1
|
Lu S, Wang Q, Yin J, Zheng S, Gao T, Zhou X, Zhang J, Xing Y, Ma Y, Wang M, Zhou D, Lu M, Liu W, Wang P, Zhang Z. Screening and Validation of Leaf Width-Related Genes in Inbred Maize Lines. Life (Basel) 2024; 14:1057. [PMID: 39337842 PMCID: PMC11432761 DOI: 10.3390/life14091057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Leaf width is a key determinant of planting density and photosynthetic efficiency. In an effort to determine which genes regulate maize plant leaf width, we performed a genome-wide association study (GWAS) of 1.49 × 106 single nucleotide polymorphisms (SNPs) in 80 sequenced backbone inbred maize lines in Jilin Province, China, based upon phenotypic leaf width data from two years. In total, 14 SNPs were identified as being significantly related to leaf width (p < 0.000001), with these SNPs being located on chromosomes 1, 2, 3, 5, 6, 7, 8, and 9. A total of five candidate genes were identified within a mean linkage disequilibrium (LD) distance of 9.7 kb, with a significant SNP being identified within the Zm00001d044327 candidate gene. RNA was then isolated from 12 different inbred maize lines from this GWAS study cohort and was used to conduct qPCR analyses which revealed significant differences in Zm00001d044327 expression among strains exhibiting significant differences in leaf width. Based on an assessment of EMS mutant lines harboring a conserved amino acid stop mutation and two non-synonymous mutations in Zm00001d044327 that exhibited a narrow leaf width, these data suggested that Zm00001d044327 is a key regulator of maize leaf width.
Collapse
Affiliation(s)
- Shi Lu
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Qi Wang
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Junqi Yin
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Shubo Zheng
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Tingting Gao
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Xudong Zhou
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Jianxin Zhang
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Yuexian Xing
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Yingjie Ma
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Min Wang
- Jilin Jinong Hi-tech Inc., Ltd., Kemao Street, No.303, Gongzhuling 136100, China
| | - Delong Zhou
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Ming Lu
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Wenguo Liu
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Piwu Wang
- College of Agronomy, Jilin Agricultural University, Xincheng Street, No.1288, Changchun 130118, China
| | - Zhijun Zhang
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| |
Collapse
|
2
|
Sahito JH, Zhang H, Gishkori ZGN, Ma C, Wang Z, Ding D, Zhang X, Tang J. Advancements and Prospects of Genome-Wide Association Studies (GWAS) in Maize. Int J Mol Sci 2024; 25:1918. [PMID: 38339196 PMCID: PMC10855973 DOI: 10.3390/ijms25031918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Genome-wide association studies (GWAS) have emerged as a powerful tool for unraveling intricate genotype-phenotype association across various species. Maize (Zea mays L.), renowned for its extensive genetic diversity and rapid linkage disequilibrium (LD), stands as an exemplary candidate for GWAS. In maize, GWAS has made significant advancements by pinpointing numerous genetic loci and potential genes associated with complex traits, including responses to both abiotic and biotic stress. These discoveries hold the promise of enhancing adaptability and yield through effective breeding strategies. Nevertheless, the impact of environmental stress on crop growth and yield is evident in various agronomic traits. Therefore, understanding the complex genetic basis of these traits becomes paramount. This review delves into current and future prospectives aimed at yield, quality, and environmental stress resilience in maize and also addresses the challenges encountered during genomic selection and molecular breeding, all facilitated by the utilization of GWAS. Furthermore, the integration of omics, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, and phenomics has enriched our understanding of intricate traits in maize, thereby enhancing environmental stress tolerance and boosting maize production. Collectively, these insights not only advance our understanding of the genetic mechanism regulating complex traits but also propel the utilization of marker-assisted selection in maize molecular breeding programs, where GWAS plays a pivotal role. Therefore, GWAS provides robust support for delving into the genetic mechanism underlying complex traits in maize and enhancing breeding strategies.
Collapse
Affiliation(s)
- Javed Hussain Sahito
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hao Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zeeshan Ghulam Nabi Gishkori
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenhui Ma
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhihao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
3
|
Kuang T, Hu C, Shaw RK, Zhang Y, Fan J, Bi Y, Jiang F, Guo R, Fan X. A potential candidate gene associated with the angles of the ear leaf and the second leaf above the ear leaf in maize. BMC PLANT BIOLOGY 2023; 23:540. [PMID: 37924003 PMCID: PMC10625212 DOI: 10.1186/s12870-023-04553-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Leaf angle is a key trait for maize plant architecture that plays a significant role in its morphological development, and ultimately impacting maize grain yield. Although many studies have been conducted on the association and localization of genes regulating leaf angle in maize, most of the candidate genes identified are associated with the regulation of ligule-ear development and phytohormone pathways, and only a few candidate genes have been reported to enhance the mechanical strength of leaf midrib and vascular tissues. RESULTS To address this gap, we conducted a genome-wide association study (GWAS) using the leaf angle phenotype and genotyping-by-sequencing data generated from three recombinant inbred line (RIL) populations of maize. Through GWAS analysis, we identified 156 SNPs significantly associated with the leaf angle trait and detected a total of 68 candidate genes located within 10 kb upstream and downstream of these individual SNPs. Among these candidate genes, Zm00001d045408, located on chromosome 9 emerged as a key gene controlling the angles of both the ear leaf and the second leaf above the ear leaf. Notably, this new gene's homolog in Arabidopsis promotes cell division and vascular tissue development. Further analysis revealed that a SNP transversion (G/T) at 7.536 kb downstream of the candidate gene Zm00001d045408 may have caused a reduction in leaf angles of the ear and the second leaf above the ear leaf. Our analysis of the 10 kb region downstream of this candidate gene revealed a 4.337 kb solo long-terminal reverse transcription transposon (solo LTR), located 3.112 kb downstream of Zm00001d045408, with the SNP located 87 bp upstream of the solo LTR. CONCLUSIONS In summary, we have identified a novel candidate gene, Zm00001d045408 and a solo LTR that are associated with the angles of both the ear leaf and the second leaf above the ear leaf. The future research holds great potential in exploring the precise role of newly identified candidate gene in leaf angle regulation. Functional characterization of this gene can help in gaining deeper insights into the complex genetic pathways underlying maize plant architecture.
Collapse
Affiliation(s)
- Tianhui Kuang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Can Hu
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Ranjan Kumar Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yudong Zhang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jun Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ruijia Guo
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
4
|
Qin L, Wu X, Zhao H. Molecular and functional dissection of LIGULELESS1 (LG1) in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1190004. [PMID: 37377813 PMCID: PMC10291273 DOI: 10.3389/fpls.2023.1190004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Plant architecture is a culmination of the features necessary for capturing light energy and adapting to the environment. An ideal architecture can promote an increase in planting density, light penetration to the lower canopy, airflow as well as heat distribution to achieve an increase in crop yield. A number of plant architecture-related genes have been identified by map cloning, quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis. LIGULELESS1 (LG1) belongs to the squamosa promoter-binding protein (SBP) family of transcription factors (TFs) that are key regulators for plant growth and development, especially leaf angle (LA) and flower development. The DRL1/2-LG1-RAVL pathway is involved in brassinosteroid (BR) signaling to regulate the LA in maize, which has facilitated the regulation of plant architecture. Therefore, exploring the gene regulatory functions of LG1, especially its relationship with LA genes, can help achieve the precise regulation of plant phenotypes adapted to varied environments, thereby increasing the yield. This review comprehensively summarizes the advances in LG1 research, including its effect on LA and flower development. Finally, we discuss the current challenges and future research goals associate with LG1.
Collapse
Affiliation(s)
- Lei Qin
- College of Life Sciences, Qufu Normal University, Qufu, China
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Taian, China
| | - Xintong Wu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
5
|
Zhang Z, Chen L, Yu J. Maize WRKY28 interacts with the DELLA protein D8 to affect skotomorphogenesis and participates in the regulation of shade avoidance and plant architecture. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3122-3141. [PMID: 36884355 DOI: 10.1093/jxb/erad094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/21/2023]
Abstract
Competition for light from neighboring vegetation can trigger the shade-avoidance response (SAR) in plants, which is detrimental to their yield. The molecular mechanisms regulating SAR are well established in Arabidopsis, and some regulators of skotomorphogenesis have been found to be involved in the regulation of the SAR and plant architecture. However, the role of WRKY transcription factors in this process has rarely been reported, especially in maize (Zea mays). Here, we report that maize Zmwrky28 mutants exhibit shorter mesocotyls in etiolated seedlings. Molecular and biochemical analyses demonstrate that ZmWRKY28 directly binds to the promoter regions of the Small Auxin Up RNA (SAUR) gene ZmSAUR54 and the Phytochrome-Interacting Factor (PIF) gene ZmPIF4.1 to activate their expression. In addition, the maize DELLA protein Dwarf Plant8 (D8) interacts with ZmWRKY28 in the nucleus to inhibit its transcriptional activation activity. We also show that ZmWRKY28 participates in the regulation of the SAR, plant height, and leaf rolling and erectness in maize. Taken together, our results reveal that ZmWRKY28 is involved in GA-mediated skotomorphogenic development and can be used as a potential target to regulate SAR for breeding of high-density-tolerant cultivars.
Collapse
Affiliation(s)
- Ze Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jingjuan Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Wu S, Wang J, Zhao Y, Wen W, Zhang Y, Lu X, Wang C, Liu K, Chen B, Guo X, Zhao C. Characterization and genetic dissection of maize ear leaf midrib acquired by 3D digital technology. FRONTIERS IN PLANT SCIENCE 2022; 13:1063056. [PMID: 36531364 PMCID: PMC9754214 DOI: 10.3389/fpls.2022.1063056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The spatial morphological structure of plant leaves is an important index to evaluate crop ideotype. In this study, we characterized the three-dimensional (3D) data of the ear leaf midrib of maize at the grain-filling stage using the 3D digitization technology and obtained the phenotypic values of 15 traits covering four different dimensions of the ear leaf midrib, of which 13 phenotypic traits were firstly proposed for featuring plant leaf spatial structure. Cluster analysis results showed that the 13 traits could be divided into four groups, Group I, -II, -III and -IV. Group I contains HorizontalLength, OutwardGrowthMeasure, LeafAngle and DeviationTip; Group II contains DeviationAngle, MaxCurvature and CurvaturePos; Group III contains LeafLength and ProjectionArea; Group IV contains TipTop, VerticalHeight, UpwardGrowthMeasure, and CurvatureRatio. To investigate the genetic basis of the ear leaf midrib curve, 13 traits with high repeatability were subjected to genome-wide association study (GWAS) analysis. A total of 828 significantly related SNPs were identified and 1365 candidate genes were annotated. Among these, 29 candidate genes with the highest significant and multi-method validation were regarded as the key findings. In addition, pathway enrichment analysis was performed on the candidate genes of traits to explore the potential genetic mechanism of leaf midrib curve phenotype formation. These results not only contribute to further understanding of maize leaf spatial structure traits but also provide new genetic loci for maize leaf spatial structure to improve the plant type of maize varieties.
Collapse
Affiliation(s)
- Sheng Wu
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Jinglu Wang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA (DeoxyriboNucleic Acid) Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Weiliang Wen
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Ying Zhang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Xianju Lu
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Chuanyu Wang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Kai Liu
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Bo Chen
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Xinyu Guo
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Chunjiang Zhao
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| |
Collapse
|
7
|
Chen G, Ren Y, Mohi Ud Din A, Gul H, Chen H, Liang B, Pu T, Sun X, Yong T, Liu W, Liu J, Du J, Yang F, Wu Y, Wang X, Yang W. Comparative analysis of farmer practices and high yield experiments: Farmers could get more maize yield from maize-soybean relay intercropping through high density cultivation of maize. FRONTIERS IN PLANT SCIENCE 2022; 13:1031024. [PMID: 36457530 PMCID: PMC9706207 DOI: 10.3389/fpls.2022.1031024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Intercropping is a high-yield, resource-efficient planting method. There is a large gap between actual yield and potential yield at farmer's field. Their actual yield of intercropped maize remains unclear under low solar radiation-area, whether this yield can be improved, and if so, what are the underlying mechanism for increasing yield? In the present study, we collected the field management and yield data of intercropping maize by conducting a survey comprising 300 farmer households in 2016-2017. Subsequently, based on surveyed data, we designed an experiment including a high density planting (Dense cultivation and high N fertilization with plough tillage; DC) and normal farmer practice (Common cultivation; CC) to analyze the yield, canopy structure, light interception, photosynthetic parameters, and photosynthetic productivity. Most farmers preferred rotary tillage with a low planting density and N fertilization. Survey data showed that farmer yield ranged between 4-6 Mg ha-1, with highest yield recorded at 10-12 Mg ha-1, suggesting a possibility for yield improvement by improved cropping practices. Results from high density experiment showed that the two-years average yield for DC was 28.8% higher than the CC. Compared to CC, the lower angle between stem and leaf (LA) and higher leaf area index (LAI) in DC resulted in higher light interception in middle canopy and increased the photosynthetic productivity under DC. Moreover, in upper and lower canopies, the average activity of phosphoenolpyruvate (PEP) carboxylase was 70% higher in DC than CC. Briefly, increase in LAI and high Pn improved both light interception and photosynthetic productivity, thereby mediating an increase in the maize yield. Overall, these results indicated that farmer's yields on average can be increased by 2.1 Mg ha-1 by increasing planting density and N fertilization, under plough tillage.
Collapse
Affiliation(s)
- Guopeng Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu, China
| | - Yongfu Ren
- Agriculture Technology Extension Station, Liangzhou County Bureau of Agriculture and Rural Affairs, Wuwei, China
| | - Atta Mohi Ud Din
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- National Research Center of Intercropping, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hina Gul
- National Center of Industrial Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Shamsabad, Pakistan
| | - Hanlin Chen
- Agriculture Technology Extension Station, Pingchang County Bureau of Agriculture and Rural Affairs, Bazhong, China
| | - Bing Liang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu, China
| | - Tian Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu, China
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu, China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu, China
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu, China
| | - Jiang Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu, China
| | - Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Chengdu, China
| |
Collapse
|
8
|
Yin X, Gu J, Dingkuhn M, Struik PC. A model-guided holistic review of exploiting natural variation of photosynthesis traits in crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3173-3188. [PMID: 35323898 PMCID: PMC9126731 DOI: 10.1093/jxb/erac109] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/22/2022] [Indexed: 05/18/2023]
Abstract
Breeding for improved leaf photosynthesis is considered as a viable approach to increase crop yield. Whether it should be improved in combination with other traits has not been assessed critically. Based on the quantitative crop model GECROS that interconnects various traits to crop productivity, we review natural variation in relevant traits, from biochemical aspects of leaf photosynthesis to morpho-physiological crop characteristics. While large phenotypic variations (sometimes >2-fold) for leaf photosynthesis and its underlying biochemical parameters were reported, few quantitative trait loci (QTL) were identified, accounting for a small percentage of phenotypic variation. More QTL were reported for sink size (that feeds back on photosynthesis) or morpho-physiological traits (that affect canopy productivity and duration), together explaining a much greater percentage of their phenotypic variation. Traits for both photosynthetic rate and sustaining it during grain filling were strongly related to nitrogen-related traits. Much of the molecular basis of known photosynthesis QTL thus resides in genes controlling photosynthesis indirectly. Simulation using GECROS demonstrated the overwhelming importance of electron transport parameters, compared with the maximum Rubisco activity that largely determines the commonly studied light-saturated photosynthetic rate. Exploiting photosynthetic natural variation might significantly improve crop yield if nitrogen uptake, sink capacity, and other morpho-physiological traits are co-selected synergistically.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Junfei Gu
- College of Agriculture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | | | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| |
Collapse
|
9
|
Hu Y, Zhang H, Qian Q, Lin G, Wang J, Sun J, Li Y, Jang JC, Li W. The Potential Roles of Unique Leaf Structure for the Adaptation of Rheum tanguticum Maxim. ex Balf. in Qinghai-Tibetan Plateau. PLANTS (BASEL, SWITZERLAND) 2022; 11:512. [PMID: 35214845 PMCID: PMC8875413 DOI: 10.3390/plants11040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Leaves are essential plant organs with numerous variations in shape and size. The leaf size is generally smaller in plants that thrive in areas of higher elevation and lower annual mean temperature. The Qinghai-Tibetan Plateau is situated at an altitude of >4000 m with relatively low annual average temperatures. Most plant species found on the Qinghai-Tibetan Plateau have small leaves, with Rheum tanguticum Maxim. ex Balf. being an exception. Here, we show that the large leaves of R. tanguticum with a unique three-dimensional (3D) shape are potentially an ideal solution for thermoregulation with little energy consumption. With the increase in age, the shape of R. tanguticum leaves changed from a small oval plane to a large palmatipartite 3D shape. Therefore, R. tanguticum is a highly heteroblastic species. The leaf shape change during the transition from the juvenile to the adult phase of the development in R. tanguticum is a striking example of the manifestation of plant phenotypic plasticity. The temperature variation in different parts of the leaf was a distinct character of leaves of over-5-year-old plants. The temperature of single-plane leaves under strong solar radiation could accumulate heat rapidly and resulted in temperatures much higher than the ambient temperature. However, leaves of over-5-year-old plants could lower leaf temperature by avoiding direct exposure to solar radiation and promoting local airflow to prevent serious tissue damage by sunburn. Furthermore, the net photosynthesis rate was correlated with the heterogeneity of the leaf surface temperature. Our results demonstrate that the robust 3D shape of the leaf is a strategy that R. tanguticum has developed evolutionarily to adapt to the strong solar radiation and low temperature on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Yanping Hu
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
| | - Huixuan Zhang
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Qian
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gonghua Lin
- School of Life Sciences, Jinggangshan University, Ji’an 343009, China;
| | - Jun Wang
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Li
- Qinghai Provincial Key Laboratory of Qinghai–Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (Y.H.); (H.Z.); (Q.Q.); (J.W.); (J.S.)
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | - Wenjing Li
- Scientific Research and Popularization Base of Qinghai–Tibet Plateau Biology, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
10
|
Moussa AA, Mandozai A, Jin Y, Qu J, Zhang Q, Zhao H, Anwari G, Khalifa MAS, Lamboro A, Noman M, Bakasso Y, Zhang M, Guan S, Wang P. Genome-wide association screening and verification of potential genes associated with root architectural traits in maize (Zea mays L.) at multiple seedling stages. BMC Genomics 2021; 22:558. [PMID: 34284723 PMCID: PMC8290564 DOI: 10.1186/s12864-021-07874-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/05/2021] [Indexed: 01/26/2023] Open
Abstract
Background Breeding for new maize varieties with propitious root systems has tremendous potential in improving water and nutrients use efficiency and plant adaptation under suboptimal conditions. To date, most of the previously detected root-related trait genes in maize were new without functional verification. In this study, seven seedling root architectural traits were examined at three developmental stages in a recombinant inbred line population (RIL) of 179 RILs and a genome-wide association study (GWAS) panel of 80 elite inbred maize lines through quantitative trait loci (QTL) mapping and genome-wide association study. Results Using inclusive composite interval mapping, 8 QTLs accounting for 6.44–8.83 % of the phenotypic variation in root traits, were detected on chromosomes 1 (qRDWv3-1-1 and qRDW/SDWv3-1-1), 2 (qRBNv1-2-1), 4 (qSUAv1-4-1, qSUAv2-4-1, and qROVv2-4-1), and 10 (qTRLv1-10-1, qRBNv1-10-1). GWAS analysis involved three models (EMMAX, FarmCPU, and MLM) for a set of 1,490,007 high-quality single nucleotide polymorphisms (SNPs) obtained via whole genome next-generation sequencing (NGS). Overall, 53 significant SNPs with a phenotypic contribution rate ranging from 5.10 to 30.2 % and spread all over the ten maize chromosomes exhibited associations with the seven root traits. 17 SNPs were repeatedly detected from at least two growth stages, with several SNPs associated with multiple traits stably identified at all evaluated stages. Within the average linkage disequilibrium (LD) distance of 5.2 kb for the significant SNPs, 46 candidate genes harboring substantial SNPs were identified. Five potential genes viz. Zm00001d038676, Zm00001d015379, Zm00001d018496, Zm00001d050783, and Zm00001d017751 were verified for expression levels using maize accessions with extreme root branching differences from the GWAS panel and the RIL population. The results showed significantly (P < 0.001) different expression levels between the outer materials in both panels and at all considered growth stages. Conclusions This study provides a key reference for uncovering the complex genetic mechanism of root development and genetic enhancement of maize root system architecture, thus supporting the breeding of high-yielding maize varieties with propitious root systems. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07874-x.
Collapse
Affiliation(s)
- Abdourazak Alio Moussa
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China.
| | - Ajmal Mandozai
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Yukun Jin
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Jing Qu
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Qi Zhang
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - He Zhao
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Gulaqa Anwari
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | | | - Abraham Lamboro
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Muhammad Noman
- College of Life Sciences, Jilin Agricultural University, Jilin, 130118, Changchun, China
| | - Yacoubou Bakasso
- Biology Department, Faculty of Sciences and Techniques, Abdou Moumouni University of Niamey, 10662, Niamey, Niger
| | - Mo Zhang
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Shuyan Guan
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Piwu Wang
- College of Agronomy, Plant Biotechnology Center, Jilin Agricultural University, 130118, Changchun, Jilin, China.
| |
Collapse
|
11
|
Mapping quantitative trait loci and predicting candidate genes for leaf angle in maize. PLoS One 2021; 16:e0245129. [PMID: 33406127 PMCID: PMC7787474 DOI: 10.1371/journal.pone.0245129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022] Open
Abstract
Leaf angle of maize is a fundamental determinant of plant architecture and an important trait influencing photosynthetic efficiency and crop yields. To broaden our understanding of the genetic mechanisms of leaf angle formation, we constructed a F3:4 recombinant inbred lines (RIL) population to map QTL for leaf angle. The RIL was derived from a cross between a model inbred line (B73) with expanded leaf architecture and an elite inbred line (Zheng58) with compact leaf architecture. A sum of eight QTL were detected on chromosome 1, 2, 3, 4 and 8. Single QTL explained 4.3 to 14.2% of the leaf angle variance. Additionally, some important QTL were confirmed through a heterogeneous inbred family (HIF) approach. Furthermore, twenty-four candidate genes for leaf angle were predicted through whole-genome re-sequencing and expression analysis in qLA02-01and qLA08-01 regions. These results will be helpful to elucidate the genetic mechanism of leaf angle formation in maize and benefit to clone the favorable allele for leaf angle. Besides, this will be helpful to develop the novel maize varieties with ideal plant architecture through marker-assisted selection.
Collapse
|
12
|
Jin Y, Zhang Z, Xi Y, Yang Z, Xiao Z, Guan S, Qu J, Wang P, Zhao R. Identification and Functional Verification of Cold Tolerance Genes in Spring Maize Seedlings Based on a Genome-Wide Association Study and Quantitative Trait Locus Mapping. FRONTIERS IN PLANT SCIENCE 2021; 12:776972. [PMID: 34956272 PMCID: PMC8696014 DOI: 10.3389/fpls.2021.776972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 05/13/2023]
Abstract
Maize (Zea mays L.) is a tropical crop, and low temperature has become one of the main abiotic stresses for maize growth and development, affecting many maize growth processes. The main area of maize production in China, Jilin province, often suffers from varying degrees of cold damage in spring, which seriously affects the quality and yield of maize. In the face of global climate change and food security concerns, discovering cold tolerance genes, developing cold tolerance molecular markers, and creating cold-tolerant germplasm have become urgent for improving maize resilience against these conditions and obtaining an increase in overall yield. In this study, whole-genome sequencing and genotyping by sequencing were used to perform genome-wide association analysis (GWAS) and quantitative trait locus (QTL) mapping of the two populations, respectively. Overall, four single-nucleotide polymorphisms (SNPs) and 12 QTLs were found to be significantly associated with cold tolerance. Through joint analysis, an intersection of GWAS and QTL mapping was found on chromosome 3, on which the Zm00001d002729 gene was identified as a potential factor in cold tolerance. We verified the function of this target gene through overexpression, suppression of expression, and genetic transformation into maize. We found that Zm00001d002729 overexpression resulted in better cold tolerance in this crop. The identification of genes associated with cold tolerance contributes to the clarification of the underlying mechanism of this trait in maize and provides a foundation for the adaptation of maize to colder environments in the future, to ensure food security.
Collapse
Affiliation(s)
- Yukun Jin
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Zhongren Zhang
- Novogene Bioinformatics Institute, Novogene Co., Ltd, Beijing, China
| | - Yongjing Xi
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Zhou Yang
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Zhifeng Xiao
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Jing Qu
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
| | - Piwu Wang
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
- *Correspondence: Piwu Wang, Rengui Zhao,
| | - Rengui Zhao
- Joint Laboratory of International Cooperation in Modern Agriculture Technology of Ministry of Education, Plant Biotechnology Center, Jilin Agricultural University, Changchun, China
- *Correspondence: Piwu Wang, Rengui Zhao,
| |
Collapse
|
13
|
Cao Y, Zeng H, Ku L, Ren Z, Han Y, Su H, Dou D, Liu H, Dong Y, Zhu F, Li T, Zhao Q, Chen Y. ZmIBH1-1 regulates plant architecture in maize. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2943-2955. [PMID: 31990030 PMCID: PMC7260713 DOI: 10.1093/jxb/eraa052] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/25/2020] [Indexed: 05/20/2023]
Abstract
Leaf angle (LA) is a critical agronomic trait in maize, with more upright leaves allowing higher planting density, leading to more efficient light capture and higher yields. A few genes responsible for variation in LA have been identified by map-based cloning. In this study, we cloned maize ZmIBH1-1, which encodes a bHLH transcription factor with both a basic binding region and a helix-loop-helix domain, and the results of qRT-PCR showed that it is a negative regulator of LA. Histological analysis indicated that changes in LA were mainly caused by differential cell wall lignification and cell elongation in the ligular region. To determine the regulatory framework of ZmIBH1-1, we conducted RNA-seq and DNA affinity purification (DAP)-seq analyses. The combined results revealed 59 ZmIBH1-1-modulated target genes with annotations, and they were mainly related to the cell wall, cell development, and hormones. Based on the data, we propose a regulatory model for the control of plant architecture by ZmIBH1-1 in maize.
Collapse
Affiliation(s)
- Yingying Cao
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Haixia Zeng
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Lixia Ku
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
- Correspondence: or
| | - Zhenzhen Ren
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Yun Han
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Huihui Su
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Dandan Dou
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Huafeng Liu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Yahui Dong
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Fangfang Zhu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Tianyi Li
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Qiannan Zhao
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | | |
Collapse
|
14
|
Kim KH, Kim JY, Lim WJ, Jeong S, Lee HY, Cho Y, Moon JK, Kim N. Genome-wide association and epistatic interactions of flowering time in soybean cultivar. PLoS One 2020; 15:e0228114. [PMID: 31968016 PMCID: PMC6975553 DOI: 10.1371/journal.pone.0228114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/07/2020] [Indexed: 12/02/2022] Open
Abstract
Genome-wide association studies (GWAS) have enabled the discovery of candidate markers that play significant roles in various complex traits in plants. Recently, with increased interest in the search for candidate markers, studies on epistatic interactions between single nucleotide polymorphism (SNP) markers have also increased, thus enabling the identification of more candidate markers along with GWAS on single-variant-additive-effect. Here, we focused on the identification of candidate markers associated with flowering time in soybean (Glycine max). A large population of 2,662 cultivated soybean accessions was genotyped using the 180k Axiom® SoyaSNP array, and the genomic architecture of these accessions was investigated to confirm the population structure. Then, GWAS was conducted to evaluate the association between SNP markers and flowering time. A total of 93 significant SNP markers were detected within 59 significant genes, including E1 and E3, which are the main determinants of flowering time. Based on the GWAS results, multilocus epistatic interactions were examined between the significant and non-significant SNP markers. Two significant and 16 non-significant SNP markers were discovered as candidate markers affecting flowering time via interactions with each other. These 18 candidate SNP markers mapped to 18 candidate genes including E1 and E3, and the 18 candidate genes were involved in six major flowering pathways. Although further biological validation is needed, our results provide additional information on the existing flowering time markers and present another option to marker-assisted breeding programs for regulating flowering time of soybean.
Collapse
Affiliation(s)
- Kyoung Hyoun Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jae-Yoon Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won-Jun Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seongmun Jeong
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ho-Yeon Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Youngbum Cho
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung-Kyung Moon
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|