1
|
Liu XG, Zhao T, Qiu QQ, Wang CK, Li TL, Liu XL, Wang L, Wang QQ, Zhou L. CRISPR/Cas9-mediated knockout of the abdominal-B homeotic gene in the global pest, fall armyworm (Spodoptera frugiperda). INSECT MOLECULAR BIOLOGY 2025; 34:162-173. [PMID: 39314071 DOI: 10.1111/imb.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/18/2024] [Indexed: 09/25/2024]
Abstract
The Homeotic complex (Hox) genes play a crucial role in determining segment identity and appendage morphology in bilaterian animals along the antero-posterior axis. Recent studies have expanded to agricultural pests such as fall armyworm (FAW), scientifically known as Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae), which significantly threatens global agricultural productivity. However, the specific role of the hox gene Sfabd-B in FAW remains unexplored. This research investigates the spatial and temporal expression patterns of Sfabd-B in various tissues at different developmental stages using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, we explored the potential function of the Sfabd-B gene located in the FAW genome using CRISPR/Cas9 technology. The larval mutant phenotypes can be classified into three subgroups as compared with wild-type individuals, that is, an excess of pedis in the posterior abdomen, deficient pedis due to segmental fusion and deviations in the posterior abdominal segments. Importantly, significant differences in mutant phenotypes between male and female individuals were also evident during the pupal and adult phases. Notably, both the decapentaplegic (dpp) and cuticular protein 12 (cp 12) genes displayed a substantial marked decrease in expression levels in the copulatory organ of male mutants and the ovipositor of female mutants compared with the wild type. These findings highlight the importance of Sfabd-B in genital tract patterning, providing a potential target for improving genetic control.
Collapse
Affiliation(s)
- Xiao-Guang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qi-Qi Qiu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Cong-Ke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Tian-Liang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Long Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
| | - Li Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qin-Qin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Jangra S, Potts J, Ghosh A, Seal DR. Genome editing: A novel approach to manage insect vectors of plant viruses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104189. [PMID: 39341259 DOI: 10.1016/j.ibmb.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Insect vectors significantly threaten global agriculture by transmitting numerous plant viruses. Various measures, from conventional insecticides to genetic engineering, are used to mitigate this threat. However, none provide complete resistance. Therefore, researchers are looking for novel control options. In recent years with the advancements in genomic technologies, genomes and transcriptomes of various insect vectors have been generated. However, the lack of knowledge about gene functions hinders the development of novel strategies to restrict virus spread. RNA interference (RNAi) is widely used to elucidate gene functions, but its variable efficacy hampers its use in managing insect vectors and plant viruses. Genome editing has the potential to overcome these challenges and has been extensively used in various insect pest species. This review summarizes the progress and potential of genome editing in plant virus vectors and its application as a functional genomic tool to elucidate virus-vector interactions. We also discuss the major challenges associated with editing genes of interest in insect vectors.
Collapse
Affiliation(s)
- Sumit Jangra
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA.
| | - Jesse Potts
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dakshina R Seal
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| |
Collapse
|
3
|
Salum YM, Yin A, Zaheer U, Liu Y, Guo Y, He W. CRISPR/Cas9-Based Genome Editing of Fall Armyworm ( Spodoptera frugiperda): Progress and Prospects. Biomolecules 2024; 14:1074. [PMID: 39334840 PMCID: PMC11430287 DOI: 10.3390/biom14091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The fall armyworm (Spodoptera frugiperda) poses a substantial threat to many important crops worldwide, emphasizing the need to develop and implement advanced technologies for effective pest control. CRISPR/Cas9, derived from the bacterial adaptive immune system, is a prominent tool used for genome editing in living organisms. Due to its high specificity and adaptability, the CRISPR/Cas9 system has been used in various functional gene studies through gene knockout and applied in research to engineer phenotypes that may cause economical losses. The practical application of CRISPR/Cas9 in diverse insect orders has also provided opportunities for developing strategies for genetic pest control, such as gene drive and the precision-guided sterile insect technique (pgSIT). In this review, a comprehensive overview of the recent progress in the application of the CRISPR/Cas9 system for functional gene studies in S. frugiperda is presented. We outline the fundamental principles of applying CRISPR/Cas9 in S. frugiperda through embryonic microinjection and highlight the application of CRISPR/Cas9 in the study of genes associated with diverse biological aspects, including body color, insecticide resistance, olfactory behavior, sex determination, development, and RNAi. The ability of CRISPR/Cas9 technology to induce sterility, disrupt developmental stages, and influence mating behaviors illustrates its comprehensive roles in pest management strategies. Furthermore, this review addresses the limitations of the CRISPR/Cas9 system in studying gene function in S. frugiperda and explores its future potential as a promising tool for controlling this insect pest.
Collapse
Affiliation(s)
- Yussuf Mohamed Salum
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anyuan Yin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Uroosa Zaheer
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Guo
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Kumari R, Saha T, Kumar P, Singh AK. CRISPR/Cas9-mediated genome editing technique to control fall armyworm ( Spodoptera frugiperda) in crop plants with special reference to maize. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1161-1173. [PMID: 39100879 PMCID: PMC11291824 DOI: 10.1007/s12298-024-01486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Fall Armyworm imposes a major risk to agricultural losses. Insecticides have historically been used to manage its infestations, but it eventually becomes resistant to them. To combat the pest, a more recent strategy based on the use of transgenic maize that expresses Bt proteins such as Cry1F from the bacteria has been used. Nonetheless, there have been numerous reports of Cry1F maize resistance in FAW populations. Nowadays, the more effective and less time-consuming genome editing method known as CRISPR/Cas9 technology has gradually supplanted these various breeding techniques. This method successfully edits the genomes of various insects, including Spodoptera frugiperda. On the other hand, this new technique can change an insect's DNA to overcome its tolerance to specific insecticides or to generate a gene drive. The production of plant cultivars resistant to fall armyworms holds great potential for the sustainable management of this pest, given the swift advancement of CRISPR/Cas9 technology and its varied uses. Thus, this review article discussed and critically assessed the use of CRISPR/Cas9 genome-editing technology in long-term fall armyworm pest management. However, this review study focuses primarily on the mechanism of the CRISPR-Cas9 system in both crop plants and insects for FAW management.
Collapse
Affiliation(s)
- Rima Kumari
- Division of Plant Biotechnology, College of Agricultural Biotechnology, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - Tamoghna Saha
- Department of Entomology, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - Pankaj Kumar
- Department of Molecular Biology and Genetic Engineering, Bihar Agricultural University, Sabour, Bihar 813210 India
| | - A. K. Singh
- Bihar Agricultural University, Sabour, 813210 Bihar India
| |
Collapse
|
5
|
Shi Z, Luo M, Yuan J, Gao B, Yang M, Wang G. CRISPR/Cas9-Based Functional Characterization of SfUGT50A15 Reveals Its Roles in the Resistance of Spodoptera frugiperda to Chlorantraniliprole, Emamectin Benzoate, and Benzoxazinoids. INSECTS 2024; 15:314. [PMID: 38786870 PMCID: PMC11122625 DOI: 10.3390/insects15050314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
UDP-glycosyltransferases (UGTs) are a diverse superfamily of enzymes. Insects utilize uridine diphosphate-glucose (UDP-glucose) as a glycosyl donor for glycosylation in vivo, involved in the glycosylation of lipophilic endosymbionts and xenobiotics, including phytotoxins. UGTs act as second-stage detoxification metabolizing enzymes, which are essential for the detoxification metabolism of insecticides and benzoxazine compounds. However, the UGT genes responsible for specific glycosylation functions in S. frugiperda are unclear at present. In this study, we utilized CRISPR/Cas9 to produce a SfUGT50A15-KO strain to explore its possible function in governing sensitivity to chemical insecticides or benzoxazinoids. The bioassay results suggested that the SfUGT50A15-KO strain was significantly more sensitive to chlorantraniliprole, emamectin benzoate, and benzoxazinoids than the wild-type strains. This finding suggests that the overexpression of the SfUGT50A15 gene may be linked to S. frugiperda resistance to pesticides (chlorantraniliprole and emamectin benzoate) as well as benzoxazinoids (BXDs).
Collapse
Affiliation(s)
- Zhan Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Z.S.); (M.L.); (J.Y.); (B.G.); (M.Y.)
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute, Henan University, Shenzhen 518000, China
| | - Mei Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Z.S.); (M.L.); (J.Y.); (B.G.); (M.Y.)
| | - Jinxi Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Z.S.); (M.L.); (J.Y.); (B.G.); (M.Y.)
| | - Bin Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Z.S.); (M.L.); (J.Y.); (B.G.); (M.Y.)
- Guangxi Key Laboratory of Agri-Environmental and Agri-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Minghuan Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Z.S.); (M.L.); (J.Y.); (B.G.); (M.Y.)
- Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (Z.S.); (M.L.); (J.Y.); (B.G.); (M.Y.)
| |
Collapse
|
6
|
Liu BP, Hua BZ. Distinct roles of the Hox genes Ultrabithorax and abdominal-A in scorpionfly embryonic proleg development. INSECT MOLECULAR BIOLOGY 2024; 33:69-80. [PMID: 37792400 DOI: 10.1111/imb.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
The abdominal appendages of larval insects have a complex evolutionary history of gain and loss, but the regulatory mechanisms underlying the abdominal appendage development remain largely unclear. Here, we investigated the embryogenesis of abdominal prolegs in the scorpionfly Panorpa liui Hua (Mecoptera: Panorpidae) using in situ hybridization and parental RNA interference. The results show that RNAi-mediated knockdown of Ultrabithorax (Ubx) led to a homeotic transformation of the first abdominal segment (A1) into the third thoracic segment (T3) and changed the distributions of the downstream target Distal-less (Dll) expression but did not affect the expression levels of Dll. Knockdown of abdominal-A (abd-A) resulted in malformed segments, abnormal prolegs and disrupted Dll expression. The results demonstrate that the gene Ubx maintains an ancestral role of modulating A1 appendage fate without preventing Dll initiation, and a secondary adaptation of abd-A evolves the ability to specify abdominal segments and proleg identity. We conclude that changes in abdominal Hox gene expression and their target genes regulate abdominal appendage morphology during the evolutionary course of holometabolous larvae.
Collapse
Affiliation(s)
- Bing-Peng Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Bao-Zhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Divya K, Thangaraj M, Krishna Radhika N. CRISPR/Cas9: an advanced platform for root and tuber crops improvement. Front Genome Ed 2024; 5:1242510. [PMID: 38312197 PMCID: PMC10836405 DOI: 10.3389/fgeed.2023.1242510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
Root and tuber crops (RTCs), which include cassava, potato, sweet potato, and yams, principally function as staple crops for a considerable fraction of the world population, in addition to their diverse applications in nutrition, industry, and bioenergy sectors. Even then, RTCs are an underutilized group considering their potential as industrial raw material. Complexities in conventional RTC improvement programs curb the extensive exploitation of the potentials of this group of crop species for food, energy production, value addition, and sustainable development. Now, with the advent of whole-genome sequencing, sufficient sequence data are available for cassava, sweet potato, and potato. These genomic resources provide enormous scope for the improvement of tuber crops, to make them better suited for agronomic and industrial applications. There has been remarkable progress in RTC improvement through the deployment of new strategies like gene editing over the last decade. This review brings out the major areas where CRISPR/Cas technology has improved tuber crops. Strategies for genetic transformation of RTCs with CRISPR/Cas9 constructs and regeneration of edited lines and the bottlenecks encountered in their establishment are also discussed. Certain attributes of tuber crops requiring focus in future research along with putative editing targets are also indicated. Altogether, this review provides a comprehensive account of developments achieved, future lines of research, bottlenecks, and major experimental concerns regarding the establishment of CRISPR/Cas9-based gene editing in RTCs.
Collapse
Affiliation(s)
- K Divya
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | | | - N Krishna Radhika
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| |
Collapse
|
8
|
Ashok K, Bhargava CN, Asokan R, Pradeep C, Kennedy JS, Manamohan M, Rai A. CRISPR/Cas9 mediated mutagenesis of the major sex pheromone gene, acyl-CoA delta-9 desaturase (DES9) in Fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Int J Biol Macromol 2023; 253:126557. [PMID: 37657567 DOI: 10.1016/j.ijbiomac.2023.126557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 09/03/2023]
Abstract
The Fall armyworm, Spodoptera frugiperda is a significant global pest causing serious yield loss on several staple crops. In this regard, this pest defies several management approaches based on chemicals, Bt transgenics etc., requiring effective alternatives. Recently CRISPR/Cas9 mediated genome editing has opened up newer avenues to establish functions of various target genes before employing them for further application. The virgin female moths of S. frugiperda emit sex pheromones to draw conspecific males. Therefore, we have edited the key pheromone synthesis gene, fatty acyl-CoA Delta-9 desaturase (DES9) of the Indian population of S. frugiperda. In order to achieve a larger deletion of the DES9, we have designed two single guide RNA (sgRNA) in sense and antisense direction targeting the first exon instead of a single guide RNA. The sgRNA caused site-specific knockout with a larger deletion which impacted the mating. Crossing studies between wild male and mutant female resulted in no fecundity, while fecundity was normal when mutant male crossed with the wild female. This indicates that mating disruption is stronger in females where DES9 is mutated. The current work is the first of its kind to show that DES9 gene editing impacted the likelihood of mating in S. frugiperda.
Collapse
Affiliation(s)
- Karuppannasamy Ashok
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India; Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India.
| | - Chikmagalur Nagaraja Bhargava
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India; University of Agricultural Sciences, Bengaluru 560065, Karnataka, India
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India.
| | - Chalapathi Pradeep
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India; University of Agricultural Sciences, Bengaluru 560065, Karnataka, India
| | | | | | - Anil Rai
- ICAR - Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| |
Collapse
|
9
|
Gouda MNR, Jeevan H, Shashank HG. CRISPR/Cas9: a cutting-edge solution for combatting the fall armyworm, Spodoptera frugiperda. Mol Biol Rep 2023; 51:13. [PMID: 38085335 DOI: 10.1007/s11033-023-08986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023]
Abstract
The utilization of CRISPR/Cas9 in Spodoptera frugiperda, commonly known as fall armyworm, presents a groundbreaking avenue for pest management. With its ability to precisely modify the insect's genome, CRISPR/Cas9 offers innovative strategies to combat this destructive pest. The application of CRISPR/Cas9 in S. frugiperda holds immense potential. It enables the identification and functional analysis of key genes associated with its behavior, development, and insecticide resistance. This knowledge can unveil novel target sites for more effective and specific insecticides. Additionally, CRISPR/Cas9 can facilitate the development of population control methods by disrupting vital genes essential for survival. However, challenges such as off-target effects and the efficient delivery of CRISPR/Cas9 components remain. Addressing these obstacles is vital to ensure accurate and reliable results. Furthermore, ethical considerations, biosafety protocols, and regulatory frameworks must be integral to the adoption of this technology. Looking forward, CRISPR/Cas9-based gene drive systems hold the potential to promulgate desirable genetic traits within S. frugiperda populations, offering a sustainable and eco-friendly approach. This could curtail their reproductive capabilities or make them more susceptible to certain interventions. In conclusion, CRISPR/Cas9 presents a transformative platform for precise and targeted pest management in S. frugiperda. By deciphering the insect's genetic makeup and developing innovative strategies, we can mitigate the devastating impact of fall armyworm on agriculture while ensuring environmental sustainability.
Collapse
Affiliation(s)
- M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - H Jeevan
- Division of Nematology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - H G Shashank
- Division of Plant Genetic Resources, Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
10
|
Ashok K, Bhargava CN, Asokan R, Pradeep C, Pradhan SK, Kennedy JS, Balasubramani V, Murugan M, Jayakanthan M, Geethalakshmi V, Manamohan M. CRISPR/Cas9 mediated editing of pheromone biosynthesis activating neuropeptide ( PBAN) gene disrupts mating in the Fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). 3 Biotech 2023; 13:370. [PMID: 37849767 PMCID: PMC10577122 DOI: 10.1007/s13205-023-03798-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The Fall armyworm, Spodoptera frugiperda, is a globally important invasive pest, primarily on corn, causing severe yield loss. Overuse of synthetic chemicals has caused significant ecological harm, and in many instances control has failed. Therefore, developing efficient, environmentally friendly substitutes for sustainable management of this pest is of high priority. CRISPR/Cas9-mediated gene editing causes site-specific mutations that typically result in loss-of-function of the target gene. In this regard, identifying key genes that govern the reproduction of S. frugiperda and finding ways to introduce mutations in the key genes is very important for successfully managing this pest. In this study, the pheromone biosynthesis activator neuropeptide (PBAN) gene of S. frugiperda was cloned and tested for its function via a loss-of-function approach using CRISPR/Cas9. Ribonucleoprotein (RNP) complex (single guide RNA (sgRNA) targeting the PBAN gene + Cas9 protein) was validated through in vitro restriction assay followed by embryonic microinjection into the G0 stage for in vivo editing of the target gene. Specific suppression of PBAN by CRISPR/Cas9 in females significantly affected mating. Mating studies between wild males and mutant females resulted in no fecundity. This was in contrast to when mutant males were crossed with wild females, which resulted in reduced fecundity. These results suggest that mating disruption is more robust where PBAN is edited in females. The behavioural bioassay using an olfactometer revealed that mutant females were less attractive to wild males compared to wild females. This study is the first of its kind, supporting CRISPR/Cas9 mediating editing of the PBAN gene disrupting mating in S. frugiperda. Understanding the potential use of these molecular techniques may help develop novel management strategies that target other key functional genes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03798-3.
Collapse
Affiliation(s)
- Karuppannasamy Ashok
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu India
| | - Chikmagalur Nagaraja Bhargava
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- University of Agricultural Sciences, Bangalore, Karnataka India
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
| | - Chalapathi Pradeep
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- University of Agricultural Sciences, Bangalore, Karnataka India
| | - Sanjay Kumar Pradhan
- ICAR-Indian Institute of Horticultural Research, Bangalore, Karnataka India
- University of Agricultural Sciences, Bangalore, Karnataka India
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
CRISPR-Cas Genome Editing for Insect Pest Stress Management in Crop Plants. STRESSES 2022. [DOI: 10.3390/stresses2040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global crop yield and food security are being threatened by phytophagous insects. Innovative methods are required to increase agricultural output while reducing reliance on hazardous synthetic insecticides. Using the revolutionary CRISPR-Cas technology to develop insect-resistant plants appears to be highly efficient at lowering production costs and increasing farm profitability. The genomes of both a model insect, Drosophila melanogaster, and major phytophagous insect genera, viz. Spodoptera, Helicoverpa, Nilaparvata, Locusta, Tribolium, Agrotis, etc., were successfully edited by the CRISPR-Cas toolkits. This new method, however, has the ability to alter an insect’s DNA in order to either induce a gene drive or overcome an insect’s tolerance to certain insecticides. The rapid progress in the methodologies of CRISPR technology and their diverse applications show a high promise in the development of insect-resistant plant varieties or other strategies for the sustainable management of insect pests to ensure food security. This paper reviewed and critically discussed the use of CRISPR-Cas genome-editing technology in long-term insect pest management. The emphasis of this review was on the prospective uses of the CRISPR-Cas system for insect stress management in crop production through the creation of genome-edited crop plants or insects. The potential and the difficulties of using CRISPR-Cas technology to reduce pest stress in crop plants were critically examined and discussed.
Collapse
|
12
|
Singh S, Rahangdale S, Pandita S, Saxena G, Upadhyay SK, Mishra G, Verma PC. CRISPR/Cas9 for Insect Pests Management: A Comprehensive Review of Advances and Applications. AGRICULTURE 2022; 12:1896. [DOI: 10.3390/agriculture12111896] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Insect pests impose a serious threat to agricultural productivity. Initially, for pest management, several breeding approaches were applied which have now been gradually replaced by genome editing (GE) strategies as they are more efficient and less laborious. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-associated system) was discovered as an adaptive immune system of bacteria and with the scientific advancements, it has been improvised into a revolutionary genome editing technique. Due to its specificity and easy handling, CRISPR/Cas9-based genome editing has been applied to a wide range of organisms for various research purposes. For pest control, diverse approaches have been applied utilizing CRISPR/Cas9-like systems, thereby making the pests susceptible to various insecticides, compromising the reproductive fitness of the pest, hindering the metamorphosis of the pest, and there have been many other benefits. This article reviews the efficiency of CRISPR/Cas9 and proposes potential research ideas for CRISPR/Cas9-based integrated pest management. CRISPR/Cas9 technology has been successfully applied to several insect pest species. However, there is no review available which thoroughly summarizes the application of the technique in insect genome editing for pest control. Further, authors have highlighted the advancements in CRISPR/Cas9 research and have discussed its future possibilities in pest management.
Collapse
Affiliation(s)
- Sanchita Singh
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Department of Botany, University of Lucknow, Lucknow 226007, UP, India
| | - Somnath Rahangdale
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| | - Shivali Pandita
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Department of Zoology, University of Lucknow, Lucknow 226007, UP, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow 226007, UP, India
| | | | - Geetanjali Mishra
- Department of Zoology, University of Lucknow, Lucknow 226007, UP, India
| | - Praveen C. Verma
- CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow 226001, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, UP, India
| |
Collapse
|
13
|
Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111376. [PMID: 35835393 DOI: 10.1016/j.plantsci.2022.111376] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.
Collapse
Affiliation(s)
| | - Priya Das
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mirza J Baig
- ICAR-National Rice Research Institute, Cuttack 753006, India.
| | | |
Collapse
|
14
|
Eychenne M, Girard PA, Frayssinet M, Lan L, Pagès S, Duvic B, Nègre N. Mutagenesis of both prophenoloxidases in the fall armyworm induces major defects in metamorphosis. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104399. [PMID: 35568240 DOI: 10.1016/j.jinsphys.2022.104399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Upon infection, the phenoloxidase system in arthropods is rapidly mobilized and constitutes a major defense system against invaders. The activation of the key enzymes prophenoloxidase (PPO) and their action in immunity through melanization and encapsulation of foreign bodies in hemolymph has been described in many insects. On the other hand, little is known about PPOs involvement in other essential functions related to insect development. In this paper, we investigated the function of the two PPOs of the crop pest, Spodoptera frugiperda (PPO1 and PPO2). We show that PPOs are mainly expressed in hemocytes with the PPO2 expressed at higher levels than the PPO1. In addition, these two genes are expressed in the same tissue and at the same stages of insect development. Through the generation of loss-of-function mutants by CRISPR/Cas9 method, we show that the presence of PPOs is essential for the normal development of the pupa and the survival of the insect.
Collapse
Affiliation(s)
| | | | | | - Laijiao Lan
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Sylvie Pagès
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Bernard Duvic
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| | - Nicolas Nègre
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
15
|
Li Q, Jin M, Yu S, Cheng Y, Shan Y, Wang P, Yuan H, Xiao Y. Knockout of the ABCB1 Gene Increases Susceptibility to Emamectin Benzoate, Beta-Cypermethrin and Chlorantraniliprole in Spodoptera frugiperda. INSECTS 2022; 13:insects13020137. [PMID: 35206711 PMCID: PMC8875147 DOI: 10.3390/insects13020137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023]
Abstract
ATP-binding cassette transporter B1 (ABCB1, or P-glycoprotein) is known to be an important participant in multidrug resistance in mammals, and it also has been proved as a transporter for some insecticides in several lepidopteran insects, yet the precise function of this transporter in Spodoptera frugiperda is unknown. Here, we generated a SfABCB1 knockout strain of the S. frugiperda using the CRISPR/Cas9 system to explore its potential roles in determining susceptibility to chemical insecticides or Bt toxins. Bioassay results showed that the susceptibility of SfABCB1 knockout strain to beta-cypermethrin, chlorantraniliprole and emamectin benzoate were significantly increased compared with the wild-type strain DH19, whereas there were no changes to Bt toxins for Cry1Ab, Cry1Fa and Vip3Aa. Our results revealed that SfABCB1 plays important roles in the susceptibility of S. frugiperda to beta-cypermethrin, chlorantraniliprole and emamectin benzoate, and imply that overexpression of ABCB1 may contribute to beta-cypermethrin, chlorantraniliprole and emamectin benzoate resistance in S. frugiperda.
Collapse
Affiliation(s)
- Qi Li
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
| | - Songmiao Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
| | - Ying Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
| | - Peng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
| | - Haibin Yuan
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
- Correspondence: (H.Y.); (Y.X.)
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
- Correspondence: (H.Y.); (Y.X.)
| |
Collapse
|
16
|
Li JJ, Shi Y, Wu JN, Li H, Smagghe G, Liu TX. CRISPR/Cas9 in lepidopteran insects: Progress, application and prospects. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104325. [PMID: 34743972 DOI: 10.1016/j.jinsphys.2021.104325] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Clustered regularly spaced short palindrome repeats (CRISPR) structure family forms the acquired immune system in bacteria and archaea. Recent advances in CRISPR/Cas genome editing as derived from prokaryotes, confirmed the characteristics of robustness, high target specificity and programmability, and also revolutionized the insect sciences field. The successful application of CRISPR in a wide variety of lepidopteran insects, with a high genetic diversity, provided opportunities to explore gene functions, insect modification and pest control. In this review, we present a detailed overview on the recent progress of CRISPR in lepidopteran insects, and described the basic principles of the system and its application. Major interest is on wing development, pigmentation, mating, reproduction, sex determination, metamorphosis, resistance and silkworm breeding innovation. Finally, we outlined the limitations of CRISPR/Cas system and discussed its application prospects in lepidopteran insects.
Collapse
Affiliation(s)
- Jiang-Jie Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Yan Shi
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Ji-Nan Wu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Hao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China.
| |
Collapse
|
17
|
Syombua ED, Tripathi JN, Obiero GO, Nguu EK, Yang B, Wang K, Tripathi L. Potential applications of the CRISPR/Cas technology for genetic improvement of yam (
Dioscorea
spp.). Food Energy Secur 2021. [DOI: 10.1002/fes3.330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Easter D. Syombua
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
- Centre for Biotechnology and Bioinformatics (CEBIB) University of Nairobi Nairobi Kenya
| | | | - George O. Obiero
- Centre for Biotechnology and Bioinformatics (CEBIB) University of Nairobi Nairobi Kenya
| | - Edward K. Nguu
- Department of Biochemistry University of Nairobi Nairobi Kenya
| | - Bing Yang
- Division of Plant Sciences Bond Life Sciences Center University of Missouri Columbia MO USA
- Donald Danforth Plant Science Center St. Louis MO USA
| | - Kan Wang
- Department of Agronomy Iowa State University Ames IA USA
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
| |
Collapse
|
18
|
Pan Y, Fang G, Wang Z, Cao Y, Liu Y, Li G, Liu X, Xiao Q, Zhan S. Chromosome-level genome reference and genome editing of the tea geometrid. Mol Ecol Resour 2021; 21:2034-2049. [PMID: 33738922 DOI: 10.1111/1755-0998.13385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
The tea geometrid is a destructive insect pest on tea plants, which seriously affects tea production in terms of both yield and quality and causes severe economic losses. The tea geometrid also provides an important study system to address the ecological adaptive mechanisms underlying its unique host plant adaptation and protective resemblance. In this study, we fully sequenced and de novo assembled the reference genome of the tea geometrid, Ectropis grisescens, using long sequencing reads. We presented a highly continuous, near-complete genome reference (787.4 Mb; scaffold N50: 26.9 Mb), along with the annotation of 18,746 protein-coding genes and 53.3% repeat contents. Importantly, we successfully placed 97.8% of the assembly in 31 chromosomes based on Hi-C interactions and characterized the sex chromosome based on sex-biased sequencing coverage. Multiple quality-control assays and chromosome-scale synteny with the model species all supported the high quality of the presented genome reference. We focused biological annotations on gene families related to the host plant adaptation and camouflage in the tea geometrid and performed comparisons with other representative lepidopteran species. Important findings include the E. grisescens-specific expansion of CYP6 P450 genes that might be involved in metabolism of tea defensive chemicals and unexpected massive expansion of gustatory receptor gene families that suggests potential polyphagy for this tea pest. Furthermore, we developed an efficient genome editing system based on CRISPR/Cas9 technology and successfully implement mutagenesis of a Hox gene in the tea geometrid. Our study provides key genomic resources both for exploring unique mechanisms underlying the ecological adaptation of tea geometrids and for developing environment-friendly strategies for tea pest management.
Collapse
Affiliation(s)
- Yunjie Pan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhibo Wang
- Key Laboratory of Tea Quality and Safety Control, Tea Research Institute, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yanghui Cao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yongjian Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guiyun Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Xiao
- Key Laboratory of Tea Quality and Safety Control, Tea Research Institute, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Tyagi S, Kesiraju K, Saakre M, Rathinam M, Raman V, Pattanayak D, Sreevathsa R. Genome Editing for Resistance to Insect Pests: An Emerging Tool for Crop Improvement. ACS OMEGA 2020; 5:20674-20683. [PMID: 32875201 PMCID: PMC7450494 DOI: 10.1021/acsomega.0c01435] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/30/2020] [Indexed: 05/17/2023]
Abstract
Plants are challenged incessantly by several biotic and abiotic stresses during their entire growth period. As with other biotic stress factors, insect pests have also posed serious concerns related to yield losses due to which agricultural productivity is at stake. In plants, trait modification for crop improvement was initiated with breeding approaches followed by genetic engineering. However, stringent regulatory policies for risk assessment and lack of social acceptance for genetically modified crops worldwide have incited researchers toward alternate strategies. Genome engineering or genome editing has emerged as a new breeding technique with the ability to edit the genomes of plants, animals, microbes, and human beings. Several gene editing strategies are being executed with continuous emergence of variants. The scientific community has unraveled the utility of various editing tools from endonucleases to CRISPR/Cas in several aspects related to plant growth, development, and mitigation of stresses. The categorical focus on the development of tools and techniques including designing of binary vectors to facilitate ease in genome engineering are being pursued. Through this Review, we embark upon the conglomeration of various genome editing strategies that can be and are being used to design insect pest resistance in plants. Case studies and novel crop-based approaches that reiterate the successful use of these tools in insects as well as in plants are highlighted. Further, the Review also provides implications for the requirement of a specific regulatory framework and risk assessment of the edited crops. Genome editing toward insect pest management is here to stay, provided uncompromising efforts are made toward the identification of amiable target genes.
Collapse
|
20
|
Zhu GH, Chereddy SCRR, Howell JL, Palli SR. Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103373. [PMID: 32276113 DOI: 10.1016/j.ibmb.2020.103373] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The CRISPR/Cas9 system is an efficient genome editing method that can be used in functional genomics research. The fall armyworm, Spodoptera frugiperda, is a serious agricultural pest that has spread over most of the world. However, very little information is available on functional genomics for this insect. We performed CRISPR/Cas9-mediated site-specific mutagenesis of three target genes: two marker genes [Biogenesis of lysosome-related organelles complex 1 subunit 2 (BLOS2) and tryptophan 2, 3-dioxygenase (TO)], and a developmental gene, E93 (a key ecdysone-induced transcription factor that promotes adult development). The knockouts (KO) of BLOS2, TO and E93 induced translucent mosaic integument, olive eye color, and larval-pupal intermediate phenotypes, respectively. Sequencing RNA isolated from wild-type and E93 KO insects showed that E93 promotes adult development by influencing the expression of the genes coding for transcription factor, Krüppel homolog 1, the pupal specifier, Broad-Complex, serine proteases, and heat shock proteins. Often, gene-edited insects display mosaicism in which only a fraction of the cells are edited as intended, and establishing a homozygous line is both costly and time-consuming. To overcome these limitations, a method to completely KO the target gene in S. frugiperda by injecting the Cas9 protein and multiple sgRNAs targeting one exon of the E93 gene into embryos was developed. Ten percent of the G0 larvae exhibited larval-pupal intermediates. The mutations were confirmed by T7E1 assay, and the mutation frequency was determined as >80%. Complete KO of the E93 gene was achieved in one generation using the multiple sgRNA method, demonstrating a powerful approach to improve genome editing in lepidopteran and other non-model insects.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Shankar C R R Chereddy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Jeffrey L Howell
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|