1
|
Meng W, Pan H, Sha Y, Zhai X, Xing A, Lingampelly SS, Sripathi SR, Wang Y, Li K. Metabolic Connectome and Its Role in the Prediction, Diagnosis, and Treatment of Complex Diseases. Metabolites 2024; 14:93. [PMID: 38392985 PMCID: PMC10890086 DOI: 10.3390/metabo14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The interconnectivity of advanced biological systems is essential for their proper functioning. In modern connectomics, biological entities such as proteins, genes, RNA, DNA, and metabolites are often represented as nodes, while the physical, biochemical, or functional interactions between them are represented as edges. Among these entities, metabolites are particularly significant as they exhibit a closer relationship to an organism's phenotype compared to genes or proteins. Moreover, the metabolome has the ability to amplify small proteomic and transcriptomic changes, even those from minor genomic changes. Metabolic networks, which consist of complex systems comprising hundreds of metabolites and their interactions, play a critical role in biological research by mediating energy conversion and chemical reactions within cells. This review provides an introduction to common metabolic network models and their construction methods. It also explores the diverse applications of metabolic networks in elucidating disease mechanisms, predicting and diagnosing diseases, and facilitating drug development. Additionally, it discusses potential future directions for research in metabolic networks. Ultimately, this review serves as a valuable reference for researchers interested in metabolic network modeling, analysis, and their applications.
Collapse
Affiliation(s)
- Weiyu Meng
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR 999078, China; (W.M.); (H.P.); (Y.S.); (X.Z.); (A.X.)
| | - Hongxin Pan
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR 999078, China; (W.M.); (H.P.); (Y.S.); (X.Z.); (A.X.)
| | - Yuyang Sha
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR 999078, China; (W.M.); (H.P.); (Y.S.); (X.Z.); (A.X.)
| | - Xiaobing Zhai
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR 999078, China; (W.M.); (H.P.); (Y.S.); (X.Z.); (A.X.)
| | - Abao Xing
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR 999078, China; (W.M.); (H.P.); (Y.S.); (X.Z.); (A.X.)
| | | | - Srinivasa R. Sripathi
- Henderson Ocular Stem Cell Laboratory, Retina Foundation of the Southwest, Dallas, TX 75231, USA;
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Kefeng Li
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR 999078, China; (W.M.); (H.P.); (Y.S.); (X.Z.); (A.X.)
| |
Collapse
|
2
|
Feng J, Wu S, Yang H, Ai C, Qiao J, Xu J, Guo F. Microbe-bridged disease-metabolite associations identification by heterogeneous graph fusion. Brief Bioinform 2022; 23:6720417. [PMID: 36168719 DOI: 10.1093/bib/bbac423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
MOTIVATION Metabolomics has developed rapidly in recent years, and metabolism-related databases are also gradually constructed. Nowadays, more and more studies are being carried out on diverse microbes, metabolites and diseases. However, the logics of various associations among microbes, metabolites and diseases are limited understanding in the biomedicine of gut microbial system. The collection and analysis of relevant microbial bioinformation play an important role in the revelation of microbe-metabolite-disease associations. Therefore, the dataset that integrates multiple relationships and the method based on complex heterogeneous graphs need to be developed. RESULTS In this study, we integrated some databases and extracted a variety of associations data among microbes, metabolites and diseases. After obtaining the three interconnected bilateral association data (microbe-metabolite, metabolite-disease and disease-microbe), we considered building a heterogeneous graph to describe the association data. In our model, microbes were used as a bridge between diseases and metabolites. In order to fuse the information of disease-microbe-metabolite graph, we used the bipartite graph attention network on the disease-microbe and metabolite-microbe bipartite graph. The experimental results show that our model has good performance in the prediction of various disease-metabolite associations. Through the case study of type 2 diabetes mellitus, Parkinson's disease, inflammatory bowel disease and liver cirrhosis, it is noted that our proposed methodology are valuable for the mining of other associations and the prediction of biomarkers for different human diseases.Availability and implementation: https://github.com/Selenefreeze/DiMiMe.git.
Collapse
Affiliation(s)
- Jitong Feng
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Hongpeng Yang
- School of Computational Science and Engineering, University of South Carolina, Columbia, U.S
| | - Chengwei Ai
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Junhai Xu
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
3
|
Convalescing the Process of Ranking Metabolites for Diseases using Subcellular Localization. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Lee LY, Pandey AK, Maron BA, Loscalzo J. Network medicine in Cardiovascular Research. Cardiovasc Res 2020; 117:2186-2202. [PMID: 33165538 DOI: 10.1093/cvr/cvaa321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/08/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
The ability to generate multi-omics data coupled with deeply characterizing the clinical phenotype of individual patients promises to improve understanding of complex cardiovascular pathobiology. There remains an important disconnection between the magnitude and granularity of these data and our ability to improve phenotype-genotype correlations for complex cardiovascular diseases. This shortcoming may be due to limitations associated with traditional reductionist analytical methods, which tend to emphasize a single molecular event in the pathogenesis of diseases more aptly characterized by crosstalk between overlapping molecular pathways. Network medicine is a rapidly growing discipline that considers diseases as the consequences of perturbed interactions between multiple interconnected biological components. This powerful integrative approach has enabled a number of important discoveries in complex disease mechanisms. In this review, we introduce the basic concepts of network medicine and highlight specific examples by which this approach has accelerated cardiovascular research. We also review how network medicine is well-positioned to promote rational drug design for patients with cardiovascular diseases, with particular emphasis on advancing precision medicine.
Collapse
Affiliation(s)
- Laurel Y Lee
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.,Department of Cardiology, Boston VA Healthcare System, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
5
|
Mechanick JI, Farkouh ME, Newman JD, Garvey WT. Cardiometabolic-Based Chronic Disease, Addressing Knowledge and Clinical Practice Gaps: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75:539-555. [PMID: 32029137 PMCID: PMC8168371 DOI: 10.1016/j.jacc.2019.11.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/06/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
In the second part of this JACC State-of-the-Art Review, an early and sustainable preventive care plan is described for cardiometabolic-based chronic disease. This plan can improve cardiometabolic health by targeting early mechanistic events to decrease the risk for certain cardiovascular diseases (e.g., coronary heart disease, heart failure, and atrial fibrillation). Included are various prevention modalities, intensive lifestyle interventions, pharmacotherapy and cardiovascular outcome trial evidence, and bariatric/metabolic procedures. A tactical approach of implementing published clinical practice guidelines/algorithms for early behavioral, adiposity, and dysglycemia targeting is emphasized, as well as relevant educational and research implications.
Collapse
Affiliation(s)
- Jeffrey I Mechanick
- Zena and Michael A. Wiener Cardiovascular Institute/Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Michael E Farkouh
- Peter Munk Cardiac Centre and the Heart and Stroke Richard Lewar Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan D Newman
- Division of Cardiology and Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University Medical Center, New York, New York
| | - W Timothy Garvey
- Department of Nutrition Sciences and Diabetes Research Center, University of Alabama at Birmingham, Birmingham, Alabama; Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, Alabama
| |
Collapse
|
6
|
Windels SFL, Malod-Dognin N, Pržulj N. Graphlet Laplacians for topology-function and topology-disease relationships. Bioinformatics 2019; 35:5226-5234. [PMID: 31192358 DOI: 10.1093/bioinformatics/btz455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/08/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023] Open
Abstract
MOTIVATION Laplacian matrices capture the global structure of networks and are widely used to study biological networks. However, the local structure of the network around a node can also capture biological information. Local wiring patterns are typically quantified by counting how often a node touches different graphlets (small, connected, induced sub-graphs). Currently available graphlet-based methods do not consider whether nodes are in the same network neighbourhood. To combine graphlet-based topological information and membership of nodes to the same network neighbourhood, we generalize the Laplacian to the Graphlet Laplacian, by considering a pair of nodes to be 'adjacent' if they simultaneously touch a given graphlet. RESULTS We utilize Graphlet Laplacians to generalize spectral embedding, spectral clustering and network diffusion. Applying Graphlet Laplacian-based spectral embedding, we visually demonstrate that Graphlet Laplacians capture biological functions. This result is quantified by applying Graphlet Laplacian-based spectral clustering, which uncovers clusters enriched in biological functions dependent on the underlying graphlet. We explain the complementarity of biological functions captured by different Graphlet Laplacians by showing that they capture different local topologies. Finally, diffusing pan-cancer gene mutation scores based on different Graphlet Laplacians, we find complementary sets of cancer-related genes. Hence, we demonstrate that Graphlet Laplacians capture topology-function and topology-disease relationships in biological networks. AVAILABILITY AND IMPLEMENTATION http://www0.cs.ucl.ac.uk/staff/natasa/graphlet-laplacian/index.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sam F L Windels
- Department of Computer Science, University College London, London, WC1E 6BT, United Kingdom
| | | | - Nataša Pržulj
- Department of Computer Science, University College London, London, WC1E 6BT, United Kingdom.,Barcelona Supercomputing Center, Barcelona, 08034, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
7
|
Lei X, Tie J. Prediction of disease-related metabolites using bi-random walks. PLoS One 2019; 14:e0225380. [PMID: 31730648 PMCID: PMC6857945 DOI: 10.1371/journal.pone.0225380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
Metabolites play a significant role in various complex human disease. The exploration of the relationship between metabolites and diseases can help us to better understand the underlying pathogenesis. Several network-based methods have been used to predict the association between metabolite and disease. However, some methods ignored hierarchical differences in disease network and failed to work in the absence of known metabolite-disease associations. This paper presents a bi-random walks based method for disease-related metabolites prediction, called MDBIRW. First of all, we reconstruct the disease similarity network and metabolite functional similarity network by integrating Gaussian Interaction Profile (GIP) kernel similarity of diseases and GIP kernel similarity of metabolites, respectively. Then, the bi-random walks algorithm is executed on the reconstructed disease similarity network and metabolite functional similarity network to predict potential disease-metabolite associations. At last, MDBIRW achieves reliable performance in leave-one-out cross validation (AUC of 0.910) and 5-fold cross validation (AUC of 0.924). The experimental results show that our method outperforms other existing methods for predicting disease-related metabolites.
Collapse
Affiliation(s)
- Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi’an China
| | - Jiaojiao Tie
- School of Computer Science, Shaanxi Normal University, Xi’an China
| |
Collapse
|