1
|
Kisvarga S, Hamar-Farkas D, Horotán K, Gyuricza C, Ražná K, Kučka M, Harenčár Ľ, Neményi A, Lantos C, Pauk J, Solti Á, Simon E, Bibi D, Mukherjee S, Török K, Tilly-Mándy A, Papp L, Orlóci L. Investigation of a Perspective Urban Tree Species, Ginkgo biloba L., by Scientific Analysis of Historical Old Specimens. PLANTS (BASEL, SWITZERLAND) 2024; 13:1470. [PMID: 38891279 PMCID: PMC11175039 DOI: 10.3390/plants13111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
In this study, we examined over 200-year-old Ginkgo biloba L. specimens under different environmental conditions. The overall aim was to explore which factors influence their vitality and general fitness in urban environments and thus their ability to tolerate stressful habitats. In order to determine this, we used a number of different methods, including histological examinations (stomatal density and size) and physiological measurements (peroxidase enzyme activity), as well as assessing the air pollution tolerance index (APTI). The investigation of the genetic relationships between individuals was performed using flow cytometry and miRNA marker methods. The genetic tests revealed that all individuals are diploid, whereas the lus-miR168 and lus-miR408 markers indicated a kinship relation between them. These results show that the effect of different habitat characteristics can be detected through morphological and physiological responses, thus indicating relatively higher stress values for all studied individuals. A significant correlation can be found between the level of adaptability and the relatedness of the examined individuals. These results suggest that Ginkgo biloba L. is well adapted to an environment with increased stress factors and therefore suitable for use in urban areas.
Collapse
Affiliation(s)
- Szilvia Kisvarga
- Ornamental Plant and Green System Management Research Group, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary; (S.K.); (A.N.); (L.O.)
| | - Dóra Hamar-Farkas
- Ornamental Plant and Green System Management Research Group, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary; (S.K.); (A.N.); (L.O.)
- Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary;
| | - Katalin Horotán
- Institute of Biology, Eszterházy Károly Catholic University, 3300 Eger, Hungary;
| | - Csaba Gyuricza
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences (MATE), 1118 Gödöllő, Hungary
| | - Katarína Ražná
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia; (K.R.); (M.K.); (Ľ.H.)
| | - Matúš Kučka
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia; (K.R.); (M.K.); (Ľ.H.)
| | - Ľubomír Harenčár
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia; (K.R.); (M.K.); (Ľ.H.)
| | - András Neményi
- Ornamental Plant and Green System Management Research Group, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary; (S.K.); (A.N.); (L.O.)
| | - Csaba Lantos
- Cereal Research Non-Profit Company, 6726 Szeged, Hungary; (C.L.); (J.P.)
| | - János Pauk
- Cereal Research Non-Profit Company, 6726 Szeged, Hungary; (C.L.); (J.P.)
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, 1117 Budapest, Hungary;
| | - Edina Simon
- Eötvös Loránd Research Network, University of Debrecen, 4032 Debrecen, Hungary;
- Anthropocene Ecology Research Group, Department of Ecology, University of Debrecen, 4032 Debrecen, Hungary; (D.B.); (S.M.)
| | - Dina Bibi
- Anthropocene Ecology Research Group, Department of Ecology, University of Debrecen, 4032 Debrecen, Hungary; (D.B.); (S.M.)
| | - Semonti Mukherjee
- Anthropocene Ecology Research Group, Department of Ecology, University of Debrecen, 4032 Debrecen, Hungary; (D.B.); (S.M.)
| | - Katalin Török
- Eotvos Lorand Res Network (ELKH), Institute of Plant Biology, Biological Research Centre, 6722 Szeged, Hungary;
| | - Andrea Tilly-Mándy
- Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary;
| | - László Papp
- Füvészkert Botanical Garden, Eötvös Loránd University, 1053 Budapest, Hungary;
| | - László Orlóci
- Ornamental Plant and Green System Management Research Group, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary; (S.K.); (A.N.); (L.O.)
| |
Collapse
|
2
|
Wang J, Renninger HJ, Ma Q, Jin S. Measuring stomatal and guard cell metrics for plant physiology and growth using StoManager1. PLANT PHYSIOLOGY 2024; 195:378-394. [PMID: 38298139 DOI: 10.1093/plphys/kiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Automated guard cell detection and measurement are vital for understanding plant physiological performance and ecological functioning in global water and carbon cycles. Most current methods for measuring guard cells and stomata are laborious, time-consuming, prone to bias, and limited in scale. We developed StoManager1, a high-throughput tool utilizing geometrical, mathematical algorithms, and convolutional neural networks to automatically detect, count, and measure over 30 guard cell and stomatal metrics, including guard cell and stomatal area, length, width, stomatal aperture area/guard cell area, orientation, stomatal evenness, divergence, and aggregation index. Combined with leaf functional traits, some of these StoManager1-measured guard cell and stomatal metrics explained 90% and 82% of tree biomass and intrinsic water use efficiency (iWUE) variances in hardwoods, making them substantial factors in leaf physiology and tree growth. StoManager1 demonstrated exceptional precision and recall (mAP@0.5 over 0.96), effectively capturing diverse stomatal properties across over 100 species. StoManager1 facilitates the automation of measuring leaf stomatal and guard cells, enabling broader exploration of stomatal control in plant growth and adaptation to environmental stress and climate change. This has implications for global gross primary productivity (GPP) modeling and estimation, as integrating stomatal metrics can enhance predictions of plant growth and resource usage worldwide. Easily accessible open-source code and standalone Windows executable applications are available on a GitHub repository (https://github.com/JiaxinWang123/StoManager1) and Zenodo (https://doi.org/10.5281/zenodo.7686022).
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Heidi J Renninger
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Qin Ma
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Shichao Jin
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Lertngim N, Ruangsiri M, Klinsawang S, Raksatikan P, Thunnom B, Siangliw M, Toojinda T, Siangliw JL. Photosynthetic Plasticity and Stomata Adjustment in Chromosome Segment Substitution Lines of Rice Cultivar KDML105 under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 12:94. [PMID: 36616222 PMCID: PMC9823560 DOI: 10.3390/plants12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The impact of increasing drought periods on crop yields as a result of global climate change is a major concern in modern agriculture. Thus, a greater understanding of crop physiological responses under drought stress can guide breeders to develop new cultivars with enhanced drought tolerance. In this study, selected chromosome segment substitution lines of KDML105 (KDML105-CSSL) were grown in the Plant Phenomics Center of Kasetsart University in Thailand under well-watered and drought-stressed conditions. Physiological traits were measured by observing gas exchange dynamics and using a high-throughput phenotyping platform. Furthermore, because of its impact on plant internal gas and water regulation, stomatal morphological trait variation was recorded. The results show that KDML105-CSS lines exhibited plasticity responses to enhance water-use efficiency which increased by 3.62%. Moreover, photosynthesis, stomatal conductance and transpiration decreased by approximately 40% and plant height was reduced by 17.69%. Stomatal density tended to decrease and was negatively correlated with stomatal size, and stomata on different sides of the leaves responded differently under drought stress. Under drought stress, top-performing KDML105-CSS lines with high net photosynthesis had shorter plant height and improved IWUE, as influenced by an increase in stomatal density on the upper leaf side and a decrease on the lower leaf side.
Collapse
Affiliation(s)
- Narawitch Lertngim
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Mathurada Ruangsiri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Suparad Klinsawang
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Pimpa Raksatikan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Burin Thunnom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Meechai Siangliw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Jonaliza Lanceras Siangliw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
4
|
Yunusa IA, Palmer AR, Kamululdeen J, Punthakey JF. Contrasting responses to soil and water salinity in stomata and canopy traits produced convergence of water-use in tomatoes (Solanum esculentum) and okra (Abelmoschus esculentus): application to water management. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3227-3236. [PMID: 34796494 DOI: 10.1002/jsfa.11665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Salinity constrains agricultural sustainability and crops differ in their response. We tested the hypothesis that contrasting responses in canopy and stomatal traits to salinity will cause convergence of water-use in okra and tomato. RESULTS Stomata were found almost exclusively (>90%) on the lower leaf surface of tomato, but okra produced ~30% of stomata on the upper leaf surface. While salinity reduced the magnitudes of canopy and stomata traits in tomato, stomata traits were either unaffected or enhanced in okra. Salinity reduced the rates and duration of stomatal conductance (gs ) in both crops, more severely in tomato, in which gs was restricted to early mornings in contrast to its bell-shape trend in okra. The superiority of okra in its stomata traits was compensated by the larger plant canopies in tomato, resulting in both daytime canopy transpiration and total plant water-use within 17% and 28%, respectively, of each other for the two crops. A tight stomatal control of transpiration that minimised use of water and its uptake from the soil conferred a superior salinity tolerance on tomato over okra. In both crops, stomata density (D) was inversely correlated with stomata area (A), while water-use was positively correlated with plant leaf area, in addition to D and A in tomato; gs was also correlated with stomata area index in tomato. CONCLUSION Differences in water-use for both crops were relatively narrow, despite the several-fold differences in their canopy and stomata traits. Under saline conditions, irrigation intervals should be long for tomato but short for okra. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Isa Am Yunusa
- Graham Centre for Agricultural Innovation, Charles Sturt University, Pugsley Place, North Wagga Wagga, NSW, 2650, Australia
- Ecoseal Developments Pty Ltd, Roseville, NSW, Australia
| | - Anthony R Palmer
- Institute for Water Research, Rhodes University, Grahamstown, South Africa
| | | | - Jehangir F Punthakey
- Ecoseal Developments Pty Ltd, Roseville, NSW, Australia
- Institute for Land Water and Society, Charles Sturt University, Albury, NSW, Australia
| |
Collapse
|
5
|
Melkikh AV, Sutormina MI. From leaves to roots: Biophysical models of transport of substances in plants. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:53-83. [PMID: 35114180 DOI: 10.1016/j.pbiomolbio.2022.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/19/2022]
Abstract
The transport processes of substances in various plant tissues are extremely diverse. However, models aimed at elucidating the mechanisms of such processes are almost absent in the literature. A unified view of all these transport processes is necessary, considering the laws of statistical physics and thermodynamics. A model of active ion transport was constructed based on the laws of statistical physics. Using this model, we traced the entire pathway of substances and energy in a plant. The pathway included aspects of the production of energy in the process of photosynthesis, consumption of energy to obtain nutrients from the soil, transport of such substances to the main organelles of all types of plant cells, the rise of water with dissolved substances along the trunk to the leaves, and the evaporation of water, accompanied by a change in the percentage of isotopes caused by different rates of evaporation. Models of ion transport in the chloroplasts and mitochondria of plant cells have been constructed. A generalized model comprising plant cells and their vacuoles was analyzed. A model of the transport of substances in the roots of plants was also developed. Based on this model, the problem of transport of substances in tall trees has been considered. The calculated concentrations of ions in the vacuoles of cells and resting potentials agreed well with the experimental data.
Collapse
Affiliation(s)
- A V Melkikh
- Ural Federal University, Yekaterinburg, Russia.
| | | |
Collapse
|
6
|
Rahman AANS, Rahman M, Shimanto MH, Kibria MG, Islam M. Stomatal size and density trade-off varies with leaf phenology and species shade tolerance in a South Asian moist tropical forest. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:307-318. [PMID: 35130475 DOI: 10.1071/fp21159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The density and guard cell length of stomata regulate the physiological processes in plants. Yet, the variation of stomatal characteristics among different functional groups of trees is not been well understood. Particularly, a comprehensive understanding of stomatal behaviour in Bangladeshi moist forest trees is lacking. The study investigated how abaxial stomatal density (SD) and guard cell length (GCL) vary among tree functional types and leaf phenological groups in a moist tropical forest of Bangladesh. Cluster dendrogram revealed three groups of species based on SD and GCL. The independent sample t -test showed that there was a significant difference in SD between evergreen and deciduous tree species (t =4.18, P <0.001) but no significant difference in GCL between the two phenological groups. ANOVA revealed no significant difference in SD among the light demanding, intermediate shade tolerant and shade tolerant species (F =0.76, P =0.47). However, GCL significantly differed among the three functional groups (F =3.3, P <0.05). Maximum theoretical stomatal conductance (g max ) varied between evergreen and deciduous species but did not vary with species shade tolerance. In general, there was a significant trade-off between SD and GCL. However, the inverse relationship was stronger in deciduous and shade tolerant species than in evergreen and shade intolerant species. Leaf dry matter content was positively related with SD and negatively related with GCL. Specific leaf area and leaf thickness were not related to the stomatal traits. Our analyses suggest that leaf phenology and species shade tolerance need to be considered while estimating gas exchange through the stomata in tropical moist forests.
Collapse
Affiliation(s)
- Abdullah Al-Nur Shanto Rahman
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mizanur Rahman
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mehedi Hasan Shimanto
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mohammad Golam Kibria
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahmuda Islam
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
7
|
Guo Q, Sun Y, Zhang J, Li Y. Variation of phenotypic and physiological traits of Robinia pseudoacacia L. from 20 provenances. PLoS One 2022; 17:e0262278. [PMID: 34986177 PMCID: PMC8730420 DOI: 10.1371/journal.pone.0262278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022] Open
Abstract
To select elite Robinia pseudoacacia L. germplasm resources for production, 13 phenotypes and three physiological indicators of 214 seedlings from 20 provenances were systematically evaluated and analyzed. The leaf phenotypic and physiological coefficients of variation among the genotypes ranged from 3.741% to 19.599% and from 8.260% to 42.363%, respectively. The Kentucky provenance had the largest coefficient of variation (18.541%). The average differentiation coefficients between and within provenances were 34.161% and 38.756%, respectively. These close percentages showed that R. pseudoacacia presented high genetic variation among and within provenances, which can be useful for assisted migration and breeding programs. Furthermore, based on the results of correlations, principal component analysis and cluster analysis, breeding improvements targeting R. pseudoacacia’s ornamental value, food value, and stress resistance of were performed. Forty and 30 excellent individuals, accounting for 18.692% and 14.019%, respectively, of the total resources. They were ultimately screened, after comprehensively taking into considering leaf phenotypic traits including compound leaf length, leaflet number and leaflet area and physiological characteristics including proline and soluble protein contents. These selected individuals could provide a base material for improved variety conservation and selection.
Collapse
Affiliation(s)
- Qi Guo
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang, Henan, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuhan Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiangtao Zhang
- Henan Academy of Forestry, Zhengzhou, China
- * E-mail: (JZ); (YL)
| | - Yun Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- * E-mail: (JZ); (YL)
| |
Collapse
|
8
|
Mngadi M, Odindi J, Mutanga O, Sibanda M. Estimating aboveground net primary productivity of reforested trees in an urban landscape using biophysical variables and remotely sensed data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149958. [PMID: 34525750 DOI: 10.1016/j.scitotenv.2021.149958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Recently, urban reforestation programs have emerged as potential carbon sinks and climate mitigates in urban landscapes. Thus, spatially explicit information on net primary productivity (NPP) of reforested trees in urban environments is central to understanding the value of reforestation initiatives in the global carbon budget and climate regulation potential. To date, numerous studies have mainly focused on natural and commercial forests NPP at a regional scale based on coarse spatial resolution remotely sensed data. Generally, local scale NPP studies based on fine spatial resolution data are limited. Therefore, this study sought to estimate aboveground NPP of an urban reforested landscape using biophysical and Sentinel-2 Multispectral Imager data derived variables. Using the MOD17 model, results showed that mean NPP ranged between 6.24 Mg C ha-1 with high coefficient of determination (R2: 0.92) and low RMSE (0.82 Mg ha-1) across all reforested trees within the study area. Results also showed a considerable variation in NPP among the reforested trees, with deciduous Acacia and Dalbergia obovate species showing the highest NPP (7.62 Mg C ha-1 and 7.58 Mg C ha-1, respectively), while the evergreen Syzygium cordatum and shrub Artemisia afra had the lowest NPP (4.54 Mg C ha-1 and 5.26 Mg C ha-1). Furthermore, the multiple linear regression analysis showed that vegetation specific biophysical variables (i.e. leaf area index, Normalized Difference Vegetation Index and Fraction of Photosynthetically Active Radiation) significantly improved the estimation of reforested aboveground NPP at a fine-scale resolution. These findings demonstrate the effectiveness of biophysical and remotely sensed variables in determining NPP (as carbon sequestration surrogate) at fine-scaled reforested urban landscape. Furthermore, the utility of species biometric measurements and MOD17 model offers unprecedented opportunity for improved local scale reforestation assessment and monitoring schedules.
Collapse
Affiliation(s)
- Mthembeni Mngadi
- School of Agricultural, Earth and Environmental Sciences, Discipline of Geography, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - John Odindi
- School of Agricultural, Earth and Environmental Sciences, Discipline of Geography, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - Onisimo Mutanga
- School of Agricultural, Earth and Environmental Sciences, Discipline of Geography, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - Mbulisi Sibanda
- School of Agricultural, Earth and Environmental Sciences, Discipline of Geography, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
9
|
Sultana SN, Park H, Choi SH, Jo H, Song JT, Lee JD, Kang YJ. Optimizing the Experimental Method for Stomata-Profiling Automation of Soybean Leaves Based on Deep Learning. PLANTS (BASEL, SWITZERLAND) 2021; 10:2714. [PMID: 34961184 PMCID: PMC8708663 DOI: 10.3390/plants10122714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
Stomatal observation and automatic stomatal detection are useful analyses of stomata for taxonomic, biological, physiological, and eco-physiological studies. We present a new clearing method for improved microscopic imaging of stomata in soybean followed by automated stomatal detection by deep learning. We tested eight clearing agent formulations based upon different ethanol and sodium hypochlorite (NaOCl) concentrations in order to improve the transparency in leaves. An optimal formulation-a 1:1 (v/v) mixture of 95% ethanol and NaOCl (6-14%)-produced better quality images of soybean stomata. Additionally, we evaluated fixatives and dehydrating agents and selected absolute ethanol for both fixation and dehydration. This is a good substitute for formaldehyde, which is more toxic to handle. Using imaging data from this clearing method, we developed an automatic stomatal detector using deep learning and improved a deep-learning algorithm that automatically analyzes stomata through an object detection model using YOLO. The YOLO deep-learning model successfully recognized stomata with high mAP (~0.99). A web-based interface is provided to apply the model of stomatal detection for any soybean data that makes use of the new clearing protocol.
Collapse
Affiliation(s)
- Syada Nizer Sultana
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.N.S.); (H.J.); (J.T.S.)
| | - Halim Park
- Division of Bio & Medical Big Data Department (BK4 Program), Gyeongsang National University, Jinju 52828, Korea; (H.P.); (S.H.C.)
| | - Sung Hoon Choi
- Division of Bio & Medical Big Data Department (BK4 Program), Gyeongsang National University, Jinju 52828, Korea; (H.P.); (S.H.C.)
| | - Hyun Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.N.S.); (H.J.); (J.T.S.)
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.N.S.); (H.J.); (J.T.S.)
| | - Jeong-Dong Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.N.S.); (H.J.); (J.T.S.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
| | - Yang Jae Kang
- Division of Bio & Medical Big Data Department (BK4 Program), Gyeongsang National University, Jinju 52828, Korea; (H.P.); (S.H.C.)
- Division of Life Science Department, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
10
|
The Utility of Sentinel-2 Spectral Data in Quantifying Above-Ground Carbon Stock in an Urban Reforested Landscape. REMOTE SENSING 2021. [DOI: 10.3390/rs13214281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transformation of the natural landscape into an impervious surface due to urbanization has often been considered an important driver of environmental change, affecting essential urban ecological processes and ecosystem services. Continuous forest degradation and deforestation due to urbanization have led to an increase in atmospheric carbon emissions, risks, and impacts associated with climate change within urban landscapes and beyond them. Hence, urban reforestation has become a reliable long-term alternative for carbon sink and climate change mitigation. However, there is an urgent need for spatially accurate and concise quantification of these forest carbon stocks in order to understand and effectively monitor the accumulation and progress on such ecosystem services. Hence, this study sought to examine the prospect of Sentinel-2 spectral data in quantifying carbon stock in a reforested urban landscape using the random forest ensemble. Results show that Sentinel-2 spectral data estimated reforested forest carbon stock to an RMSE between 0.378 and 0.466 t·ha−1 and R2 of 79.82 and 77.96% using calibration and validation datasets. Based on random forest variable selection and backward elimination approaches, the red-edge normalized difference vegetation index, enhanced vegetation index, modified simple ratio index, and normalized difference vegetation index were the best subset of predictor variables of carbon stock. These findings demonstrate the value and prospects of Sentinel-2 spectral data for predicting carbon stock in reforested urban landscapes. This information is critical for adopting informed management policies and plans for optimizing urban reforested landscapes carbon sequestration capacity and improving their climate change mitigation potential.
Collapse
|
11
|
Ciorîță A, Tripon SC, Mircea IG, Podar D, Barbu-Tudoran L, Mircea C, Pârvu M. The Morphological and Anatomical Traits of the Leaf in Representative Vinca Species Observed on Indoor- and Outdoor-Grown Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:622. [PMID: 33805226 PMCID: PMC8064346 DOI: 10.3390/plants10040622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022]
Abstract
Morphological and anatomical traits of the Vinca leaf were examined using microscopy techniques. Outdoor Vinca minor and V. herbacea plants and greenhouse cultivated V. major and V. major var. variegata plants had interspecific variations. All Vinca species leaves are hypostomatic. However, except for V. minor leaf, few stomata were also present on the upper epidermis. V. minor leaf had the highest stomatal index and V. major had the lowest, while the distribution of trichomes on the upper epidermis was species-specific. Differentiated palisade and spongy parenchyma tissues were present in all Vinca species' leaves. However, V. minor and V. herbacea leaves had a more organized anatomical aspect, compared to V. major and V. major var. variegata leaves. Additionally, as a novelty, the cellular to intercellular space ratio of the Vinca leaf's mesophyll was revealed herein with the help of computational analysis. Lipid droplets of different sizes and aspects were localized in the spongy parenchyma cells. Ultrastructural characteristics of the cuticle and its epicuticular waxes were described for the first time. Moreover, thick layers of cutin seemed to be characteristic of the outdoor plants only. This could be an adaptation to the unpredictable environmental conditions, but nevertheless, it might influence the chemical composition of plants.
Collapse
Affiliation(s)
- Alexandra Ciorîță
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania; (A.C.); (D.P.); (C.M.)
- Electron Microscopy Center, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania; (S.C.T.); (L.B.-T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Septimiu Cassian Tripon
- Electron Microscopy Center, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania; (S.C.T.); (L.B.-T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Ioan Gabriel Mircea
- Faculty of Mathematics and Informatics, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania;
| | - Dorina Podar
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania; (A.C.); (D.P.); (C.M.)
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania; (S.C.T.); (L.B.-T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Cristina Mircea
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania; (A.C.); (D.P.); (C.M.)
| | - Marcel Pârvu
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania; (A.C.); (D.P.); (C.M.)
| |
Collapse
|