1
|
DeBruyn JM, Keenan SW, Taylor LS. From carrion to soil: microbial recycling of animal carcasses. Trends Microbiol 2025; 33:194-207. [PMID: 39358066 DOI: 10.1016/j.tim.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Decomposer microbial communities are gatekeepers in the redistribution of carbon and nutrients from dead animals (carrion) to terrestrial ecosystems. The flush of decomposition products from a carcass creates a hot spot of microbial activity in the soil below, and the animal's microbiome is released into the environment, mixing with soil communities. Changes in soil physicochemistry, especially reduced oxygen, temporarily constrain microbial nutrient cycling, and influence the timing of these processes and the fate of carrion resources. Carcass-related factors, such as mass, tissue composition, or even microbiome composition may also influence the functional assembly and succession of decomposer communities. Understanding these local scale microbially mediated processes is important for predicting consequences of carrion decomposition beyond the hot spot and hot moment.
Collapse
Affiliation(s)
- Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA.
| | - Sarah W Keenan
- Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Lois S Taylor
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
2
|
Mason AR, McKee-Zech HS, Steadman DW, DeBruyn JM. Environmental predictors impact microbial-based postmortem interval (PMI) estimation models within human decomposition soils. PLoS One 2024; 19:e0311906. [PMID: 39392823 PMCID: PMC11469530 DOI: 10.1371/journal.pone.0311906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024] Open
Abstract
Microbial succession has been suggested to supplement established postmortem interval (PMI) estimation methods for human remains. Due to limitations of entomological and morphological PMI methods, microbes are an intriguing target for forensic applications as they are present at all stages of decomposition. Previous machine learning models from soil necrobiome data have produced PMI error rates from two and a half to six days; however, these models are built solely on amplicon sequencing of biomarkers (e.g., 16S, 18S rRNA genes) and do not consider environmental factors that influence the presence and abundance of microbial decomposers. This study builds upon current research by evaluating the inclusion of environmental data on microbial-based PMI estimates from decomposition soil samples. Random forest regression models were built to predict PMI using relative taxon abundances obtained from different biological markers (bacterial 16S, fungal ITS, 16S-ITS combined) and taxonomic levels (phylum, class, order, OTU), both with and without environmental predictors (ambient temperature, soil pH, soil conductivity, and enzyme activities) from 19 deceased human individuals that decomposed on the soil surface (Tennessee, USA). Model performance was evaluated by calculating the mean absolute error (MAE). MAE ranged from 804 to 997 accumulated degree hours (ADH) across all models. 16S models outperformed ITS models (p = 0.006), while combining 16S and ITS did not improve upon 16S models alone (p = 0.47). Inclusion of environmental data in PMI prediction models had varied effects on MAE depending on the biological marker and taxonomic level conserved. Specifically, inclusion of the measured environmental features reduced MAE for all ITS models, but improved 16S models at higher taxonomic levels (phylum and class). Overall, we demonstrated some level of predictability in soil microbial succession during human decomposition, however error rates were high when considering a moderate population of donors.
Collapse
Affiliation(s)
- Allison R. Mason
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, United States of America
| | - Hayden S. McKee-Zech
- Department of Anthropology, University of Tennessee-Knoxville, Knoxville, TN, United States of America
| | - Dawnie W. Steadman
- Department of Anthropology, University of Tennessee-Knoxville, Knoxville, TN, United States of America
| | - Jennifer M. DeBruyn
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, United States of America
- Department of Biosystems Engineering and Soil Science, University of Tennessee-Knoxville, Knoxville, TN, United States of America
| |
Collapse
|
3
|
Taylor LS, Mason AR, Noel HL, Essington ME, Davis MC, Brown VA, Steadman DW, DeBruyn JM. Transient hypoxia drives soil microbial community dynamics and biogeochemistry during human decomposition. FEMS Microbiol Ecol 2024; 100:fiae119. [PMID: 39293810 DOI: 10.1093/femsec/fiae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/08/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024] Open
Abstract
Human decomposition in terrestrial ecosystems is a dynamic process creating localized hot spots of soil microbial activity. Longer-term (beyond a few months) impacts on decomposer microbial communities are poorly characterized and do not typically connect microbial communities to biogeochemistry, limiting our understanding of decomposer communities and their functions. We performed separate year-long human decomposition trials, one starting in spring, another in winter, integrating bacterial and fungal community structure and abundances with soil physicochemistry and biogeochemistry to identify key drivers of microbial community change. In both trials, soil acidification, elevated microbial respiration, and reduced soil oxygen concentrations occurred. Changes in soil oxygen concentrations were the primary driver of microbial succession and nitrogen transformation patterns, while fungal community diversity and abundance was related to soil pH. Relative abundance of facultative anaerobic taxa (Firmicutes and Saccharomycetes) increased during the period of reduced soil oxygen. The magnitude and timing of the decomposition responses were amplified during the spring trial relative to the winter, even when corrected for thermal inputs (accumulated degree days). Further, soil chemical parameters, microbial community structure, and fungal gene abundances remained altered at the end of 1 year, suggesting longer-term impacts on soil ecosystems beyond the initial pulse of decomposition products.
Collapse
Affiliation(s)
- Lois S Taylor
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Allison R Mason
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Hannah L Noel
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael E Essington
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Mary C Davis
- Department of Anthropology, University of Tennessee, Knoxville, TN 37996, USA
| | - Veronica A Brown
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Dawnie W Steadman
- Department of Anthropology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
4
|
Burcham ZM, Belk AD, McGivern BB, Bouslimani A, Ghadermazi P, Martino C, Shenhav L, Zhang AR, Shi P, Emmons A, Deel HL, Xu ZZ, Nieciecki V, Zhu Q, Shaffer M, Panitchpakdi M, Weldon KC, Cantrell K, Ben-Hur A, Reed SC, Humphry GC, Ackermann G, McDonald D, Chan SHJ, Connor M, Boyd D, Smith J, Watson JMS, Vidoli G, Steadman D, Lynne AM, Bucheli S, Dorrestein PC, Wrighton KC, Carter DO, Knight R, Metcalf JL. A conserved interdomain microbial network underpins cadaver decomposition despite environmental variables. Nat Microbiol 2024; 9:595-613. [PMID: 38347104 PMCID: PMC10914610 DOI: 10.1038/s41564-023-01580-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/08/2023] [Indexed: 03/07/2024]
Abstract
Microbial breakdown of organic matter is one of the most important processes on Earth, yet the controls of decomposition are poorly understood. Here we track 36 terrestrial human cadavers in three locations and show that a phylogenetically distinct, interdomain microbial network assembles during decomposition despite selection effects of location, climate and season. We generated a metagenome-assembled genome library from cadaver-associated soils and integrated it with metabolomics data to identify links between taxonomy and function. This universal network of microbial decomposers is characterized by cross-feeding to metabolize labile decomposition products. The key bacterial and fungal decomposers are rare across non-decomposition environments and appear unique to the breakdown of terrestrial decaying flesh, including humans, swine, mice and cattle, with insects as likely important vectors for dispersal. The observed lockstep of microbial interactions further underlies a robust microbial forensic tool with the potential to aid predictions of the time since death.
Collapse
Affiliation(s)
- Zachary M Burcham
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Aeriel D Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Animal Sciences, Auburn University, Auburn, AL, USA
| | - Bridget B McGivern
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Parsa Ghadermazi
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Liat Shenhav
- Center for Studies in Physics and Biology, Rockefeller University, New York, NY, USA
- Institute for Systems Genetics, New York Grossman School of Medicine, New York University, New York, NY, USA
- Department of Computer Science, New York University, New York, NY, USA
| | - Anru R Zhang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Alexandra Emmons
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Heather L Deel
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhenjiang Zech Xu
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Victoria Nieciecki
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Morgan Panitchpakdi
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Kelly C Weldon
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Kalen Cantrell
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - Sasha C Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, USA
| | - Greg C Humphry
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Melissa Connor
- Forensic Investigation Research Station, Colorado Mesa University, Grand Junction, CO, USA
| | - Derek Boyd
- Forensic Anthropology Center, Department of Anthropology, University of Tennessee, Knoxville, TN, USA
- Department of Social, Cultural, and Justice Studies, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Jake Smith
- Forensic Anthropology Center, Department of Anthropology, University of Tennessee, Knoxville, TN, USA
- Mid-America College of Funeral Service, Jeffersonville, IN, USA
| | - Jenna M S Watson
- Forensic Anthropology Center, Department of Anthropology, University of Tennessee, Knoxville, TN, USA
| | - Giovanna Vidoli
- Forensic Anthropology Center, Department of Anthropology, University of Tennessee, Knoxville, TN, USA
| | - Dawnie Steadman
- Forensic Anthropology Center, Department of Anthropology, University of Tennessee, Knoxville, TN, USA
| | - Aaron M Lynne
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Sibyl Bucheli
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - David O Carter
- Laboratory of Forensic Taphonomy, Forensic Sciences Unit, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jessica L Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA.
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Taylor LS, Gonzalez A, Essington ME, Lenaghan SC, Stewart CN, Mundorff AZ, Steadman DW, DeBruyn JM. Soil elemental changes during human decomposition. PLoS One 2023; 18:e0287094. [PMID: 37310961 DOI: 10.1371/journal.pone.0287094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
Mammalian decomposition provides pulses of organic matter to the local ecosystem creating ephemeral hotspots of nutrient cycling. While changes to soil biogeochemistry in these hotspots have been described for C and N, patterns associated with deposition and cycling of other elements have not received the same attention. The goal of our study was to evaluate temporal changes to a broad suite of dissolved elements in soils impacted by human decomposition on the soil surface including: 1) abundant mineral elements in the human body (K, Na, S, P, Ca, and Mg), 2) trace elements in the human body (Fe, Mn, Se, Zn, Cu, Co, and B), and 3) Al which is transient in the human body but common in soils. We performed a four-month human decomposition trial at the University of Tennessee Anthropology Research Facility and quantified elemental concentrations dissolved in the soil solution, targeting the mobile and bioavailable fraction. We identified three groups of elements based on their temporal patterns. Group 1 elements appeared to be cadaver-derived (Na, K, P, S) and their persistence in soil varied based upon soluble organic forms (P), the dynamics of the soil exchange complex (Na, K), and gradual releases attributable to microbial degradation (S). Group 2 elements (Ca, Mg, Mn, Se, B) included three elements that have greater concentrations in soil than would be expected based on cadaver inputs alone, suggesting that these elements partially originate from the soil exchange (Ca, Mg), or are solubilized as a result of soil acidification (Mn). Group 3 elements (Fe, Cu, Zn, Co, Al) increased late in the decomposition process, suggesting a gradual solubilization from soil minerals under acidic pH conditions. This work presents a detailed longitudinal characterization of changes in dissolved soil elements during human decomposition furthering our understanding of elemental deposition and cycling in these environments.
Collapse
Affiliation(s)
- Lois S Taylor
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, TN, United States of America
| | - Adrian Gonzalez
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States of America
| | - Michael E Essington
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, TN, United States of America
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States of America
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Amy Z Mundorff
- Department of Anthropology, University of Tennessee, Knoxville, TN, United States of America
| | - Dawnie W Steadman
- Department of Anthropology, University of Tennessee, Knoxville, TN, United States of America
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
6
|
Mason AR, McKee-Zech HS, Hoeland KM, Davis MC, Campagna SR, Steadman DW, DeBruyn JM. Body Mass Index (BMI) Impacts Soil Chemical and Microbial Response to Human Decomposition. mSphere 2022; 7:e0032522. [PMID: 36135386 PMCID: PMC9599287 DOI: 10.1128/msphere.00325-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Microorganisms are key decomposers of vertebrate mortalities, breaking down body tissues and impacting decomposition progress. During human decomposition, both extrinsic environmental factors and intrinsic cadaver-related factors have the potential to impact microbial decomposers either directly or indirectly via altered physical or chemical conditions. While extrinsic factors (e.g., temperature, humidity) explain some variation in microbial response during human decomposition in terrestrial settings, recent work has noted that even under the same environmental conditions, individuals can have different decomposition patterns, highlighting the potential for intrinsic factors to impact microbial decomposers. The goal of this study was to investigate the effects of several intrinsic factors (age, sex, diseases at time of death, and body mass index [BMI]) on chemical and microbial changes in decomposition-impacted soils. In a field study conducted at the University of Tennessee Anthropology Research Facility, soils were collected from the decomposition-impacted area surrounding 19 deceased human individuals through the end of active decomposition. Soil physicochemical parameters were measured, and microbial (bacterial and fungal) communities were assessed via amplicon sequencing. BMI was shown to explain some variation in soil pH and microbial response to human decomposition. Hierarchical linear mixed (HLM) effects models revealed that BMI category significantly explained variation in pH response within decomposition-impacted soils over time (HLM F = 9.647; P < 0.001). Additionally, the relative abundance of soil Saccharomycetes in decomposition soils under underweight donors displayed little to no changes (mean maximum change in relative abundance, +6.6%), while all other BMI categories displayed an increased relative abundance of these organisms over time (normal, +50.6%; overweight, +64.4%; and obese, +64.6%) (HLM F = 3.441; P = 0.11). Together, these results reveal intrinsic factors influencing decomposition patterns, especially within the soil environment, and suggest BMI is an important factor for controlling decomposition processes. IMPORTANCE This work begins to address questions about interindividual variation in vertebrate decomposition attributed to intrinsic factors, that is, properties of the carcass or cadaver itself. Most research on factors affecting decomposition has focused on the extrinsic environment, such as temperature or humidity. While these extrinsic factors do explain some variation in decomposition patterns, interindividual variability is still observed. Understanding how intrinsic factors influence microbial decomposers will help reveal the ecological impacts of decomposition. This work also has forensic applications, as soil chemical and biological changes have been suggested as indicators of postmortem interval. We reveal factors that explain variation in the decomposition environment that should be considered in these estimates. This is particularly important as we consider the implications of variations in human populations due to diet, age, BMI, disease, toxicological loading, etc. on forensic investigations dealing with decomposing remains.
Collapse
Affiliation(s)
- Allison R. Mason
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | | | | | - Mary C. Davis
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee, USA
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Dawnie W. Steadman
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jennifer M. DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
7
|
Doro KO, Kolapkar AM, Bank CG, Wescott DJ, Mickleburgh HL. Geophysical imaging of buried human remains in simulated mass and single graves: Experiment design and results from pre-burial to six months after burial. Forensic Sci Int 2022; 335:111289. [PMID: 35397358 DOI: 10.1016/j.forsciint.2022.111289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
In this study, we present an experiment design and assess the capability of multiple geophysical techniques to image buried human remains in mass and individual graves using human cadavers willingly donated for scientific research. The study is part of a novel, interdisciplinary mass grave experiment established in May 2021 which consists of a mass grave with 6 human remains, 3 individual graves and 2 empty control graves dug to the same size as the mass grave and individual graves. Prior to establishing the graves, we conducted background measurements of electrical resistivity tomography (ERT), electromagnetics (EM), and ground penetrating radar (GPR) while soil profiles were analyzed in situ after excavating the graves. All graves were also instrumented with soil sensors for monitoring temporal changes in soil moisture, temperature, and electrical conductivity in situ. Measurements of ERT, EM and GPR were repeated 3, 37, 71 and 185 days after burial with further repeated measurements planned for another twelve months. ERT results show an initial increase in resistivity in all graves including the control graves at 3 days after burial and a continuous decrease thereafter in the mass and individual graves with the strongest decrease in the mass grave. Conductivity distribution from the EM shows a similar trend to the ERT with an initial decrease in the first 3 days after burial. Distortion in linear reflectors, presence of small hyperbolas and isolated strong amplitude reflectors in the GPR profiles across the graves is associated with known locations of the graves. These initial results validate the capability of geoelectrical methods in detecting anomalies associated with disturbed ground and human decay while GPR though show some success is limited by the geology of the site.
Collapse
Affiliation(s)
- Kennedy O Doro
- Department of Environmental Sciences, University of Toledo, OH, US.
| | - Amar M Kolapkar
- Department of Environmental Sciences, University of Toledo, OH, US
| | | | - Daniel J Wescott
- Forensic Anthropology Center, Texas State University, San Marcos 78666 TX, US
| | - Hayley L Mickleburgh
- Department of Cultural Sciences, Linnaeus University, Växjö 35195, Sweden; Forensic Anthropology Center, Texas State University, San Marcos 78666 TX, US
| |
Collapse
|
8
|
Postmortem Skeletal Microbial Community Composition and Function in Buried Human Remains. mSystems 2022; 7:e0004122. [PMID: 35353006 PMCID: PMC9040591 DOI: 10.1128/msystems.00041-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bones and teeth can provide a lasting resource to identify human remains following decomposition. Bone can support dynamic communities of micro- and macroscopic scavengers and incidental taxa, which influence the preservation of bone over time. Previously we identified key microbial taxa associated with survivability of DNA in bones of surface-decomposed human remains, observing high intra- and interindividual variation. Here we characterized the postmortem bone microbiome of skeletal remains in a multi-individual burial to better understand subsurface bone colonization and preservation. To understand microbial community origins and assembly, 16S rRNA amplicon sequences from 256 bone and 27 soil samples were compared to bone from individuals who decomposed on the ground surface, and human gut sequences from the American Gut Project. Untargeted metabolomics was applied to a subset of 41 bone samples from buried remains to examine potential microbe–metabolite interactions and infer differences related to community functionality. Results show that postmortem bone microbial communities are distinct from those of the oxic surface soils and the human gut. Microbial communities from surface-deposited bone and shallow buried bone were more similar to those from soils, while bones recovered from saturated areas deeper in the grave showed increased similarity with human gut samples with higher representation of anaerobic taxa, suggesting that the depositional environment affected the established bone microbiome. Correlations between metabolites and microbes indicate that phosphate solubilization is likely an important mechanism of microbially mediated skeletal degradation. This research expands our knowledge of microbial bone colonizers, including colonizers important in a burial environment. IMPORTANCE Understanding the microbes that colonize and degrade bone has important implications for preservation of skeletal elements and identification of unknown human remains. Current research on the postmortem bone microbiome is limited and largely focuses on archaeological or marine contexts. Our research expands our understanding of bone microbiomes in buried remains by characterizing the taxonomic and metabolic diversity of microbes that are colonizing bone after a 4-year postmortem burial interval and examines the potential impact of microbial colonization on human skeletal DNA preservation. Our results indicate that the postmortem bone microbiome is distinct from the human gut and soil. Evidence from combined metabolomic and amplicon sequencing analysis suggests that Pseudomonas and phosphate solubilization likely play a role in skeletal degradation. This work provides important insight into the types and activities of microbes controlling the preservation of buried skeletal remains.
Collapse
|
9
|
Feng T, Su W, Zhu J, Yang J, Wang Y, Zhou R, Yu Q, Li H. Corpse decomposition increases the diversity and abundance of antibiotic resistance genes in different soil types in a fish model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117560. [PMID: 34438490 DOI: 10.1016/j.envpol.2021.117560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/05/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
As a common natural phenomenon, corpse decomposition may lead to serious environmental pollution such as nitrogen pollution. However, less is known about antibiotic resistance genes (ARGs), an emerging contaminant, during corpse degradation. Here, ARGs and microbiome in three soil types (black, red and yellow soil) have been investigated between experimental and control groups based on next-generation sequencing and high-throughput quantitative PCR techniques. We found that the absolute abundance of total ARGs and mobile genetic elements (MGEs) in the experimental groups were respectively enriched 536.96 and 240.60 times in different soil types, and the number of ARGs in experimental groups was 7-25 more than that in control groups. For experimental groups, the distribution of ARGs was distinct in different soil types, but sulfonamide resistance genes were always enriched. Corpse decomposition was a primary determinant for ARGs profiles. Microbiome, NH4+ concentrates and pH also significantly affected ARGs profiles. Nevertheless, soil types had few effects on ARGs. For soil microbiome, some genera were elevated in experimental groups such as the Ignatzschineria and Myroides. The alpha diversity is decreased in experimental groups and microbial community structures are different between treatments. Additionally, the Escherichia and Neisseria were potential pathogens elevated in experimental groups. Network analysis indicated that most of ARGs like sulfonamide and multidrug resistance genes presented strong positively correlations with NH4+ concentrates and pH, and some genera like Ignatzschineria and Dysgonomonas were positively correlated with several ARGs such as aminoglycoside and sulfonamide resistance genes. Our study reveals a law of ARGs' enrichment markedly during corpse decomposing in different soil types, and these ARGs contaminant maintaining in environment may pose a potential threat to environmental safety and human health.
Collapse
Affiliation(s)
- Tianshu Feng
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jianxiao Zhu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral, Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Yijie Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Rui Zhou
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Newsome TM, Barton B, Buck JC, DeBruyn J, Spencer E, Ripple WJ, Barton PS. Monitoring the dead as an ecosystem indicator. Ecol Evol 2021; 11:5844-5856. [PMID: 34141188 PMCID: PMC8207411 DOI: 10.1002/ece3.7542] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Dead animal biomass (carrion) is present in all terrestrial ecosystems, and its consumption, decomposition, and dispersal can have measurable effects on vertebrates, invertebrates, microbes, parasites, plants, and soil. But despite the number of studies examining the influence of carrion on food webs, there has been no attempt to identify how general ecological processes around carrion might be used as an ecosystem indicator. We suggest that knowledge of scavenging and decomposition rates, scavenger diversity, abundance, and behavior around carrion, along with assessments of vegetation, soil, microbe, and parasite presence, can be used individually or in combination to understand food web dynamics. Monitoring carrion could also assist comparisons of ecosystem processes among terrestrial landscapes and biomes. Although there is outstanding research needed to fully integrate carrion ecology and monitoring into ecosystem management, we see great potential in using carrion as an ecosystem indicator of an intact and functional food web.
Collapse
Affiliation(s)
- Thomas M. Newsome
- School of Life and Environmental SciencesThe University of SydneySydneyNSWAustralia
| | - Brandon Barton
- Department of Biological SciencesMississippi State UniversityMississippi StateMSUSA
| | - Julia C. Buck
- Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNCUSA
| | - Jennifer DeBruyn
- Biosystems Engineering and Soil ScienceUniversity of TennesseeKnoxvilleTNUSA
| | - Emma Spencer
- School of Life and Environmental SciencesThe University of SydneySydneyNSWAustralia
| | - William J. Ripple
- Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisORUSA
| | - Philip S. Barton
- School of ScienceFederation University AustraliaMt HelenVICAustralia
| |
Collapse
|
11
|
Burcham ZM, Weitzel MA, Hodges LD, Deel HL, Metcalf JL. A pilot study characterizing gravesoil bacterial communities a decade after swine decomposition. Forensic Sci Int 2021; 323:110782. [PMID: 33894685 DOI: 10.1016/j.forsciint.2021.110782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/05/2021] [Indexed: 11/29/2022]
Abstract
Vertebrate decomposition leads to an efflux of fluids rich with biochemicals and microbes from the carcass into the surrounding soil affecting the endogenous soil bacterial community. These perturbations are detectable in soils associated with carcasses (gravesoil) and influence soil bacterial ecology for years after the decomposition event, but it is unknown for how long. Measuring these impacts over extended timescales is critical to expanding vertebrate decomposition's role in the ecosystem and may provide useful information to forensic science. Using 16S rRNA gene amplicon data, this study surveyed bacterial composition in terrestrial soils associated with surface-exposed swine decomposition for 10 years after carcass placement. This pilot study utilizes the increased statistical power associated with repeated measure/within-subjects sampling to analyze bacterial diversity trends over time. Our results demonstrate that the soil bacterial diversity was significantly impacted by decomposition, with this impact being localized to the area underneath the carcass. Bacterial community dissimilarity was greatest 12 months postmortem before beginning recovery. Additionally, random forest regressions were utilized to determine 10 important genera for distinguishing decomposition timepoints, an important component of forensic investigations. Of these 10 genera, four were further analyzed for their significant relative abundance shifts underneath the carcass. This pilot study helps expand the current knowledge of long-term effects of carcass decomposition on soil bacterial communities, and is the first to our knowledge to characterize these communities temporally from placement through a decade of decomposition.
Collapse
Affiliation(s)
- Zachary M Burcham
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80525, USA.
| | - Misty A Weitzel
- Criminal Justice Department, Western Oregon University, Monmouth, OR 97361, USA.
| | - Larry D Hodges
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| | - Heather L Deel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80525, USA.
| | - Jessica L Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80525, USA.
| |
Collapse
|
12
|
DeBruyn JM, Hoeland KM, Taylor LS, Stevens JD, Moats MA, Bandopadhyay S, Dearth SP, Castro HF, Hewitt KK, Campagna SR, Dautartas AM, Vidoli GM, Mundorff AZ, Steadman DW. Comparative Decomposition of Humans and Pigs: Soil Biogeochemistry, Microbial Activity and Metabolomic Profiles. Front Microbiol 2021; 11:608856. [PMID: 33519758 PMCID: PMC7838218 DOI: 10.3389/fmicb.2020.608856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Vertebrate decomposition processes have important ecological implications and, in the case of human decomposition, forensic applications. Animals, especially domestic pigs (Sus scrofa), are frequently used as human analogs in forensic decomposition studies. However, recent research shows that humans and pigs do not necessarily decompose in the same manner, with differences in decomposition rates, patterns, and scavenging. The objective of our study was to extend these observations and determine if human and pig decomposition in terrestrial settings have different local impacts on soil biogeochemistry and microbial activity. In two seasonal trials (summer and winter), we simultaneously placed replicate human donors and pig carcasses on the soil surface and allowed them to decompose. In both human and pig decomposition-impacted soils, we observed elevated microbial respiration, protease activity, and ammonium, indicative of enhanced microbial ammonification and limited nitrification in soil during soft tissue decomposition. Soil respiration was comparable between summer and winter, indicating similar microbial activity; however, the magnitude of the pulse of decomposition products was greater in the summer. Using untargeted metabolomics and lipidomics approaches, we identified 38 metabolites and 54 lipids that were elevated in both human and pig decomposition-impacted soils. The most frequently detected metabolites were anthranilate, creatine, 5-hydroxyindoleacetic acid, taurine, xanthine, N-acetylglutamine, acetyllysine, and sedoheptulose 1/7-phosphate; the most frequently detected lipids were phosphatidylethanolamine and monogalactosyldiacylglycerol. Decomposition soils were also significantly enriched in metabolites belonging to amino acid metabolic pathways and the TCA cycle. Comparing humans and pigs, we noted several differences in soil biogeochemical responses. Soils under humans decreased in pH as decomposition progressed, while under pigs, soil pH increased. Additionally, under pigs we observed significantly higher ammonium and protease activities compared to humans. We identified several metabolites that were elevated in human decomposition soil compared to pig decomposition soil, including 2-oxo-4-methylthiobutanoate, sn-glycerol 3-phosphate, and tryptophan, suggesting different decomposition chemistries and timing between the two species. Together, our work shows that human and pig decomposition differ in terms of their impacts on soil biogeochemistry and microbial decomposer activities, adding to our understanding of decomposition ecology and informing the use of non-human models in forensic research.
Collapse
Affiliation(s)
- Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Katharina M Hoeland
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Lois S Taylor
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jessica D Stevens
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Michelle A Moats
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sreejata Bandopadhyay
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Stephen P Dearth
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Hector F Castro
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Kaitlin K Hewitt
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Shawn R Campagna
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Angela M Dautartas
- Department of Anthropology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Giovanna M Vidoli
- Department of Anthropology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Amy Z Mundorff
- Department of Anthropology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Dawnie W Steadman
- Department of Anthropology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
13
|
Heo CC, Tomberlin JK, Aitkenhead-Peterson JA. Soil chemistry dynamics of Sus scrofa carcasses with and without delayed Diptera colonization. J Forensic Sci 2020; 66:947-959. [PMID: 33290606 DOI: 10.1111/1556-4029.14645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022]
Abstract
Under normal circumstances, insects such as blow flies will oviposit and larvae will colonize a carcass as soon as possible. However, insect colonization on a carcass may be delayed due to the effects of wrapping, shallow burial, addition of lime derivatives to mitigate scavenging and odor, or extreme weather. The impacts of delayed insect colonization on carcass decomposition and its subsequent effect on soil chemistry profiles have not been examined to date. The objectives of this study were to determine soil chemistry dynamics associated with porcine carcasses experiencing delayed insect colonization for 7-day or 14-day. Soil chemistry profiles such as ammonium-N (NH4 -N), orthophosphate-P (PO4 -P), and dissolved organic carbon (DOC) were significantly different among treatments: insect inclusion (immediate access of blow fly colonization on porcine carcasses), 7-day insect exclusion and 14-day insect exclusion (blow fly access was delayed up to 7-day and 14-day). Furthermore, significant differences of soil chemical profiles were detected between days of decomposition and soil regions. Soil moisture, NH4 -N, PO4 -P, and DOC were significantly higher when insects were excluded from the porcine carcass suggesting loss of tissue from larval feeding reduced the mass of nutrients entering the soil. This study provides useful information for forensic science in cases where insect colonization is delayed for a period of time postmortem and soil chemistry in the cadaver decomposition island is considered for estimating postmortem interval.
Collapse
Affiliation(s)
- Chong C Heo
- Department of Entomology, Texas A&M University, College Station, TX, USA.,Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | | | | |
Collapse
|
14
|
Taylor LS, Phillips G, Bernard EC, DeBruyn JM. Soil nematode functional diversity, successional patterns, and indicator taxa associated with vertebrate decomposition hotspots. PLoS One 2020; 15:e0241777. [PMID: 33147264 PMCID: PMC7641364 DOI: 10.1371/journal.pone.0241777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022] Open
Abstract
Decomposition of vertebrate remains is a dynamic process that creates localized soil enrichment zones. A growing body of literature has documented effects of vertebrate decomposition on soil pH, electrical conductivity, oxygen levels, nitrogen and carbon speciation, microbial biomass, and microbial successional patterns. However, relatively few studies have examined the microfaunal members of the soil food web that function as secondary consumers, specifically nematodes. Nematodes are often used as indicators of enrichment in other systems, and initial observations from vertebrate decomposition zones have indicated there is an effect on nematode communities. Our goal was to catalog decomposition-induced nematode succession and changes to alpha, beta, and functional diversity, and identify potential indicator taxa associated with decomposition progression. Six adult beaver (Castor canadensis) carcasses were allowed to decompose in a forest ecosystem for one year. During this period soil temperature, moisture, and electrical conductivity were monitored. Soils samples were taken at two depths in order to assess nematode community dynamics: 30-cm cores and 1-cm interface samples. Nematode abundance, alpha, beta, and functional diversity all responded to soil enrichment at the onset of active decay, and impacts persisted through skeletonization. After one year, nematode abundances and alpha diversity had recovered to original levels, however both community membership and functional diversity remained significantly altered. We identified seven indicator taxa that marked major transitions in decomposition progression. Enrichment of Rhabditidae (B1) and Diplogasteridae (B1) coupled with depletion in Filenchus (F2) characterized active and advanced decay prior to skeletonization in both cores and interface soils. Enrichment of Acrobeloides (B2), Aphelenchoides (F2), Tylencholaimidae (F4) and Seinura (P2) occurred during a narrow period in mid-skeletonization (day 153). Our study has revealed soil nematode successional patterns during vertebrate decomposition and has identified organisms that may function as indicator taxa for certain periods during decomposition.
Collapse
Affiliation(s)
- Lois S. Taylor
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail: (LST); (JMD)
| | - Gary Phillips
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Ernest C. Bernard
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jennifer M. DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail: (LST); (JMD)
| |
Collapse
|
15
|
Emmons AL, Mundorff AZ, Keenan SW, Davoren J, Andronowski J, Carter DO, DeBruyn JM. Characterizing the postmortem human bone microbiome from surface-decomposed remains. PLoS One 2020; 15:e0218636. [PMID: 32639969 PMCID: PMC7343130 DOI: 10.1371/journal.pone.0218636] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/19/2020] [Indexed: 01/19/2023] Open
Abstract
Microbial colonization of bone is an important mechanism of postmortem skeletal degradation. However, the types and distributions of bone and tooth colonizing microbes are not well characterized. It is unknown if microbial communities vary in abundance or composition between bone element types, which could help explain differences in human DNA preservation. The goals of the present study were to (1) identify the types of microbes capable of colonizing different human bone types and (2) relate microbial abundances, diversity, and community composition to bone type and human DNA preservation. DNA extracts from 165 bone and tooth samples from three skeletonized individuals were assessed for bacterial loading and microbial community composition and structure. Random forest models were applied to predict operational taxonomic units (OTUs) associated with human DNA concentration. Dominant bacterial bone colonizers were from the phyla Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, and Planctomycetes. Eukaryotic bone colonizers were from Ascomycota, Apicomplexa, Annelida, Basidiomycota, and Ciliophora. Bacterial loading was not a significant predictor of human DNA concentration in two out of three individuals. Random forest models were minimally successful in identifying microbes related to human DNA concentration, which were complicated by high variability in community structure between individuals and body regions. This work expands on our understanding of the types of microbes capable of colonizing the postmortem human skeleton and potentially contributing to human skeletal DNA degradation.
Collapse
Affiliation(s)
- Alexandra L. Emmons
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Amy Z. Mundorff
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sarah W. Keenan
- Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, United States of America
| | - Jonathan Davoren
- Bode Cellmark Forensics, Lorton, Virginia, United States of America
| | - Janna Andronowski
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - David O. Carter
- Division of Natural Sciences and Mathematics, Laboratory of Forensic Taphonomy, Forensic Sciences Unit, Chaminade University of Honolulu, Honolulu, Hawaii, United States of America
| | - Jennifer M. DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
16
|
Inter and intra-individual variation in skeletal DNA preservation in buried remains. Forensic Sci Int Genet 2020; 44:102193. [DOI: 10.1016/j.fsigen.2019.102193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/28/2019] [Accepted: 10/22/2019] [Indexed: 11/23/2022]
|