
Collapse
Affiliation(s)
- Liya Zhao
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yingnan Li
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Miao Yu
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yi Zheng
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Lianhai Ren
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yongjing Wang
- School of Ecology and Environment, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Ji Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Ghafghazi L, Taghavi L, Rasekh B, Farahani H, Hassani AH. Application of compost assisted by Fe 3O 4 nanoparticles in di (2-ethylhexyl) phthalate-contaminated soil remediation: Biostimulation strategy, Soil responses, and RSM/CCD Optimization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168029. [PMID: 37898188 DOI: 10.1016/j.scitotenv.2023.168029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/01/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Globally, contamination of agricultural soils by phthalate esters (PAEs) caused by direct consumption of plastic mulch films has been confirmed. The most widely used plasticizer is di (2-ethylhexyl) phthalate (DEHP), which is a more recalcitrant endocrine-disrupting chemical (EDC). Because of its low solubility and hydrophobicity, it remains in the soil longer, causes bioaccumulation in agricultural products, and has negative repercussions for food safety. In this study, the performance of kitchen organic waste compost assisted by Fe3O4 nanoparticles in DEHP removal efficiency (%) and soil C:N ratio (two responses) was optimized using Response Surface Methodology (RSM) based on Central Composite Design (CCD) in Design-Expert software (11.0.3.0). Under optimum conditions, a DEHP concentration of 10 mg·kg-1 (dw soil), a retention time of 35 days, an NPs dose of 0.99 g·kg-1 (media), a removal efficiency of 91.6 %, and a soil C:N ratio of 10.5 with a desirability of 0.963 were determined. A quadratic model (P-value <0.0001, adjusted R2 = 0.974 (Y1), 0.943 (Y2)) was used to predict the variables and their interactions. The agricultural soil responses in the treatments amended by compost and Fe3O4 NPs (SCN) showed a significant increase in SOM, TC, TN, AP, K, and Fe nutrients when compared to the control (P < 0.05). After 35 days, in the SC1N3 treatment (DEHP concentration = 10 mg·kg-1, NPs dose =1.2 g·kg-1), with higher DEHP removal efficiency (89.57 %), the C:N:P ratio was equal to 100: 9.75:0.69, and the total microbial colony count was 3.6 × 109 CFU/ml at pH 7.45. The study found that compost nutrients and Fe-based nanoparticle micronutrients can enhance DEHP degradation by stimulating the soil's native microflora. As a result, the synergistic potential of compost and Fe3O4 nanoparticles can be considered a promising, cost-effective, and agri-environmentally friendly approach in the "assisted bioremediation" strategy of DEHP-contaminated soils.
Collapse
Affiliation(s)
- Laleh Ghafghazi
- Department of Environmental Science and Forest, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University (SRBIAU), P. O. Box 14515-775, Tehran, Iran
| | - Lobat Taghavi
- Department of Environmental Science and Forest, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University (SRBIAU), P. O. Box 14515-775, Tehran, Iran.
| | - Behnam Rasekh
- Environment & Biotechnology Division, Research Institute of Petroleum Industry (RIPI), P. O. Box: 14665-137, Tehran, Iran
| | - Hadi Farahani
- Research Institute of Petroleum Industry (RIPI), P. O. Box 1485733111, Tehran, Iran
| | - Amir Hessam Hassani
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Zhang Y, Gao Y, Xi B, Li Y, Ge X, Gong Y, Chen H, Chen J, Tan W, Yuan Y. Full life cycle and sustainability transitions of phthalates in landfill: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:215-229. [PMID: 37717503 DOI: 10.1016/j.wasman.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/26/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Phthalates (PAEs) are added to various products as a plasticizer. As these products age and are disposed of, plastic waste containing PAEs enters the landfill. The landfill environment is complicated and can be regarded as a "black box". Also, PAEs do not bind with the polymer matrix. Therefore, when a series of physical chemistry and biological reactions occur during the stabilization of landfills, PAEs leach from waste and migrate to the surrounding environmental media, thereby contaminating the surrounding soil, water ecosystems, and atmosphere. Although research on PAEs has achieved progress over the years, they are mainly concentrated on a particular aspect of PAEs in the landfill; there are fewer inquiries on the life cycle of PAEs. In this study, we review the presence of PAEs in the landfill in the following aspects: (1) the main source of PAEs in landfills; (2) the impact of the landfill environment on PAE migration and conversion; (3) distribution and transmedia migration of PAEs in aquatic ecosystems, soils, and atmosphere; and (4) PAE management and control in the landfill and future research direction. The purpose is to track the life cycle of PAEs in landfills, provide scientific basis for in-depth understanding of the migration and transformation of PAEs and environmental pollution control in landfills, and new ideas for the sustainable utilization of landfills.
Collapse
Affiliation(s)
- Yifan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoyuan Ge
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Lan Zhou Jiao Tong University, Lanzhou 730070, China
| | - Yi Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Beijing University of Chemical Technology, Beijing 100029, China
| | - Huiru Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; North China University of Water Resources and Electric Power, Zheng Zhou 450046, China
| | - Jiabao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
12
|
Yang WT, Yi YJ, Xia B. Unveiling the duality of Pantoea dispersa: A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162320. [PMID: 36801414 DOI: 10.1016/j.scitotenv.2023.162320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pantoea dispersa is a Gram-negative bacterium that exists in a variety of environments and has potential in many commercial and agricultural applications, such as biotechnology, environmental protection, soil bioremediation, and plant growth stimulation. However, P. dispersa is also a harmful pathogen to both humans and plants. This "double-edged sword" phenomenon is not uncommon in nature. To ensure survival, microorganisms respond to both environmental and biological stimuli, which could be beneficial or detrimental to other species. Therefore, to harness the full potential of P. dispersa, while minimizing potential harm, it is imperative to unravel its genetic makeup, understand its ecological interactions and underlying mechanisms. This review aims to provide a comprehensive and up-to-date overview of the genetic and biological characteristics of P. dispersa, in addition to potential impacts on plants and humans, as well as to provide insights into potential applications.
Collapse
Affiliation(s)
- Wen-Tao Yang
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China
| | - You-Jin Yi
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China
| | - Bo Xia
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China.
| |
Collapse
|
13
|
Reay MK, Greenfield LM, Graf M, Lloyd CEM, Evershed RP, Chadwick DR, Jones DL. LDPE and biodegradable PLA-PBAT plastics differentially affect plant-soil nitrogen partitioning and dynamics in a Hordeum vulgare mesocosm. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130825. [PMID: 36708602 DOI: 10.1016/j.jhazmat.2023.130825] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Micro and macroplastics are emerging contaminants in agricultural settings, yet their impact on nitrogen (N) cycling and partitioning in plant-soil-microbial systems is poorly understood. In this mesocosm-scale study, spring barley (Hordeum vulgare L.) was exposed to macro or microplastic produced from low density polyethylene (LDPE) or biodegradable plastic at concentrations equivalent to 1, 10 and 20 years of plastic mulch film use. Partitioning of 15N-labelled fertiliser into plant biomass, soil and leachate yielded a partial mass balance. Soil N partitioning was probed via compound-specific 15N-stable isotope analyses of soil microbial protein. Concentration-dependent decreases in plant 15N uptake occurred with increased leached nitrogen for LDPE microplastic. Assimilation into soil microbial protein was higher for biodegradable plastics, which we associate with early-stage biodegradable plastic degradation. Partitioning of 15N into inorganic soil N pools was affected by LDPE size, with lower assimilation into the microbial protein pool. While microplastics and macroplastics altered soil N cycling, the limited impacts on plant health indicated the threshold for negative effects was not reached at agriculturally relevant concentrations. This study highlights the difference between conventional and biodegradable plastics, and emphasises that the interplay of micro and macroplastics on soil N cycling must be considered in future studies.
Collapse
Affiliation(s)
- Michaela K Reay
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Lucy M Greenfield
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Martine Graf
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Charlotte E M Lloyd
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Richard P Evershed
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Dave R Chadwick
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
14
|
Kumari A, Rajput VD, Mandzhieva S, Minkina T, Kaur R. Morpho-biochemical Responses and Disturbed Redox Homeostasis in Barley Under Benzyl-butyl Phthalate Stress. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:47. [PMID: 36692586 DOI: 10.1007/s00128-022-03664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The present study is aimed to address the morphometric consequences, yield attributes, and biochemical responses of barley plants under the stress of an endocrine disruptor i.e., benzyl-butyl phthalate (BBP). The morphometric analyses (plant length, dry weight, and net primary productivity) revealed that the inhibition induced by BBP was concentration- and time-dependent. The seed weight and the number of seeds per spike have also significantly declined with an increase in BBP doses. Similarly, BBP exhibited significant alterations over the control in the biochemical indices viz., pigments, sugars, proteins, proline, malonaldehyde, and hydrogen peroxide contents of barley plants. Furthermore, BBP stress negatively influenced the activities of antioxidative enzymes viz., SOD, POD, CAT, APX, and GR of barley with an increase in doses and exposure durations due to the over-produced reactive oxygen species. The uptake and transport of BBP were determined and observed as a responsible cue for these toxicological implications in barley plants under BBP exposure. The correlation of barley plants' morpho-biochemical responses with BBP uptake and transport was also established using Pearson's correlation. Thus, this study indicated the toxicological behavior of meagerly explored phthalate (i.e., BBP) in the crop plant and these observations can be utilized for the generation of tolerant cultivars.
Collapse
Affiliation(s)
- Arpna Kumari
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India.
| |
Collapse
|
15
|
Xiang Y, Rene ER, Ma W. Enhanced bio-reductive degradation of fluoroglucocorticoids in the groundwater fluctuation zone by external electron donors: Performance, microbial community, and functional genes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127015. [PMID: 34482082 DOI: 10.1016/j.jhazmat.2021.127015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/03/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the effectiveness of external electron donors on the bio-reductive degradation enhancement of fluoroglucocorticoids (FGCs) in the groundwater fluctuation zone during the wet season when reverse upward fluctuation of the groundwater table occurs and the dry season after the groundwater table declines. The results showed that the external electron donors, provided by the addition of nano zero-valent iron-modified biochar (nZVI@BC), inhibited the migration and enhanced the reductive defluorination of triamcinolone acetonide (TA), a representative FGC. The accumulation rate constant with temporal fluctuation depth and the attenuation rate constant with vertical fluctuation depth were -2.55 × 10-3 and 4.20 × 10-2, respectively, in the groundwater of the natural groundwater fluctuation zone (N-FZ). In contrast, the accumulation and attenuation rate constants were, respectively, 35.6% and 2.64 times higher in the groundwater fluctuation zone amended with nZVI@BC (nZVI@BC-FZ) as compared with those observed in the N-FZ. Furthermore, the decay rate constant of the TA residue in the dry season was 0.843 × 10-2 μg/d in N-FZ and was 2.19 times higher in nZVI@BC-FZ. This enhancement effect, caused by the addition of external electrons, was positively correlated with the evolution of the microbial community and the expression of functional genes. The microbes evolved into functional genera with reductive dehalogenation (Xylophilus and Hydrogenophaga) and iron-oxidizing (Lysobacter, Pseudoxanthomonas, and Sphingomonas) abilities in the nZVI@BC-FZ system, which increased dehalogenation and iron oxide genes by a 4-5 order of magnitude. The utilization proportion of external electrons for TA metabolism was 50.04%, of which 30.82%, 10.26%, and 8.96% were utilized for defluorination, hydrogenation, and ring-opening, respectively. This study provides an effective method to reduce pollutant diffusion and enhance the bio-reductive degradation caused by groundwater table fluctuation.
Collapse
Affiliation(s)
- Yayun Xiang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
16
|
Kong X, Bai Z, Jin T, Jin D, Pan J, Yu X, Cernava T. Arthrobacter is a universal responder to di-n-butyl phthalate (DBP) contamination in soils from various geographical locations. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126914. [PMID: 34419851 DOI: 10.1016/j.jhazmat.2021.126914] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Plasticizer phthalic acid esters (PAEs) are commonly found as contaminants in various soils. Previous studies indicated that their natural degradation can substantially differ among soil types; however, potential implications of the soil microbiome remained largely unexplored. Here, we have collected ten soil types from nine different geographical regions of China to investigate the degradation of DBP therein and role of bacteria in this process. Results showed that the degradation rate of DBP was lowest in nutrient-poor red soils from Jiangxi Province, while it was highest in fluvo-aquatic soil from Hebei Province. Bacterial community responses to DBP substantially differed in each of the analyzed soils. Arthrobacter is known for its broad-spectrum activity in terms of DBP degradation in soil and was therefore implemented as bioremediating inoculant in many polluted environments. In the present study, network analyses indicated that synergism between soil bacteria increased following exposure to DBP. Arthrobacter and Sphingomonas were found to expand their positive interactions with other members of the microbiome in DBP-contaminated soils. The overall findings of our study provide a basis for biomarker development for detection of DBP contaminations and an extended basis for future bioremediation approaches based on beneficial bacteria.
Collapse
Affiliation(s)
- Xiao Kong
- School of Public Health, Qingdao University, Qingdao 266021, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhanbing Bai
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tuo Jin
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
| |
Collapse
|
17
|
Zeng G, Zhang Q, Wang X, Wu KH. Urinary levels of Phthalate metabolite mixtures and pulmonary function in adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118595. [PMID: 34843848 DOI: 10.1016/j.envpol.2021.118595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Although an association between urinary phthalate (PAE) metabolites and respiratory symptoms and diseases has been reported, knowledge regarding its effect on pulmonary function is limited, especially in adolescents. Using cross-sectional data from 1389 adolescents (aged 10-19 years) in the 2007-2012 National Health and Nutrition Examination Survey, the association of mixed urinary PAE metabolites with pulmonary function was evaluated using the weighted quantile sum. Moreover, multivariate linear regression was performed to investigate associations between each urinary PAE metabolite and pulmonary function indicators and to estimate the interaction effects between urinary PAE metabolites and demographic characteristics. We found that mixed urinary PAE metabolites were negatively associated with forced expiratory volume at the 1 s (FEV1, p < 0.001) and forced vital capacity (FVC, p = 0.008) levels. In individual PAE metabolite analyses, mono (carboxynonyl) pthalate (MCNP), mono-n-butyl pthalate (MnBP), mono-isobutyl pthalate (MiBP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) and mono-benzyl phthalate (MBzP) correlated negatively with both FVC and FEV1 values (Holm-Bonferroni corrected p < 0.05). Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was negatively associated with the FVC value. Significant interactions between sex and urinary MnBP or MBzP levels for the risk of FEV1 decrease in girls were found (p = 0.005), as was a significant interaction between sex and urinary MBzP level for the risk of FVC decline. Our findings suggest that higher PAE exposure is associated with respiratory dysfunction; the association is more pronounced among girls.
Collapse
Affiliation(s)
- Guowei Zeng
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Qi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kai-Hong Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
18
|
Chang X, Song Z, Xu Y, Gao M. Response of soil characteristics to biochar and Fe-Mn oxide-modified biochar application in phthalate-contaminated fluvo-aquic soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112755. [PMID: 34500388 DOI: 10.1016/j.ecoenv.2021.112755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/15/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Biochar (BC) derived from agricultural biomass is effective at immobilizing phthalate in the agricultural soil environment. In this study, we assessed the effects of 0.5%, 1%, and 2% BC and Fe-Mn oxide-modified biochar (FMBC) addition on dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) residues and biochemical characteristics in the rhizosphere soil of mature wheat polluted with DBP and DEHP using a pot experiment. Scanning electron microscopy showed that the surfaces and pores of BC and FMBC adhered soil mineral particles after remediation. Therefore, DBP and DEHP residues were increased in BC- and FMBC-treated soils. Illumina HiSeq sequencing showed that, compared with the control, BC and FMBC addition significantly enhanced the relative abundance of Firmicutes and reduced Proteobacteria. The abundance of Sphenodons and Pseudomonas, which degrade phthalates, tended to be higher in FMBC-amended soils than in BC-amended and control soils. This result may be related to an increase in available nutrients and organic matter following BC and FMBC application. Subsequently, the changes in soil bacterial abundance and community structure induced an increase in polyphenol oxidase, β-glucosidase, neutral phosphatase, and protease activity in BC and FMBC remediation. In comparison with the BC treatment, FMBC addition had a significantly positive effect on enzyme activity, and the microbial structure and was therefore more effective at immobilizing DBP and DEHP in the soil. Thus, our findings strongly suggest that FMBC is a reliable remediation material for phthalate-contaminated soil.
Collapse
Affiliation(s)
- Xipeng Chang
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Yalei Xu
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin 300387, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China.
| |
Collapse
|
19
|
Gao M, Chang X, Xu Y, Guo Z, Song Z. Effects of Fe-Mn impregnated biochar on enzymatic activity and bacterial community in phthalate-polluted brown soil planted with wheat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117179. [PMID: 33906035 DOI: 10.1016/j.envpol.2021.117179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
A pot experiment was carried out on brown soil polluted by dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) to investigate the effects of biochar (BC) derived from corn straw and Fe-Mn oxide modified biochar composites (FMBC) on the bioavailability of DBP and DEHP, as well as ecosystem responses in rhizosphere soil after wheat ripening. The results indicate that the application of BC and FMBC significantly increases soil organic matter, pH, available nitrogen (AN), Olsen phosphorus, and available potassium (AK); reduces the bioavailability of DBP and DEHP; enhances the activities of dehydrogenase, urease, protease, β-glucosidase, and polyphenol oxidase; and decreases acid phosphatase activity. No changes in richness and diversity, which were measured by Illumina MiSeq sequencing, were observed following BC and FMBC application. The bacterial community structure and composition varied with DBP/DEHP concentrations and BC/FMBC additions in a nonsystematic way and no significant trends were observed. In addition, FMBC exhibited better performance in increasing soil properties and decreasing the bioavailability of DBP and DEHP compared with BC. Hence, the FMBC amendment may be a promising way of developing sustainable agricultural environmental management.
Collapse
Affiliation(s)
- Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, No 243 Daxue Road, Shantou, Guangdong Province, 515063, China
| | - Xipeng Chang
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387, China
| | - Yalei Xu
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387, China
| | - Zeyang Guo
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, No 243 Daxue Road, Shantou, Guangdong Province, 515063, China.
| |
Collapse
|
20
|
Phytochemical Constituents and Allelopathic Potential of Parthenium hysterophorus L. in Comparison to Commercial Herbicides to Control Weeds. PLANTS 2021; 10:plants10071445. [PMID: 34371648 PMCID: PMC8309427 DOI: 10.3390/plants10071445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
The allelopathic effect of various concentrations (0, 6.25, 12.5, 50 and 100 g L-1) of Parthenium hysterophorus methanol extract on Cyperus iria was investigated under laboratory and glasshouse conditions. No seed germination was recorded in the laboratory when P. hysterophorus extract was applied at 50 g L-1. In the glasshouse, C. iria was mostly injured by P. hysterophorus extract at 100 g L-1. The phytochemical constituents of the methanol extract of P. hysterophorus were analyzed by LC-ESI-QTOF-MS=MS. The results indicated the presence of phenolic compounds, terpenoids, alkaloids, amino acids, fatty acids, piperazines, benzofuran, indole, amines, azoles, sulfonic acid and other unknown compounds in P. hysterophorus methanol extract. A comparative study was also conducted between P. hysterophorus extract (20, 40 and 80 g L-1) with a synthetic herbicide (glyphosate and glufosinate ammonium at 2 L ha-1) as a positive control and no treatment (negative control) on Ageratumconyzoides, Oryzasativa and C. iria. The growth and biomass of test weeds were remarkably inhibited by P. hysterophorus extract. Nevertheless, no significant difference was obtained when P. hysterophorus extract (80 g L-1) and synthetic herbicides (glyphosate and glufosinate ammonium) were applied on A.conyzoides.
Collapse
|
21
|
Abstract
The advantages and emergent interest in organism-derived bioactive molecules have recently renewed scientific research attention in this field. Since 1967, about 52 different derivatives of phthalate ester (PE) have been reported from different taxonomic groups. Anthropogenic derivatives of the PEs are confined to petroleum products, as a plasticizer. These derivatives exhibit a potential toxicity on the living system, particularly those having a reduced molecular weight. An organism-derived PE differs chemically from that of synthetic ones in terms of the abundance of 14C and its bond structure, leading to its varied activities in the biological system. The study of the biosynthetic pathway and the optimization of parameters for product enhancement have advocated their organism-derived nature. Various bioactivities of such organisms-derived derivatives of phthalates such as antibacterial, antifungal, an inducer of apoptosis and cell cycle arrest, antioxidant, cytotoxic, antitumor, allopathic, larvicidal, antifouling, chemotactic, antimelanogenic, antiviral, and anti-inflammatory activities have been well documented. This is the first review that focuses on the positive bioactivities of such organism-derived PEs in detail. There is enormous scope for research in this field to search for the utilization of such organism-derived phthalate derivatives will have potential bioactivity, their possible use to improve their efficacy.
Collapse
Affiliation(s)
- Raj Narayan Roy
- Microbiology Research Laboratory, Department of Botany, Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya, Purba-Bardhaman, India
| |
Collapse
|
22
|
Effects of Phthalate Esters on Ipomoea aquatica Forsk. Seedlings and the Soil Microbial Community Structure under Different Soil Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183489. [PMID: 31546793 PMCID: PMC6766064 DOI: 10.3390/ijerph16183489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023]
Abstract
Phthalate acid esters (PAEs) are the most frequently utilized synthetic chemical compounds worldwide. They are typical emergent contaminants and are currently attracting considerable concern due to their risks to plants, animals, and public health. Determining the vital environmental factors that affect the toxicity of target pollutants in soil is important for vegetable production and the maintenance and control of soil productivity. We investigated the influence of di-n-butyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP) under different soil conditions on physiological changes in water spinach (Ipomoea aquatic Forsk.) seedlings and the rhizosphere soil microbial community. Supported by our former experiments in which we determined the representative concentrations that caused the most pronounced toxic effects, three experimental concentrations were studied including control soils without PAEs and spiked soils with either 20 mg DBP or DEHP kg−1 soil. The soil at all the three PAE concentrations was then adjusted to test two soil pH values, three levels of soil organic matter (SOM) content, and three levels of soil moisture content; thus, we completed 12 treatments or conditions simulating different soil environment conditions in greenhouses. After 30 days of cultivation, we analyzed the toxicity effects of two target PAEs on plant growth and physiological factors, and on soil microbial community characteristics. The toxicity of soil DBP and DEHP to the physiology of water spinach was found to be most affected by the soil pH value, then by SOM content, and least of all by soil moisture. The results of the 454 high-throughput sequencing analysis of the soil microbial community indicated that the toxicity of target PAEs to soil microorganisms was most affected by SOM content and then by soil moisture, and no clear relationship was found with soil pH. Under different soil conditions, declines in leaf biomass, chlorophyll a content, and carotenoid content—as well as increases in free amino acid (FAA) content, superoxide anion free radical activity, and hydroxyl radical activity—occurred in response to DBP or DEHP. Heavy use of chemical fertilizer, organic fertilizer, and high humidity led to the special environmental conditions of greenhouse soil, constituting the main conditions considered in this study. The results indicate that under the special highly intensive production systems of greenhouses, soil conditions may directly influence the effects of pollutant phytotoxicity and may thus endanger the yield, nutrient content, and food safety of vegetables. The combined studies of the impacts on plants and rhizosphere microorganisms give a more detailed picture of the toxic effects of the pollutants under different soil conditions.
Collapse
|
23
|
Characterization of Di-n-Butyl Phthalate Phytoremediation by Garden Lettuce (Lactuca sativa L. var. longifolia) through Kinetics and Proteome Analysis. SUSTAINABILITY 2019. [DOI: 10.3390/su11061625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Di-n-dutyl phthalate (DBP), an endocrine disruptor, is one of the most widely used phthalate esters (PAEs) in the world. It can be accumulated in seafood or agricultural products and represents a substantial risk to human health via the food chain. Thus, finding a plant which can remediate DBP but have no effects on growth is the main topic of the development of DBP phytoremediation. This study used garden lettuce (Lactuca sativa L. var. longifolia), which has a significant DBP absorption capability, as a test plant to measure phytoremediation kinetics and proteome changes after being exposed to DBP. The results show that DBP accumulated in different parts of the garden lettuce but the physiological status and morphology showed no significant changes following DBP phytoremediation. The optimal condition for the DBP phytoremediation of garden lettuce is one critical micelle concentration (CMC) of non-ionic surfactant Tween 80 and the half-life (t1/2, days), which calculated by first-order kinetics, was 2.686 days for 5 mg L−1 of DBP. This result indicated that the addition of 1 CMC of Tween 80 could enhance the efficiency of DBP phytoremediation. In addition, the results of biotoxicity showed that the median effective concentration (EC50) of DBP for Chlorella vulgaris is 4.9 mg L−1. In this case, the overall toxicity markedly decreased following phytoremediation. In the end, the result of proteome analysis showed six protein spots, revealing significant alterations. According to the information of these proteomes, DBP potentially causes osmotic and oxidative stress in garden lettuce. In addition, since DBP had no significant effects on the morphology and physiological status of garden lettuce, garden lettuce can be recommended for use in the plant anti-DBP toxicity test, and also as the candidate plant for DBP phytoremediation. We hope these findings could provide valuable information for DBP-contaminated water treatment in ecological engineering applications or constructed wetlands.
Collapse
|