1
|
Bhardwaj S, Badiyal A, Dhiman S, Bala J, Walia A. Exploring Halophiles for Reclamation of Saline Soils: Biotechnological Interventions for Sustainable Agriculture. J Basic Microbiol 2025:e70048. [PMID: 40357706 DOI: 10.1002/jobm.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Soil salinization is a major constraint on agricultural productivity, particularly in arid and semi-arid regions where limited rainfall cannot wash salts from plant root zones. This leads to disruptions in water uptake, ion balance, photosynthesis, respiration, nutrient absorption, hormone regulation and rhizosphere microbiome disturbances in plants. Chemical and biological methods can help mitigate soil salinity, but biological approaches, like using halophytes and salt-tolerant microorganisms, are preferred for environmental sustainability. Halophytes, however, represent only about 1% of flora and are habitat specific, so halophilic plant growth-promoting (PGP) microbes have emerged as a key eco-friendly solution. Halophilic PGP bacteria have shown promise in remediating saline soils, enhancing fertility and boosting crop resilience by inducing salinity tolerance (IST) and promoting plant growth traits. In the era of modern agriculture where chemical inputs are at their peak of application rendering the soil infertile, halophilic PGP bacteria represent a promising, sustainable approach to support food security, aligning with Sustainable Development Goals for zero hunger.
Collapse
Affiliation(s)
- Shiwani Bhardwaj
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Anila Badiyal
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Shailja Dhiman
- Department of Plant Breeding and Genetics, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Jyoti Bala
- Department of Organic Agriculture and Natural Farming, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| |
Collapse
|
2
|
Nguyen PT, Nguyen-Thi TU, Nguyen HT, Pham MN, Nguyen TT. Halophilic lactic acid bacteria - Play a vital role in the fermented food industry. Folia Microbiol (Praha) 2024; 69:305-321. [PMID: 38372951 DOI: 10.1007/s12223-024-01149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Halophilic lactic acid bacteria have been widely found in various high-salt fermented foods. The distribution of these species in salt-fermented foods contributes significantly to the development of the product's flavor. Besides, these bacteria also have the ability to biosynthesize bioactive components which potentially apply to different areas. In this review, insights into the metabolic properties, salt stress responses, and potential applications of these bacteria have been have been elucidated. The purpose of this review highlights the important role of halophilic lactic acid bacteria in improving the quality and safety of salt-fermented products and explores the potential application of these bacteria.
Collapse
Affiliation(s)
- Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | | | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
3
|
Bawane P, Deshpande S, Yele S. Industrial and Pharmaceutical Applications of Microbial Diversity of Hypersaline Ecology from Lonar Soda Crater. Curr Pharm Biotechnol 2024; 25:1564-1584. [PMID: 38258768 DOI: 10.2174/0113892010265978231109085224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 01/24/2024]
Abstract
The unidentified geochemical and physiochemical characteristics of Soda Lakes across the globe make it a novel reservoir and bring attention to scientific civic for its conceivable industrial and pharmaceutical applications. In India, in the Maharashtra state, Lonar Lake is a naturally created Soda Lake by a meteorite impact. Phylogenetic data from this lake explored a diverse array of microorganisms like haloalkaliphilic bacteria and Archaea. Previously reported studies postulated the major microbial communities present in this lake ecosystem are Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria. Furthermore, it also contains Bacteroidetes, Nitrospirae, and Verrucomicrobia. This lake is also rich in phytoplankton, with the predominant presence of the Spirulina plantensis. Unique microbial strains from Lonar Lake ecosystems have fascinated consideration as a source of biological molecules with medicinal, industrial, and biotechnological potential. Recent literature revealed the isolation of antibioticproducing bacteria and alkaline proteases-producing alkaliphilic bacterium, as well as novel species of rare methylotrophs, other bacterial strains involved in producing vital enzymes, and unique actinomycetes are also reported. It indicates that the novel bacterial assemblage not reached hitherto may exist in this modified and unique ecology. This comprehensive review provides information about microbial diversity and its industrial and pharmaceutical interests that exist in Lonar Lake, which could be the future source of bioactive enzymes, biosurfactants, and biofuel and also useful in bioremediation. Furthermore, the novel species of microorganisms isolated from Lonar Lake have applications in the biosynthesis of medicines like antibiotics, antivirals, antifungals, anti-inflammatory agents, and precursors for synthesising valuable products. Data consolidated in the present review will cater to the needs of emerging industrial sectors for their commercial and therapeutic applications.
Collapse
Affiliation(s)
- Pradip Bawane
- Department of Pharmacognosy, SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, 400056, India
- Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Shirish Deshpande
- Department of Pharmaceutical Chemistry, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| | - Santosh Yele
- Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| |
Collapse
|
4
|
Kovács AD, Gonzalez Hernandez JL, Pearce DA. Acidified drinking water improves motor function, prevents tremors and changes disease trajectory in Cln2 R207X mice, a model of late infantile Batten disease. Sci Rep 2023; 13:19229. [PMID: 37932327 PMCID: PMC10628098 DOI: 10.1038/s41598-023-46283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
Batten disease is a group of mostly pediatric neurodegenerative lysosomal storage disorders caused by mutations in the CLN1-14 genes. We have recently shown that acidified drinking water attenuated neuropathological changes and improved motor function in the Cln1R151X and Cln3-/- mouse models of infantile CLN1 and juvenile CLN3 diseases. Here we tested if acidified drinking water has beneficial effects in Cln2R207X mice, a nonsense mutant model of late infantile CLN2 disease. Cln2R207X mice have motor deficits, muscle weakness, develop tremors, and die prematurely between 4 and 6 months of age. Acidified water administered to Cln2R207X male mice from postnatal day 21 significantly improved motor function, restored muscle strength and prevented tremors as measured at 3 months of age. Acidified drinking water also changed disease trajectory, slightly delaying the death of Cln2R207X males and females. The gut microbiota compositions of Cln2R207X and wild-type male mice were markedly different and acidified drinking water significantly altered the gut microbiota of Cln2R207X mice. This suggests that gut bacteria might contribute to the beneficial effects of acidified drinking water. Our study demonstrates that drinking water is a major environmental factor that can alter disease phenotypes and disease progression in rodent disease models.
Collapse
Affiliation(s)
- Attila D Kovács
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Jose L Gonzalez Hernandez
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, USA
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
5
|
Zhao S, Sai Y, Liu W, Zhao H, Bai X, Song W, Zheng Y, Yue X. Flavor Characterization of Traditional Fermented Soybean Pastes from Northeast China and Korea. Foods 2023; 12:3294. [PMID: 37685226 PMCID: PMC10486791 DOI: 10.3390/foods12173294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This study compares the physicochemical properties, taste, and volatile compounds of Northeastern Chinese dajiang (C) and Korean doenjang (K) and distinguishes the discriminant volatile metabolites between them. The result revealed that compared to group C, group K exhibited more similar physicochemical properties and had lower pH, moisture, and amino acid nitrogen content, while demonstrating higher titratable acidity, salt content, and reduced sugar content. The electronic tongue analysis showed that the saltiness and umami of soybean pastes had high response values, enabling clear differentiation of the overall taste between the two types of soybean pastes. A total of 71 volatile substances from the soybean pastes were identified through solid-phase microextraction gas chromatography-mass spectrometry. Furthermore, orthogonal partial least squares discriminant analysis revealed 19 volatile compounds as differentially flavored metabolites. Our study provides a basis for explaining the differences in flavor difference of Northeastern Chinese dajiang and Korean doenjang from the perspective of volatile metabolites.
Collapse
Affiliation(s)
- Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuhang Sai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanting Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Huiwen Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanying Song
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiqing Yue
- Shenyang Key Laboratory of Animal Product Processing, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
6
|
Yang H, Wang D, Jin Y, Zhou R, Huang J, Wu C. Arginine deiminase pathway of Tetragenococcus halophilus contributes to improve the acid tolerance of lactic acid bacteria. Food Microbiol 2023; 113:104281. [PMID: 37098426 DOI: 10.1016/j.fm.2023.104281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023]
Abstract
Arginine deiminase pathway, controlled by arginine deiminase, ornithine carbamoyltransferase and carbamate kinase, could affect and modulate the intracellular pH homeostasis of lactic acid bacteria under acid stress. Herein, strategy based on exogenous addition of arginine had been proposed to improve the robustness of Tetragenococcus halophilus during acid stressed condition. Results indicated cells cultured in the presence of arginine acquired high tolerance to acid stress mainly through maintaining the homeostasis of intracellular microenvironment. Additionally, metabolomic analysis and q-PCR showed the content of intracellular metabolites and expression levels of genes involved in ADI pathway significantly increased when cells encountered acid stress with the presence of exogenous arginine. Furthermore, Lactococcus lactis NZ9000 with heterologous overexpression of arcA and arcC from T. halophilus exhibited high stress tolerance to acidic condition. This study may provide an insight into the systematical understanding about the mechanism underlying acid tolerance and improve the fermentation performance of LAB during harsh condition.
Collapse
Affiliation(s)
- Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Rousseaux A, Brosseau C, Bodinier M. Immunomodulation of B Lymphocytes by Prebiotics, Probiotics and Synbiotics: Application in Pathologies. Nutrients 2023; 15:nu15020269. [PMID: 36678140 PMCID: PMC9863037 DOI: 10.3390/nu15020269] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Prebiotics, probiotics and synbiotics are known to have major beneficial effects on human health due to their ability to modify the composition and the function of the gut mucosa, the gut microbiota and the immune system. These components largely function in a healthy population throughout different periods of life to confer homeostasis. Indeed, they can modulate the composition of the gut microbiota by increasing bacteria strands that are beneficial for health, such as Firmicute and Bifidobacteria, and decreasing harmful bacteria, such as Enteroccocus. Their immunomodulation properties have been extensively studied in different innate cells (dendritic cells, macrophages, monocytes) and adaptive cells (Th, Treg, B cells). They can confer a protolerogenic environment but also modulate pro-inflammatory responses. Due to all these beneficial effects, these compounds have been investigated to prevent or to treat different diseases, such as cancer, diabetes, allergies, autoimmune diseases, etc. Regarding the literature, the effects of these components on dendritic cells, monocytes and T cells have been studied and presented in a number of reviews, but their impact on B-cell response has been less widely discussed. CONCLUSIONS For the first time, we propose here a review of the literature on the immunomodulation of B-lymphocytes response by prebiotics, probiotics and synbiotics, both in healthy conditions and in pathologies. DISCUSSION Promising studies have been performed in animal models, highlighting the potential of prebiotics, probiotics and synbiotics intake to treat or to prevent diseases associated with B-cell immunomodulation, but this needs to be validated in humans with a full characterization of B-cell subsets and not only the humoral response.
Collapse
|
8
|
Yang HJ, Jeong SJ, Ryu MS, Ha G, Jeong DY, Park YM, Lee HY, Bae JS. Protective effect of traditional Korean fermented soybean foods ( doenjang) on a dextran sulfate sodium-induced colitis mouse model. Food Funct 2022; 13:8616-8626. [PMID: 35894596 DOI: 10.1039/d2fo01347a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Objective: The cause of ulcerative colitis (UC) is unknown, and the use of anti-inflammatory and immunosuppressive drugs with certain side effects is currently replacing treatment. Therefore, it is important to find new healthy foods or ingredients that exhibit potential protective and anti-inflammatory effects on UC. This study investigated the potential protective effect of doenjang on dextran sulfate sodium (DSS)-induced colitis in a mouse model. Materials and methods: Four doenjang samples (TCD21-51-1, TCD21-55-1, TMD21-16-1, and TFD21-1-1) were used. To examine the effects of the four doenjang samples on UC caused by DSS in a mouse model, the clinical symptoms of UC, such as body weight, disease activity index (DAI), and colon macroscopic damage index (CMDI) were analyzed. Moreover, immune-related blood cell counts, serum levels and protein expression of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), and nitric oxide (NO) production were measured in DSS-induced UC in mice for analysis. Results: The four doenjang samples increased the colon length shortened by DSS, reduced DAI (diarrhea and hemoccult), CMDI (ulceration, inflammation, and hemorrhage) and the content of immune-related cells in the blood. Moreover, the levels of TNF-α, IL-6, and NO increased by DSS were decreased by doenjang, and tissue damage was significantly reduced. Conclusions: These findings confirmed that doenjang exerts protective effects against UC, suggesting its possible use in developing therapeutic strategies or functional products.
Collapse
Affiliation(s)
- Hee-Jong Yang
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Su-Ji Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Myeong Seon Ryu
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Gwangsu Ha
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Young Mi Park
- INVIVO Co. Ltd., Deahak-ro, 121, Nonsan, Chungnam, 32992, Korea
| | - Hak Yong Lee
- INVIVO Co. Ltd., Deahak-ro, 121, Nonsan, Chungnam, 32992, Korea
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, 460, Iksan, Jeonbuk, 54538, Korea.
| |
Collapse
|
9
|
Tetragenococcus halophilus Alleviates Intestinal Inflammation in Mice by Altering Gut Microbiota and Regulating Dendritic Cell Activation via CD83. Cells 2022; 11:cells11121903. [PMID: 35741032 PMCID: PMC9221263 DOI: 10.3390/cells11121903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Ulcerative colitis (UC) is one of the major subtypes of inflammatory bowel disease with unknown etiology. Probiotics have recently been introduced as a treatment for UC. Tetragenococcus halophilus (T. halophilus) is a lactic acid-producing bacterium that survives in environments with high salt concentrations, though little is known about its immunomodulatory function as a probiotic. The purpose of this study is to determine whether T. halophilus exerts an anti-inflammatory effect on intestinal inflammation in mice. Colitis was induced in C57BL/6J mice by feeding 4% DSS in drinking water for 7 days. T. halophilus was orally administered with DSS. Anti-inflammatory functions were subsequently evaluated by flow cytometry, qRT-PCT, and ELISA. Gut microbial composition was analyzed by 16S rRNA metagenomic analysis. DSS-induced colitis mice treated with T. halophilus showed less weight loss and significantly suppressed colonic shortening compared to DSS-induced colitis mice. T. halophilus significantly reduced the frequency of the dendritic cell activation molecule CD83 in peripheral blood leukocytes and intestinal epithelial lymphocytes. Frequencies of CD8+NK1.1+ cells decreased in mice with colitis after T. halophilus treatment and IL-1β levels were also reduced. Alteration of gut microbiota was observed in mice with colitis after administration of T. halophilus. These results suggest T. halophilus is effective in alleviating DSS-induced colitis in mice by altering immune regulation and gut microbiome compositions.
Collapse
|
10
|
Dutta B, Bandopadhyay R. Biotechnological potentials of halophilic microorganisms and their impact on mankind. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:75. [PMID: 35669848 PMCID: PMC9152817 DOI: 10.1186/s43088-022-00252-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Halophiles are extremophilic organisms represented by archaea, bacteria and eukaryotes that thrive in hypersaline environment. They apply different osmoadaptation strategies to survive in hostile conditions. Habitat diversity of halophilic microorganisms in hypersaline system provides information pertaining the evolution of life on Earth. Main body The microbiome-gut-brain axis interaction contributes greatly to the neurodegenerative diseases. Gut resident halophilic bacteria are used as alternative medication for chronic brain diseases. Halophiles can be used in pharmaceuticals, drug delivery, agriculture, saline waste water treatment, biodegradable plastic production, metal recovery, biofuel energy generation, concrete crack repair and other sectors. Furthermore, versatile biomolecules, mainly enzymes characterized by broad range of pH and thermostability, are suitable candidate for industrial purposes. Reflectance pattern of halophilic archaeal pigment rhodopsin is considered as potential biosignature for Earth-like planets. Short conclusions This review represents important osmoadaptation strategies acquired by halophilic archaea and bacteria and their potential biotechnological applications to resolve present day challenges. Graphical Abstract
Collapse
Affiliation(s)
- Bhramar Dutta
- Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| | - Rajib Bandopadhyay
- Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| |
Collapse
|
11
|
Long-term administration of Tetragenococcus halophilus No. 1 over generations affects the immune system of mice. PLoS One 2022; 17:e0267473. [PMID: 35472068 PMCID: PMC9041805 DOI: 10.1371/journal.pone.0267473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Japanese people have been consuming miso soup over generations; it is beneficial for health and longevity. In this study, Tetragenococcus halophilus No. 1 in miso was found to possess salient immunomodulatory functions. Recently, we also demonstrated its effect on boosting immunological robustness. Although the consumption of miso is suggested to affect health over generations, such a long-term experiment has not been conducted until now. Thus, we evaluated the effects of miso-derived T. halophilus No. 1 over generations on the immune system of mice. As the generations increase, the proportion of germinal center B cells tends to increase. Furthermore, we found that CD4+ T cells expressing CD69, an activation marker, were increased in the third generation of mice. In addition, the proportion of follicular helper T cells and regulatory T cells tended to increase. Among the subsets of CD4+ T cells in the fourth generation, effector T cells and effector memory T cells tended to increase. In contrast, central memory T cells and naive T cells decreased. Moreover, autoimmunity was suppressed by long-term administration of T. halophilus No. 1. Based on these findings, we believe that the long-term administration of T. halophilus No. 1 over generations promotes immune activation and tolerance and enhances immunological robustness.
Collapse
|
12
|
Effects of Inoculation with Lactic Acid Bacteria on the Preservation of Nannochloropsis gaditana Biomass in Wet Anaerobic Storage and Its Impact on Biomass Quality. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wet anaerobic storage of algal biomass is a promising preservation approach that can ensure a continuous supply of these feedstocks to biorefineries year-round. An effective solution to preservation must ensure minimal dry matter loss and a change in biochemical composition during storage. Therefore, the objective of this study is to investigate the preservation of Nannochloropsis gaditana biomass through wet anaerobic storage and its impact on biomass quality. Prior to storage, the algae sample is inoculated with two different strains of lactic acid bacteria and thereafter stored for 30 and 180 days. Each inoculant limited the dry matter loss to <10% (dry basis) after the storage duration. Final pH values (4.3–4.8) indicate that the biomass samples are properly ensiled, achieving the acidic conditions necessary for preservation. Compositional analysis of the biomass after storage shows a reduction in carbohydrate content, a relative increase in lipid content, and no significant change in the protein fraction. Glucose and galactose were the most prevalent sugar monomers. The low dry matter loss and minimal compositional change indicate that wet anaerobic storage is an effective means of preserving algal biomass and ensuring a constant supply of algal biomass feedstock to a biorefinery.
Collapse
|
13
|
Kotake K, Kumazawa T, Nakamura K, Shimizu Y, Ayabe T, Adachi T. Ingestion of miso regulates immunological robustness in mice. PLoS One 2022; 17:e0261680. [PMID: 35061718 PMCID: PMC8782471 DOI: 10.1371/journal.pone.0261680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023] Open
Abstract
In Japan, there is a long history of consumption of miso, a fermented soybean paste, which possesses beneficial effects on human health. However, the mechanism behind these effects is not fully understood. To clarify the effects of miso on immune cells, we evaluated its immunomodulatory activity in mice. Miso did not alter the percentage of B and T cells in the spleen; however, it increased CD69+ B cells, germinal center B cells and regulatory T cells. Anti-DNA immunoglobulin M antibodies, which prevent autoimmune disease, were increased following ingestion of miso. Transcriptome analysis of mouse spleen cells cultured with miso and its raw material revealed that the expression of genes, including interleukin (IL)-10, IL-22 and CD86, was upregulated. Furthermore, intravital imaging of the small intestinal epithelium using a calcium biosensor mouse line indicated that miso induced Ca2+ signaling in a manner similar to that of probiotics. Thus, ingestion of miso strengthened the immune response and tolerance in mice. These results appear to account, at least in part, to the salubrious effects of miso.
Collapse
Affiliation(s)
- Kunihiko Kotake
- Ichibiki Co., Ltd., Nagoya, Japan
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Kumazawa
- Ichibiki Co., Ltd., Nagoya, Japan
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiminori Nakamura
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Yu Shimizu
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Tokiyoshi Ayabe
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Takahiro Adachi
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Guindo CO, Morsli M, Bellali S, Drancourt M, Grine G. A Tetragenococcus halophilus human gut isolate. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100112. [PMID: 35243447 PMCID: PMC8866149 DOI: 10.1016/j.crmicr.2022.100112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 10/28/2022] Open
|
15
|
Novel probiotic yeast from Miso promotes regulatory dendritic cell IL-10 production and attenuates DSS-induced colitis in mice. J Gastroenterol 2021; 56:829-842. [PMID: 34213612 DOI: 10.1007/s00535-021-01804-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/19/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Yeasts are a type of fungi thought to have probiotic functions. In this study, we isolated a novel probiotic yeast (Zygosaccharomyces sapae strain I-6) from Miso (a traditional Japanese fermented food). We examined its effects on phenotypic changes in intestinal dendritic cells (DCs), and evaluated its anti-inflammatory effects in dextran sulfate sodium (DSS)-induced colitis. METHODS A single colony was selected from homogenized Miso, based on its ability to produce interleukin (IL)-10 in CD11c+ bone marrow DCs (BMDCs) in vitro. The anti-inflammatory effects of strain I-6 on CD11c+ BMDCs and CD11c+ CD103+ DCs were analyzed in mouse mesenteric lymph nodes in vitro and in a DSS mouse model. RESULTS The IL-10 concentrations in the co-culture BMDC supernatants treated with I-6 were dramatically higher than in those treated with Saccharomyces cerevisiae (Sc). IL-10 production is mediated by both TLR2 and Dectin-1. β-Glucan extracted from I-6 also induced higher levels of IL-10 production in BMDCs than β-glucan from Sc. The number of mesenteric lymph node CD11c+ CD103+ DCs was significantly increased by I-6 administration, compared with Sc administration. Strain I-6 showed strong anti-inflammatory effects on DSS-induced colitis compared to Sc. Moreover, the adoptive transfer of I-6-treated BMDCs showed anti-inflammatory effects on DSS-induced colitis in mice without oral administration of I-6 cells. CONCLUSIONS Strain I-6 induced phenotypic changes in intestinal CD11c+ DCs characterized by high IL-10 production and exerted strong anti-inflammatory effects on DSS-induced colitis. Traditional Japanese fermented foods may be a valuable source of probiotic yeasts for effective IBD therapy and treatment.
Collapse
|
16
|
Moreira MTC, Martins E, Perrone ÍT, de Freitas R, Queiroz LS, de Carvalho AF. Challenges associated with spray drying of lactic acid bacteria: Understanding cell viability loss. Compr Rev Food Sci Food Saf 2021; 20:3267-3283. [PMID: 34146458 DOI: 10.1111/1541-4337.12774] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022]
Abstract
Lactic acid bacteria (LAB) cultures used in food fermentation are often dried to reduce transportation costs and facilitate handling during use. Dried LAB ferments are generally lyophilized to ensure high cell viability. Spray drying has come to the forefront as a promising technique due to its versatility and lower associated energy costs. Adverse conditions during spray drying, such as mechanical stress, dehydration, heating, and oxygen exposure, can lead to low LAB cell viability. This reduced viability has limited spray drying's industrial applications thus far. This review aims to demonstrate the operations and thermodynamic principles that govern spray drying, then correlate them to the damage suffered by LAB cells during the spray-drying process. The particularities of spray drying that might cause LAB cell death are detailed in this review, and the conclusion may enhance future studies on ways to improve cell viability.
Collapse
Affiliation(s)
| | - Evandro Martins
- Inovaleite Laboratory, Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - Ítalo Tuler Perrone
- Pharmaceutical Sciences Department, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Rosângela de Freitas
- Inovaleite Laboratory, Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - Lucas Sales Queiroz
- Inovaleite Laboratory, Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | | |
Collapse
|
17
|
Jang CH, Oh J, Lim JS, Kim HJ, Kim JS. Fermented Soy Products: Beneficial Potential in Neurodegenerative Diseases. Foods 2021; 10:foods10030636. [PMID: 33803607 PMCID: PMC8003083 DOI: 10.3390/foods10030636] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fermented soybean products, such as cheonggukjang (Japanese natto), doenjang (soy paste), ganjang (soy sauce), and douchi, are widely consumed in East Asian countries and are major sources of bioactive compounds. The fermentation of cooked soybean with bacteria (Bacillus spp.) and fungi (Aspergillus spp. and Rhizopus spp.) produces a variety of novel compounds, most of which possess health benefits. This review is focused on the preventive and ameliorative potential of fermented soy foods and their components to manage neurodegenerative diseases, including Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Chan Ho Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Jisun Oh
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Ji Sun Lim
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Hyo Jung Kim
- Department of Korean Medicine Development, National Institute for Korean Medicine Development, Gyeongsan 38540, Korea;
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
- Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-5752; Fax: +82-53-950-6750
| |
Collapse
|
18
|
Yang H, Zhang L, Li J, Jin Y, Zou J, Huang J, Zhou R, Huang M, Wu C. Cell surface properties and transcriptomic analysis of cross protection provided between heat adaptation and acid stress in Tetragenococcus halophilus. Food Res Int 2021; 140:110005. [PMID: 33648238 DOI: 10.1016/j.foodres.2020.110005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022]
Abstract
Cross protection is a widely existed phenomenon in microorganisms which subjected to a mild stress develop tolerance to other stresses, yet the underlying mechanisms for this protection have not been fully elucidated. Here, we report that heat preadaptation induced cross protection against acid stress in Tetragenococcus halophilus, and the cross protective mechanisms were revealed based on cell surface characterizations and transcriptomic analysis. The results showed that heat preadaptation of T. halophilus at 45 °C for 1.5 h improved the acid tolerance of cells at pH 2.5, and the preadapted cells exhibited higher pHi compared with the un-preadapted cells during acid stress. Analysis of the cell surface properties suggested that the heat-treated cells displayed smoother surface, lower roughness and higher integrity than those of untreated cells. Meanwhile, the distributions of membrane fatty acids also changed in response to acid stress, and the treated cells reveled lower ratio of unsaturated to saturated fatty acids. RNA-Sequencing was employed to further elucidate the cross protective mechanism induced by heat preadaptation, and the results showed that the differentially expressed genes (DGEs) were mainly involved in cellular metabolism and membrane transport during heat preadaptation. A detailed analysis of gene expression profile of cells between heat treated and untreated revealed that genes associated with energy metabolism, amino acid metabolism and genetic information processing were induced upon heat stress. Results presented in this study may broaden our understanding on cross protection and provide a potential strategy to enhance the performance of cells during industrial processes.
Collapse
Affiliation(s)
- Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liang Zhang
- Luzhou Laojiao Group Co., Ltd, Luzhou 646000, China
| | - Jinsong Li
- Luzhou Laojiao Group Co., Ltd, Luzhou 646000, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | | | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
19
|
Yue X, Li M, Liu Y, Zhang X, Zheng Y. Microbial diversity and function of soybean paste in East Asia: what we know and what we don’t. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Shirakawa D, Wakinaka T, Watanabe J. Identification of the putative N-acetylglucosaminidase CseA associated with daughter cell separation in Tetragenococcus halophilus. Biosci Biotechnol Biochem 2020; 84:1724-1735. [PMID: 32448081 DOI: 10.1080/09168451.2020.1764329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lactic acid bacterium Tetragenococcus halophilus, which is used as a starter to brew soy sauce, comprises both cluster-forming strains and dispersed strains. The cluster-forming strains are industrially useful for obtaining clear soy sauce, because the cell clusters are trapped by filter cloth when the soy sauce mash is pressed. However, the molecular mechanism underlying cell cluster formation is unknown. Whole genome sequence analysis and subsequent target sequence analysis revealed that the cluster-forming strains commonly have functional defects in N-acetylglucosaminidase CseA, a peptidoglycan hydrolase. CseA is a multimodular protein that harbors a GH73 domain and six peptidoglycan-binding LysM domains. Recombinant CseA hydrolyzed peptidoglycan and promoted cell separation. Functional analysis of truncated CseA derivatives revealed that the LysM domains play an important role in efficient peptidoglycan degradation and cell separation. Taken together, the results of this study identify CseA as a factor that greatly affects the cluster formation in T. halophilus.
Collapse
Affiliation(s)
| | | | - Jun Watanabe
- Manufacturing Division, Yamasa Corporation , Chiba, Japan
| |
Collapse
|
21
|
Kumazawa T, Kotake K, Nishimura A, Asai N, Ugajin T, Yokozeki H, Adachi T. Isolation of food-derived bacteria inducing interleukin-22 in B cells. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:1-9. [PMID: 32010538 PMCID: PMC6971416 DOI: 10.12938/bmfh.19-012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/04/2019] [Indexed: 11/20/2022]
Abstract
Recently, we found a novel function of the lactic acid bacterium Tetragenococcus halophilus derived from miso, a fermented soy paste, that induces interleukin (IL)-22
production in B cells preferentially. IL-22 plays a critical role in barrier functions in the gut and skin. We further screened other bacteria species, namely, Enterococcus,
Lactobacillus, Lactococcus, Leuconostoc, Weissella, Pediococcus, and Bacillus, in
addition to Tetragenococcus and found that some of them possessed robust IL-22-inducible function in B cells in vitro. This process resulted in the
augmented expression of activation markers CD86 and CD69 on B and T cells, respectively. However, these observations were not correlated with IL-22 production. We isolated Bacillus
coagulans sc-09 from miso and determined it to be the best strain to induce robust IL-22 production in B cells. Furthermore, feeding B. coagulans sc-09 to mice
augmented the barrier function of the skin regardless of gut microbiota.
Collapse
Affiliation(s)
- Toshihiko Kumazawa
- Ichibiki Co., Ltd., Nagoya, Aichi 456-0018, Japan.,Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kunihiko Kotake
- Ichibiki Co., Ltd., Nagoya, Aichi 456-0018, Japan.,Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | - Tsukasa Ugajin
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|