1
|
Shi L, Fu H, Hao Y, Liu C, Zhou F. Zinc finger transcription factor ZNF384 mitigates LPS-induced ferroptosis and inflammation in lung epithelial cells by activating SESN2-mediated autophagy. Toxicol In Vitro 2025; 107:106073. [PMID: 40374019 DOI: 10.1016/j.tiv.2025.106073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND Ferroptosis, a type of programmed cell death distinct from apoptosis, is potentially associated with sepsis-triggered acute respiratory distress syndrome (ARDS). ZNF384 is a transcription factor, but its role in ARDS remain unclear. METHODS Blood samples were collected from sepsis-induced ARDS patients and healthy controls. BEAS-2B cells were stimulated with lipopolysaccharide (LPS) to mimic sepsis-induced damaged lung epithelial cell model. Gene and protein expression were elevated utilizing RT-qPCR, western blot, and immunofluorescent staining, respectively. Cell viability and death were evaluated by CCK-8 and flow cytometry. Inflammatory cytokines and oxidative stress markers were measured using ELISA. Intracellular ROS was determined using DCFH-DA staining. Iron concentration was measured using an iron detection kit. Target relationships were confirmed through ChIP and luciferase reporter assays. RESULTS ZNF384 and SESN2 levels were downregulated in sepsis-induced ARDS patients. Overexpression of ZNF384 reduced inflammatory injury, ferroptosis and enhanced autophagy in LPS-stimulated BEAS-2B cells. Mechanistically, ZNF384 served as transcriptional activator of SESN2 to boost autophagy activation. Rescue experiments validated that depletion of SESN2 strikingly reversed the regulatory function of ZNF384 in LPS-induced inflammation, autophagy and ferroptosis. CONCLUSION ZNF384 alleviated LPS-triggered ferroptosis and inflammation in BEAS-2B cells via activating SESN2-mediated autophagy, indicating ZNF384 was a novel target for ARDS treatment.
Collapse
Affiliation(s)
- Lu Shi
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Critical Care Medicine, Chongqing Shapingba Traditional Chinese Medicine Hospital, Chongqing 400030, PR China
| | - Hongxue Fu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yingting Hao
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Chang Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Fachun Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
2
|
Vrettou CS, Issaris V, Kokkoris S, Poupouzas G, Keskinidou C, Lotsios NS, Kotanidou A, Orfanos SE, Dimopoulou I, Vassiliou AG. Exploring Aquaporins in Human Studies: Mechanisms and Therapeutic Potential in Critical Illness. Life (Basel) 2024; 14:1688. [PMID: 39768394 PMCID: PMC11676363 DOI: 10.3390/life14121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Aquaporins (AQPs) are membrane proteins facilitating water and other small solutes to be transported across cell membranes. They are crucial in maintaining cellular homeostasis by regulating water permeability in various tissues. Moreover, they regulate cell migration, signaling pathways, inflammation, tumor growth, and metastasis. In critically ill patients, such as trauma, sepsis, and patients with acute respiratory distress syndrome (ARDS), which are frequently encountered in intensive care units (ICUs), water transport regulation is crucial for maintaining homeostasis, as dysregulation can lead to edema or dehydration, with the latter also implicating hemodynamic compromise. Indeed, AQPs are involved in fluid transport in various organs, including the lungs, kidneys, and brain, where their dysfunction can exacerbate conditions like ARDS, acute kidney injury (AKI), or cerebral edema. In this review, we discuss the implication of AQPs in the clinical entities frequently encountered in ICUs, such as systemic inflammation and sepsis, ARDS, AKI, and brain edema due to different types of primary brain injury from a clinical perspective. Current and possible future therapeutic implications are also considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (V.I.); (S.K.); (G.P.); (C.K.); (N.S.L.); (A.K.); (S.E.O.); (I.D.)
| |
Collapse
|
3
|
Rump K, Adamzik M. Aquaporins in sepsis- an update. Front Immunol 2024; 15:1495206. [PMID: 39544938 PMCID: PMC11560437 DOI: 10.3389/fimmu.2024.1495206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Aquaporins (AQPs), a family of membrane proteins that facilitate the transport of water and small solutes, have garnered increasing attention for their role in sepsis, not only in fluid balance but also in immune modulation and metabolic regulation. Sepsis, characterized by an excessive and dysregulated immune response to infection, leads to widespread organ dysfunction and significant mortality. This review focuses on the emerging roles of aquaporins in immune metabolism and their potential as therapeutic targets in sepsis, with particular attention to the modulation of inflammatory responses and organ protection. Additionally, it explores the diverse roles of aquaporins across various organ systems, highlighting their contributions to renal function, pulmonary gas exchange, cardiac protection, and gastrointestinal barrier integrity in the context of sepsis. Recent studies suggest that AQPs, particularly aquaglyceroporins like AQP3, AQP7, AQP9, and AQP10, play pivotal roles in immune cell metabolism and offer new therapeutic avenues for sepsis treatment. In the context of sepsis, immune cells undergo metabolic shifts to meet the heightened energy demands of the inflammatory response. A key adaptation is the shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, where pyruvate is converted to lactate, enabling faster ATP production. AQPs, particularly aquaglyceroporins, may facilitate this process by transporting glycerol, a substrate that fuels glycolysis. AQP3, for example, enhances glucose metabolism by transporting glycerol and complementing glucose uptake via GLUT1, while also regulating O-GlcNAcylation, a post-translational modification that boosts glycolytic flux. AQP7 could further contributes to immune cell energy production by influencing lipid metabolism and promoting glycolysis through p38 signaling. These mechanisms could be crucial for maintaining the energy supply needed for an effective immune response during sepsis. Beyond metabolism, AQPs also regulate key immune functions. AQP9, highly expressed in septic patients, is essential for neutrophil migration and activation, both of which are critical for controlling infection. AQP3, on the other hand, modulates inflammation through the Toll-like receptor 4 (TLR4) pathway, while AQP1 plays a role in immune responses by activating the PI3K pathway, promoting macrophage polarization, and protecting against lipopolysaccharide (LPS)-induced acute kidney injury (AKI). These insights into the immunoregulatory roles of AQPs suggest their potential as therapeutic targets to modulate inflammation in sepsis. Therapeutically, AQPs present promising targets for reducing organ damage and improving survival in sepsis. For instance, inhibition of AQP9 with compounds like HTS13286 or RG100204 has been shown to reduce inflammation and improve survival by modulating NF-κB signaling and decreasing oxidative stress in animal models. AQP5 inhibition with methazolamide and furosemide has demonstrated efficacy in reducing immune cell migration and lung injury, suggesting its potential in treating acute lung injury (ALI) in sepsis. Additionally, the regulation of AQP1 through non-coding RNAs (lncRNAs and miRNAs) may offer new strategies to mitigate organ damage and inflammatory responses. Moreover, AQPs have emerged as potential biomarkers for sepsis progression and outcomes. Altered expression of AQPs, such as AQP1, AQP3, and AQP5, correlates with sepsis severity, and polymorphisms in AQP5 have been linked to better survival rates and improved outcomes in sepsis-related acute respiratory distress syndrome (ARDS). This suggests that AQP expression could be used to stratify patients and tailor treatments based on individual AQP profiles. In conclusion, AQPs play a multifaceted role in the pathophysiology of sepsis, extending beyond fluid balance to crucial involvement in immune metabolism and inflammation. Targeting AQPs offers novel therapeutic strategies to mitigate sepsis-induced organ damage and improve patient survival. Continued research into the metabolic and immune functions of AQPs will be essential for developing targeted therapies that can be translated into clinical practice.
Collapse
Affiliation(s)
- Katharina Rump
- Klinik für Anästhesiologie Intensivmedizin und Schmerztherapie Universitätsklinikum Knappschaftskrankenhaus Bochum, University Clinic of Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
4
|
Lotsios NS, Keskinidou C, Dimopoulou I, Kotanidou A, Orfanos SE, Vassiliou AG. Aquaporin Expression and Regulation in Clinical and Experimental Sepsis. Int J Mol Sci 2023; 25:487. [PMID: 38203657 PMCID: PMC10778766 DOI: 10.3390/ijms25010487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Sepsis is an inflammatory disorder caused by the host's dysfunctional response to infection. Septic patients present diverse clinical characteristics, and in the recent years, it has been the main cause of death in intensive care units (ICU). Aquaporins, membrane proteins with a role in water transportation, have been reported to participate in numerous biological processes. Their role in sepsis progression has been studied extensively. This review aims to examine recent literature on aquaporin expression and regulation in clinical sepsis, as well as established experimental models of sepsis. We will present how sepsis affects aquaporin expression at the molecular and protein level. Moreover, we will delve into the importance of aquaporin regulation at transcriptional, post-transcriptional, translational, and post-translational levels in sepsis by presenting data on aquaporin regulation by non-coding RNAs and selected chemical molecules. Finally, we will focus on the importance of aquaporin single-nucleotide polymorphisms in the setting of sepsis.
Collapse
Affiliation(s)
| | | | | | | | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (N.S.L.); (C.K.); (I.D.); (A.K.); (S.E.O.)
| |
Collapse
|
5
|
D’Agostino C, Parisis D, Chivasso C, Hajiabbas M, Soyfoo MS, Delporte C. Aquaporin-5 Dynamic Regulation. Int J Mol Sci 2023; 24:ijms24031889. [PMID: 36768212 PMCID: PMC9915196 DOI: 10.3390/ijms24031889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Aquaporin-5 (AQP5), belonging to the aquaporins (AQPs) family of transmembrane water channels, facilitates osmotically driven water flux across biological membranes and the movement of hydrogen peroxide and CO2. Various mechanisms have been shown to dynamically regulate AQP5 expression, trafficking, and function. Besides fulfilling its primary water permeability function, AQP5 has been shown to regulate downstream effectors playing roles in various cellular processes. This review provides a comprehensive overview of the current knowledge of the upstream and downstream effectors of AQP5 to gain an in-depth understanding of the physiological and pathophysiological processes involving AQP5.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Dorian Parisis
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad Shahnawaz Soyfoo
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Correspondence:
| |
Collapse
|
6
|
Overhydration Assessed Using Bioelectrical Impedance Vector Analysis Adversely Affects 90-Day Clinical Outcome among SARS-CoV2 Patients: A New Approach. Nutrients 2022; 14:nu14132726. [PMID: 35807907 PMCID: PMC9268688 DOI: 10.3390/nu14132726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background: COVID-19 has taken on pandemic proportions with growing interest in prognostic factors. Overhydration is a risk factor for mortality in several medical conditions with its role in COVID-19, assessed with bioelectrical impedance (BI), gaining research interest. COVID-19 affects hydration status. The aim was to determine the hydration predictive role on 90 d survival COVID-19 and to compare BI assessments with traditional measures of hydration. Methods: We studied 127 consecutive COVID-19 patients. Hydration status was estimated using a 50 kHz phase-sensitive BI and estimated, compared with clinical scores and laboratory markers to predict mortality. Results: Non-surviving COVID-19 patients had significantly higher hydration 85.2% (76.9−89.3) vs. 73.7% (73.2−82.1) and extracellular water/total body water (ECW/TBW) 0.67 (0.59−0.75) vs. 0.54 (0.48−0.61) (p = 0.001, respectively), compared to surviving. Patients in the highest hydration tertile had increased mortality (p = 0.012), Intensive Care Unit (ICU) admission (p = 0.027), COVID-19 SEIMC score (p = 0.003), and inflammation biomarkers [CRP/prealbumin (p = 0.011)]. Multivariate analysis revealed that hydration status was associated with increased mortality. HR was 2.967 (95%CI, 1.459−6.032, p < 0.001) for hydration and 2.528 (95%CI, 1.664−3.843, p < 0.001) for ECW/TBW, which were significantly greater than traditional measures: CRP/prealbumin 3.057(95%CI, 0.906−10.308, p = 0.072) or BUN/creatinine 1.861 (95%CI, 1.375−2.520, p < 0.001). Hydration > 76.15% or ECW/TBW > 0.58 were the cut-off values predicting COVID-19 mortality with 81.3% and 93.8% sensitivity and 64 and 67.6% specificity, respectively. Hydration status offers a sensitive and specific prognostic test at admission, compared to established poor prognosis parameters. Conclusions and Relevance: Overhydration, indicated as high hydration (>76.15%) and ECW/TBW (>0.58), were significant predictors of COVID-19 mortality. These findings suggest that hydration evaluation with 50 kHz phase-sensitive BI measurements should be routinely included in the clinical assessment of COVID-19 patients at hospital admission, to identify increased mortality risk patients and assist medical care.
Collapse
|
7
|
Hypotheses about sub-optimal hydration in the weeks before coronavirus disease (COVID-19) as a risk factor for dying from COVID-19. Med Hypotheses 2020; 144:110237. [PMID: 33254543 PMCID: PMC7467030 DOI: 10.1016/j.mehy.2020.110237] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 08/30/2020] [Indexed: 02/03/2023]
Abstract
To address urgent need for strategies to limit mortality from coronavirus disease 2019 (COVID-19), this review describes experimental, clinical and epidemiological evidence that suggests that chronic sub-optimal hydration in the weeks before infection might increase risk of COVID-19 mortality in multiple ways. Sub-optimal hydration is associated with key risk factors for COVID-19 mortality, including older age, male sex, race-ethnicity and chronic disease. Chronic hypertonicity, total body water deficit and/or hypovolemia cause multiple intracellular and/or physiologic adaptations that preferentially retain body water and favor positive total body water balance when challenged by infection. Via effects on serum/glucocorticoid-regulated kinase 1 (SGK1) signaling, aldosterone, tumor necrosis factor-alpha (TNF-alpha), vascular endothelial growth factor (VEGF), aquaporin 5 (AQP5) and/or Na+/K+-ATPase, chronic sub-optimal hydration in the weeks before exposure to COVID-19 may conceivably result in: greater abundance of angiotensin converting enzyme 2 (ACE2) receptors in the lung, which increases likelihood of COVID-19 infection, lung epithelial cells which are pre-set for exaggerated immune response, increased capacity for capillary leakage of fluid into the airway space, and/or reduced capacity for both passive and active transport of fluid out of the airways. The hypothesized hydration effects suggest hypotheses regarding strategies for COVID-19 risk reduction, such as public health recommendations to increase intake of drinking water, hydration screening alongside COVID-19 testing, and treatment tailored to the pre-infection hydration condition. Hydration may link risk factors and pathways in a unified mechanism for COVID-19 mortality. Attention to hydration holds potential to reduce COVID-19 mortality and disparities via at least 5 pathways simultaneously.
Collapse
|
8
|
Yang JX, Li M, Hu X, Lu JC, Wang Q, Lu SY, Gao F, Jin SW, Zheng SX. Protectin DX promotes epithelial injury repair and inhibits fibroproliferation partly via ALX/PI3K signalling pathway. J Cell Mol Med 2020; 24:14001-14012. [PMID: 33098250 PMCID: PMC7754026 DOI: 10.1111/jcmm.16011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/06/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome/acute lung injury (ARDS/ALI) is histologically characterized by extensive alveolar barrier disruption and excessive fibroproliferation responses. Protectin DX (PDX) displays anti‐inflammatory and potent inflammation pro‐resolving actions. We sought to investigate whether PDX attenuates LPS (lipopolysaccharide)‐induced lung injury via modulating epithelial cell injury repair, apoptosis and fibroblasts activation. In vivo, PDX was administered intraperitoneally (IP) with 200 ng/per mouse after intratracheal injection of LPS, which remarkedly stimulated proliferation of type II alveolar epithelial cells (AT II cells), reduced the apoptosis of AT II cells, which attenuated lung injury induced by LPS. Moreover, primary type II alveolar cells were isolated and cultured to assess the effects of PDX on wound repair, apoptosis, proliferation and transdifferentiation in vitro. We also investigated the effects of PDX on primary rat lung fibroblast proliferation and myofibroblast differentiation. Our result suggests PDX promotes primary AT II cells wound closure by inducing the proliferation of AT II cells and reducing the apoptosis of AT II cells induced by LPS, and promotes AT II cells transdifferentiation. Furthermore, PDX inhibits transforming growth factor‐β1 (TGF‐β1) induced fibroproliferation, fibroblast collagen production and myofibroblast transformation. Furthermore, the effects of PDX on epithelial wound healing and proliferation, fibroblast proliferation and activation partly via the ALX/ PI3K signalling pathway. These data present identify a new mechanism of PDX which targets the airway epithelial cell and fibroproliferation are potential for treatment of ARDS/ALI.
Collapse
Affiliation(s)
- Jing-Xiang Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ming Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xin Hu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jia-Chao Lu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qian Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Shi-Yue Lu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fang Gao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.,Birmingham Acute Care Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham, UK
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Sheng-Xing Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
9
|
Major Adverse Kidney Events Are Associated with the Aquaporin 5 -1364A/C Promoter Polymorphism in Sepsis: A Prospective Validation Study. Cells 2020; 9:cells9040904. [PMID: 32272738 PMCID: PMC7226758 DOI: 10.3390/cells9040904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/05/2020] [Indexed: 12/29/2022] Open
Abstract
Since the functionally important AQP5 -1364A/C single nucleotide promoter polymorphism alters key mechanisms of inflammation and survival in sepsis, it may affect the risk of an acute kidney injury. Accordingly, we tested the hypothesis in septic patients that this AQP5 polymorphism is associated with major adverse kidney events and also validated its impact on 90-day survival. In this prospective observational monocentric genetic association study 282 septic patients were included and genotyped for the AQP5 –1364A/C polymorphism (rs3759129). The primary endpoint was the development of major adverse kidney events within 30 days. In AC/CC genotypes, major adverse kidney events were less frequent (41.7%) than in AA genotypes (74.3%; OR:0.34; 95%-CI: 0.18–0.62; p < 0.001). Ninety-day survival was also associated with the AQP5 polymorphism (p = 0.004), with 94/167 deaths (56.3%) in AA genotypes, but only 46/115 deaths (40.0%) in C-allele carriers. Multiple proportional hazard analysis revealed AC/CC genotypes to be at significantly lower risk for death within 90 days (HR: 0.60; 95%-CI: 0.42-0.86; p = 0.006). These findings confirm the important role of the AQP5 -1364A/C polymorphism as an independent prognostic factor in sepsis. Furthermore, we demonstrate a strong association between this AQP5 polymorphism and susceptibility for major adverse kidney events suggesting a promising characteristic in terms of precision medicine.
Collapse
|
10
|
DNA methylation of a NF-κB binding site in the aquaporin 5 promoter impacts on mortality in sepsis. Sci Rep 2019; 9:18511. [PMID: 31811204 PMCID: PMC6898603 DOI: 10.1038/s41598-019-55051-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Altered aquaporin 5 (AQP5) expression in immune cells impacts on key mechanisms of inflammation and is associated with sepsis survival. Since epigenetic regulation via DNA methylation might contribute to a differential AQP5 expression in sepsis, we tested the hypotheses that DNA methylation of the AQP5 promotor (1) influences AQP5 expression, (2) is associated with the 30-day survival of septic patients, and (3) alters the nuclear transcription factor NF-κB binding. AQP5 mRNA expression was quantified by real-time PCR in whole blood samples of 135 septic patients. In silico computer analysis of the AQP5 promoter (nt-567 to nt-975) revealed seven putative inflammatory transcription factor binding sites and methylation of these sites was analyzed. Electrophoretic mobility shift assays were performed to assess the binding of nuclear NF-κB to the AQP5 promoter region nt-937. After adjustment for multiple testing, a greater methylation rate was found at cytosine site nt-937 in the AQP5 promoter linked to NF-κB binding in non-survivors compared to survivors (p = 0.002, padj = 0.014). This was associated with greater AQP5 mRNA expression in non-survivors (p = 0.037). Greater (≥16%) promoter methylation at nt-937 was also associated with an independently increased risk of death within 30 days (HR: 3.31; 95% CI: 1.54–6.23; p = 0.002). We detected a functionally important AQP5 promoter cytosine site (nt-937) linked to the binding of the inflammatorily acting nuclear transcription factor NF-κB, with increased methylation in sepsis non-survivors. Thus, nt-937 APQ5 promoter methylation, presumably related to NF-κB binding, is prognostically relevant in sepsis and demonstrates that epigenetic changes impact on sepsis outcome.
Collapse
|
11
|
Rahmel T, Nowak H, Rump K, Koos B, Schenker P, Viebahn R, Adamzik M, Bergmann L. The Aquaporin 5 -1364A/C Promoter Polymorphism Is Associated With Cytomegalovirus Infection Risk in Kidney Transplant Recipients. Front Immunol 2019; 10:2871. [PMID: 31867018 PMCID: PMC6906153 DOI: 10.3389/fimmu.2019.02871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The aquaporin 5 (AQP5) −1364A/C promoter single nucleotide polymorphism affects key mechanisms of inflammation and immune cell migration. Thus, it could be involved in the pathogenesis of cytomegalovirus infection. Accordingly, we tested the hypothesis that the AQP5 promoter −1364A/C polymorphism is associated with the risk of cytomegalovirus infection in kidney transplantation recipients. Methods: We included 259 adult patients who received a kidney transplant from 2007 and 2014 in this observational study. Patients were genotyped for the AQP5 promoter −1364A/C single nucleotide polymorphism and followed up for 12 months after transplantation. Kaplan–Meier plots and multivariable proportional hazard analyses were used to evaluate the relationship between genotypes and the incidence of cytomegalovirus infection. Results: The incidences of cytomegalovirus infection within 12 months after kidney transplantation were 22.9% for the AA genotypes (43/188) and 42.3% for the AC/CC genotypes (30/71; p = 0.002). Furthermore, multivariable COX regression revealed the C-allele of the AQP5 −1364A/C polymorphism to be a strong and independent risk factor for cytomegalovirus infection. In this analysis, AC/CC subjects demonstrated a more than 2-fold increased risk for cytomegalovirus infection within the first year after kidney transplantation (hazard ratio: 2.28; 95% CI: 1.40–3.73; p = 0.001) compared to that in individuals with homozygous AA genotypes. Conclusions: With respect to opportunistic cytomegalovirus infections (attributable to immunosuppression after kidney transplantation), the C-allele of the AQP5 −1364A/C promoter polymorphism is independently associated with an increased 12-months infection risk. These findings emphasize the importance of genetic variations as additional risk factors of cytomegalovirus infection after solid organ transplantations and might also facilitate the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Peter Schenker
- Klinik für Chirurgie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Richard Viebahn
- Klinik für Chirurgie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| |
Collapse
|