1
|
Pasha A, Ravinder D, Pawar SC. Andrographolide Mitigates Cisplatin Resistance by Inhibiting SPP1 Regulated NF-kB/iNOS/COX-2 and PI3K/AKT Pathway in Cisplatin Resistant Cervical Carcinoma Cells. Drug Dev Res 2025; 86:e70052. [PMID: 39888044 DOI: 10.1002/ddr.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Drug resistance and cancer recurrence are major cause of Cervical cancer (CC) patient mortality. Cisplatin (CDDP) is the major drug that has been extremely used in all stages in treating CC, although relapse and malignant instances have been observed as a result of cisplatin resistance in CC. In the present study, we established Cisplatin resistant CC HeLa cell line model and the cytotoxic effects of Andro as a single agent or in combination with CDDP were investigated to assess its potential as a chemotherapeutic agent in cisplatin-resistant HeLa (CisR-HeLa) cells. Andro enhanced the cytotoxicity of CDDP in CisR-HeLa cells and shown a synergistic effect by reducing cell viability, proliferation, migration, invasion, and inducing apoptosis in cisplatin resistant cells. Furthermore, we evaluated the expression levels of inflammatory and oncogenic proteins, SPP1, NF-kB, iNOS, COX-2, and the PI3K/AKT signaling pathway, which are associated with cisplatin resistance, as well as using Andro to regulate the targeted markers in CisR-HeLa cells to overcome resistance. The results show that suppressing SPP1 and NF-kB by Andro alone or in combination with CDDP regulates iNOS, COX-2, and increases PTEN expression. The addition of Andro to CDDP inhibited PI3K and AKT expression as well as triggered synergistic apoptosis, which could be associated with variations in Bax and Bcl-2 protein levels. The results suggest that Andro in combination with CDDP exhibits synergistic anti-tumor growth efficacy that targets multiple inflammatory markers, resulting in a promising treatment option for individuals with recurrent cancer due to drug resistance and advanced CC.
Collapse
Affiliation(s)
- Akbar Pasha
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, India
| | - Doneti Ravinder
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, India
| | - Smita C Pawar
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Tamburini B, Di Liberto D, Pratelli G, Rizzo C, Barbera LL, Lauricella M, Carlisi D, Maggio A, Palumbo Piccionello A, D’Anneo A, Caccamo N, Guggino G. Extra Virgin Olive Oil Polyphenol-Enriched Extracts Exert Antioxidant and Anti-Inflammatory Effects on Peripheral Blood Mononuclear Cells from Rheumatoid Arthritis Patients. Antioxidants (Basel) 2025; 14:171. [PMID: 40002358 PMCID: PMC11851824 DOI: 10.3390/antiox14020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Rheumatoid arthritis (RA) is a long-term systemic autoimmune disorder that causes joint inflammation, swelling, pain, bone erosion, and deformities. Recent findings emphasize the anti-inflammatory and antioxidant properties of bioactive natural compounds, such as polyphenols extracted from plants and fruits, and their possible synergistic effect when used in combination with current therapies to improve the prognosis and symptoms of inflammatory rheumatic diseases. Here, we report that Sicilian extra virgin olive oil polyphenol-enriched extracts (PE-EVOOs) reduce intracellular reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1 β (IL-1β), in peripheral mononuclear cells (PBMCs) obtained from both RA patients and healthy subjects (HSs) treated with lipopolysaccharides (LPS) as a control. HPLC-ESI-MS analysis highlighted that PE-EVOOs are rich in different polyphenolic compounds responsible for many of the observed biological effects. At molecular levels, Western blotting analyses revealed that PE-EVOO treatment is associated with the downregulation of the phosphorylated and active form of the inflammatory transcription factor NF-κB and the pro-inflammatory enzyme cyclooxygenase 2 (COX2). In addition, PE-EVOOs upregulated the transcription factor Nrf2 and its target antioxidant enzyme catalase and manganese superoxide dismutase (MnSOD). Collectively, these results suggest a possible use of PE-EVOOs as potential adjuvants for the treatment of RA.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Section of Immunology, University of Palermo, 90127 Palermo, Italy; (B.T.); (N.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (C.R.); (L.L.B.); (G.G.)
| | - Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Section of Biochemistry, University of Palermo, 90127 Palermo, Italy; (D.D.L.); (G.P.); (D.C.)
| | - Giovanni Pratelli
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Section of Biochemistry, University of Palermo, 90127 Palermo, Italy; (D.D.L.); (G.P.); (D.C.)
| | - Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (C.R.); (L.L.B.); (G.G.)
| | - Lidia La Barbera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (C.R.); (L.L.B.); (G.G.)
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Section of Biochemistry, University of Palermo, 90127 Palermo, Italy; (D.D.L.); (G.P.); (D.C.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Section of Biochemistry, University of Palermo, 90127 Palermo, Italy; (D.D.L.); (G.P.); (D.C.)
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (A.P.P.)
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.M.); (A.P.P.)
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy;
| | - Nadia Caccamo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Section of Immunology, University of Palermo, 90127 Palermo, Italy; (B.T.); (N.C.)
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (C.R.); (L.L.B.); (G.G.)
| |
Collapse
|
3
|
Dong R, Wang J, Guan R, Sun J, Jin P, Shen J. Role of Oxidative Stress in the Occurrence, Development, and Treatment of Breast Cancer. Antioxidants (Basel) 2025; 14:104. [PMID: 39857438 PMCID: PMC11760893 DOI: 10.3390/antiox14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Breast cancer is one of the most prevalent cancers worldwide. Recent studies have increasingly emphasized the role of oxidative stress in the initiation and progression of breast cancer. This article reviews how oxidative stress imbalance influences the occurrence and advancement of breast cancer, elucidating the intricate mechanisms through which reactive oxygen species (ROS) operate in this context and their potential therapeutic applications. By highlighting these critical insights, this review aims to enhance our understanding of oxidative stress as a potential target for innovative therapeutic strategies in the management of breast cancer.
Collapse
Affiliation(s)
- Rui Dong
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Jing Wang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Ruiqi Guan
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
| | - Jianwei Sun
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Ping Jin
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Junling Shen
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650091, China; (R.D.); (J.W.); (R.G.); (J.S.)
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| |
Collapse
|
4
|
Liu Y, Zhu W, Zhang Y, Zhang J, Lv M, Su J. Anti-infective immune functions of type IV interferon in grass carp ( Ctenopharyngodon idella): A novel antibacterial and antiviral interferon in lower vertebrates. Zool Res 2024; 45:972-982. [PMID: 39085753 PMCID: PMC11491785 DOI: 10.24272/j.issn.2095-8137.2024.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 08/02/2024] Open
Abstract
Type IV interferon (IFN-υ) is a recently discovered cytokine crucial for host defense against viral infections. However, the role and mechanisms of IFN-υ in bacterial infections remain unexplored. This study investigated the antibacterial and antiviral functions and mechanisms of grass carp ( Ctenopharyngodon idella) IFN-υ (CiIFN-υ) both in vivo and in vitro. The CiIFN-υ gene was first identified and characterized in grass carp. Subsequently, the immune expression of CiIFN-υ significantly increased following bacterial challenge, indicating its response to bacterial infections. The eukaryotic recombinant expression plasmid of CiIFN-υ was then constructed and transfected into fathead minnow (FHM) cells. Supernatants were collected and incubated with four bacterial strains, followed by plate spreading and colony counting. Results indicated that CiIFN-υ exhibited more potent antibacterial activity against gram-negative bacteria compared to gram-positive bacteria and aggregated gram-negative bacteria but not gram-positive bacteria. In vivo experiments further confirmed the antibacterial function, showing high survival rates, low tissue edema and damage, reduced tissue bacterial load, and elevated proinflammatory response at the early stages of bacterial infection. In addition, the antiviral function of CiIFN-υ was confirmed through in vitro and in vivo experiments, including crystal violet staining, survival rates, tissue viral burden, and RT-qPCR. This study highlights the antibacterial function and preliminary mechanism of IFN-υ, demonstrating that IFN-υ possesses dual functions against bacterial and viral infections.
Collapse
Affiliation(s)
- Yuchen Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Wentao Zhu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanqi Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingjing Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Maolin Lv
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China. E-mail:
| |
Collapse
|
5
|
Rahman MS, Alam MB, Naznin M, Madina MH, Rafiquzzaman SM. Glutamic-Alanine Rich Glycoprotein from Undaria pinnatifida: A Promising Natural Anti-Inflammatory Agent. Mar Drugs 2024; 22:383. [PMID: 39330264 PMCID: PMC11433183 DOI: 10.3390/md22090383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
This study aimed to assess the anti-inflammatory properties of a bioactive glutamic-alanine rich glycoprotein (GP) derived from Undaria pinnatifida on both LPS-stimulated RAW264.7 cells, peritoneal macrophages, and mouse models of carrageenan- and xylene-induced inflammation, investigating the underlying molecular mechanisms. In both in-vitro and in-vivo settings, GP was found to reduce the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) while also inhibiting the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in response to lipopolysaccharide (LPS) stimulation. GP treatment significantly impeded the nuclear translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway by blocking the phosphorylation of IKKα and IκBα, leading to a reduction in proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Additionally, GP effectively inhibited the activation of mitogen-activated protein kinases (MAPKs), with specific inhibitors of p38 and extra-cellular signal regulated kinase (ERK) enhancing GP's anti-inflammatory efficacy. Notably, GP administration at 10 mg/kg/day (p.o.) markedly reduced carrageenan-induced paw inflammation and xylene-induced ear edema by preventing the infiltration of inflammatory cells into targeted tissues. GP treatment also downregulated key inflammatory markers, including iNOS, COX-2, IκBα, and NF-κB, by suppressing the phosphorylation of p38 and ERK, thereby improving the inflammatory index in both carrageenan- and xylene-induced mouse models. These findings suggest that marine resources, particularly seaweeds like U. pinnatifida, could serve as valuable sources of natural anti-inflammatory proteins for the effective treatment of inflammation and related conditions.
Collapse
Affiliation(s)
- Md Saifur Rahman
- Institution of Nutrition and Functional Foods, Faculty Agricultural and Food Sciences, Laval University, Laval, QC G1V 0A6, Canada;
| | - Md Badrul Alam
- Inner Beauty/Antiaging Center, Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Mst Hur Madina
- Institution of Nutrition and Functional Foods, Faculty Agricultural and Food Sciences, Laval University, Laval, QC G1V 0A6, Canada;
| | - S. M. Rafiquzzaman
- Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| |
Collapse
|
6
|
Pasha A, Kumar K, Heena SK, Arnold Emerson I, Pawar SC. Inhibition of NF-kB and COX-2 by andrographolide regulates the progression of cervical cancer by promoting PTEN expression and suppressing PI3K/AKT signalling pathway. Sci Rep 2024; 14:12020. [PMID: 38797813 PMCID: PMC11128455 DOI: 10.1038/s41598-024-57304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/16/2024] [Indexed: 05/29/2024] Open
Abstract
In the face of recent advances in Cervical cancer (CC) treatment, therapeutic and surgical procedures for CC management are still inadequate. In the current study for the first time Andrographolide (Andro) has been explored for its multitarget therapeutic efficacy on NF-kB, COX-2, and PI3K/AKT expressions together in CC. The expression levels of NF-kB, COX-2, PI3K and PTEN in the CC patient samples, both at mRNA and protein levels have shown significant association with poor survival and increased tumor aggressiveness. The binding efficacy of Andro was investigated using molecular docking and molecular dynamic simulations, and the protein and ligand complex for NF-kB and COX-2 has shown high binding energy. Andro displayed cytotoxicity by impeding the in-vitro proliferation of CC cells. Andro significantly supressed the NF-kB, COX-2, and PI3K expression and enhanced the expression levels of PTEN at protein levels in-vitro. Andro induced apoptosis in a dose dependent manner and significantly inhibited the migration and invasion of CC cells. Andro exhibited similar activity in-vivo and suppressed the CC tumor growth in xenograft C57BL/6 mice model. The anti-tumor activity of Andro, both in-vitro and in-vivo has shown considerable downregulation of NF-kB and COX-2 and induced apoptosis through impeding the PI3K/AKT signalling pathway. These findings from the above study projects, administration of Andro as an effective alternate safe compound to curtail and impede cervical cancer progression.
Collapse
Affiliation(s)
- Akbar Pasha
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Kiran Kumar
- Department of Bioinformatics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - S K Heena
- Department of Pathology, Osmania Medical College, Hyderabad, Telangana, 500095, India
| | - I Arnold Emerson
- Department of Bioinformatics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Smita C Pawar
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
7
|
Hasegawa Y, Asada S. DNA-dependent protein kinase catalytic subunit binds to the transactivation domain 1 of NF-κB p65. Biochem Biophys Rep 2023; 35:101538. [PMID: 37674974 PMCID: PMC10477060 DOI: 10.1016/j.bbrep.2023.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Nuclear factor-kappa B (NF-κB) is a transcriptional factor that binds to the ∼10-base-pair κB motif on target genes and acts as an inflammatory regulator. Since dysregulation of NF-κB is thought to be related to various diseases, it would be very important to elucidate its post-translational modifications and binding partners in detail and to deeply understand mechanisms of the NF-κB dysregulation. NF-κB p65 is known to interact with the basic transcription factor TFIID subunit hTAFII31/TAF9 through the ФXXФФ (Ф, hydrophobic amino acid; X, any amino acid) motif in a similar fashion to p53. MDM2 is known to inhibit p53 from binding to hTAFII31/TAF9 by masking p53's ФXXФФ motif. Here, as can be rationalized from this observation, we searched for novel nuclear proteins that interact with the transactivation domain 1 (TA1) of NF-κB p65 containing a ФXXФФ motif. We prepared a GST-tagged polypeptide, GST-p65532-550, from Phe532-Ser550 of the TA1 domain and found various U937 cell nuclear proteins that bound to GST-p65532-550. The largest bound protein the size of ∼400 kDa was subjected to mass spectrometric analysis and found to be DNA-dependent protein kinase catalytic subunit (DNA-PKcs). An immunoprecipitation experiment with an antibody against p65 and nuclear extracts from TNF-α-treated A549 cells suggested that NF-κB p65 indeed binds to DNA-PKcs in human cells. Furthermore, binding assays with a series of His-tagged DNA-PKcs fragments suggested that DNA-PKcs can bind to NF-κB p65 through the interaction of the TA1 domain with the region 541-750 in the N-HEAT domain or the region 2485-2576 in the M-HEAT domain.
Collapse
Affiliation(s)
- Yuta Hasegawa
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Akiha-ku, Niigata, Niigata, 956-8603, Japan
| | - Shinichi Asada
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, Akiha-ku, Niigata, Niigata, 956-8603, Japan
| |
Collapse
|
8
|
Yu Z, Peng Y, Gao J, Zhou M, Shi L, Zhao F, Wang C, Tian X, Feng L, Huo X, Zhang B, Liu M, Fang D, Ma X. The p23 co-chaperone is a succinate-activated COX-2 transcription factor in lung adenocarcinoma tumorigenesis. SCIENCE ADVANCES 2023; 9:eade0387. [PMID: 37390202 PMCID: PMC10313168 DOI: 10.1126/sciadv.ade0387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
P23, historically known as a heat shock protein 90 (HSP90) co-chaperone, exerts some of its critical functions in an HSP90-independent manner, particularly when it translocates into the nucleus. The molecular nature underlying how this HSP90-independent p23 function is achieved remains as a biological mystery. Here, we found that p23 is a previously unidentified transcription factor of COX-2, and its nuclear localization predicts the poor clinical outcomes. Intratumor succinate promotes p23 succinylation at K7, K33, and K79, which drives its nuclear translocation for COX-2 transcription and consequently fascinates tumor growth. We then identified M16 as a potent p23 succinylation inhibitor from 1.6 million compounds through a combined virtual and biological screening. M16 inhibited p23 succinylation and nuclear translocation, attenuated COX-2 transcription in a p23-dependent manner, and markedly suppressed tumor growth. Therefore, our study defines p23 as a succinate-activated transcription factor in tumor progression and provides a rationale for inhibiting p23 succinylation as an anticancer chemotherapy.
Collapse
Affiliation(s)
- Zhenlong Yu
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Yulin Peng
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Meirong Zhou
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Lei Shi
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Feng Zhao
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Chao Wang
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Xiangge Tian
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Lei Feng
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Xiaokui Huo
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Baojing Zhang
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Min Liu
- Neurology Department, Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaochi Ma
- College of Pharmacy, the Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| |
Collapse
|
9
|
Interleukin-1β triggers matrix metalloprotease-3 expression through p65/RelA activation in melanoma cells. PLoS One 2022; 17:e0278220. [PMID: 36445856 PMCID: PMC9707762 DOI: 10.1371/journal.pone.0278220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022] Open
Abstract
Melanoma shows highly aggressive behavior (i.e., local invasion and metastasis). Matrix metalloprotease-3 (MMP-3), a zinc-dependent endopeptidase, degrades several extracellular substrates and contributes to local invasion by creating a microenvironment suitable for tumor development. Here, we report that interleukin-1β (IL-1β) triggers the MMP-3 expression in canine melanoma cells. The activity of MMP-3 in the culture supernatant was increased in IL-1β-treated melanoma cells. IL-1β time- and dose-dependently provoked the mRNA expression of MMP-3. IL-1β induced the migration of melanoma cells; however, this migration was attenuated by UK356618, an MMP-3 inhibitor. When the cells were treated with the nuclear factor-κB (NF-κB) inhibitor TPCA-1, the inhibition of MMP-3 expression was observed. In IL-1β-treated cells, the phosphorylation both of p65/RelA and p105 was detected, indicating NF-κB pathway activation. In p65/RelA-depleted melanoma cells, IL-1β-mediated mRNA expression of MMP-3 was inhibited, whereas this reduction was not observed in p105-depleted cells. These findings suggest that MMP-3 expression in melanoma cells is regulated through IL-1β-mediated p65/RelA activation, which is involved in melanoma cell migration.
Collapse
|
10
|
Mizuno M, Nakano R, Nose S, Matsumura M, Nii Y, Kurogochi K, Sugiya H, Uechi M. Canonical NF-κB p65, but Not p105, Contributes to IL-1β-Induced IL-8 Expression in Cardiac Fibroblasts. Front Immunol 2022; 13:863309. [PMID: 35514973 PMCID: PMC9065446 DOI: 10.3389/fimmu.2022.863309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cardiac fibroblasts participate in the inflammatory process of heart diseases as sentinel cells of the cardiac tissue. In this study, we investigated the effect of the proinflammatory cytokine, interleukin 1β (IL-1β), on the expression of interleukin 8 (IL-8), which contributes to the induction of innate immunity via the activation and recruitment of innate immune cells, such as neutrophils, to the site of inflammation in canine cardiac fibroblasts. IL-1β mediates IL-8 mRNA expression and protein release in a dose- and time-dependent manner. The IL-β-mediated IL-8 protein release and mRNA expression were inhibited by 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide, an inhibitor of the transcription factor, nuclear factor (NF)-κB. In cells treated with IL-1β, NF-κB p65 and p105 were transiently phosphorylated, indicating the activation of NF-κB. However, IL-1β failed to induce IL-8 mRNA expression in the cells transfected with p65 small interfering RNA (siRNA), but not in those transfected with p105 siRNA. These observations suggest that IL-1β induces IL-8 expression via the activation of NF-κB p65 in canine cardiac fibroblasts.
Collapse
Affiliation(s)
- Masashi Mizuno
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | - Rei Nakano
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan.,Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan.,Laboratory of Veterinary Radiotherapy, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Saki Nose
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | - Moeka Matsumura
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | - Yasuyuki Nii
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | | | - Hiroshi Sugiya
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| | - Masami Uechi
- Japan Animal Specialty Medical Institute, Tsuzuki, Yokohama, Japan
| |
Collapse
|
11
|
A Comparative View on Molecular Alterations and Potential Therapeutic Strategies for Canine Oral Melanoma. Vet Sci 2021; 8:vetsci8110286. [PMID: 34822659 PMCID: PMC8619620 DOI: 10.3390/vetsci8110286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Canine oral melanoma (COM) is a highly aggressive tumour associated with poor prognosis due to metastasis and resistance to conventional anti-cancer therapies. As with human mucosal melanoma, the mutational landscape is predominated by copy number aberrations and chromosomal structural variants, but differences in study cohorts and/or tumour heterogeneity can lead to discordant results regarding the nature of specific genes affected. This review discusses somatic molecular alterations in COM that result from single nucleotide variations, copy number changes, chromosomal rearrangements, and/or dysregulation of small non-coding RNAs. A cross-species comparison highlights notable recurrent aberrations, and functionally grouping dysregulated proteins reveals unifying biological pathways that may be critical for oncogenesis and metastasis. Finally, potential therapeutic strategies are considered to target these pathways in canine patients, and the benefits of collaboration between science, medical, and veterinary communities are emphasised.
Collapse
|
12
|
Naruke A, Nakano R, Nunomura J, Suwabe Y, Nakano M, Namba S, Kitanaka T, Kitanaka N, Sugiya H, Nakayama T. Tpl2 contributes to IL-1β-induced IL-8 expression via ERK1/2 activation in canine dermal fibroblasts. PLoS One 2021; 16:e0259489. [PMID: 34735542 PMCID: PMC8568182 DOI: 10.1371/journal.pone.0259489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
In autoimmune diseases, fibroblasts produce and secrete various cytokines and act as sentinel immune cells during inflammatory states. However, the contribution of sentinel immune cells (i.e. dermal fibroblasts) in autoimmune diseases of the skin, such as atopic dermatitis, has been obscure. The pro-inflammatory cytokine interleukin 1β (IL-1β) induces the expression of chemokines, such as interleukin 8 (IL-8), in autoimmune diseases of the skin. IL-8 induces the activation and recruitment of innate immune cells such as neutrophils to the site of inflammation. IL-1β-mediated induction of IL-8 expression is important for the pathogenesis of autoimmune diseases; however, the intracellular singling remains to be understood. To elucidate the mechanism of the onset of autoimmune diseases, we established a model for IL-1β-induced dermatitis and investigated MAPK signaling pathways in IL-1β-induced IL-8 expression. We also identified that a MAP3K Tpl2 acts as an upstream modulator of IL-1β-induced ERK1/2 activation in dermal fibroblasts. We observed an increase in the expression of IL-8 mRNA and protein in cells treated with IL-1β. ERK1/2 inhibitors significantly reduced IL-1β-induced IL-8 expression, whereas the inhibitor for p38 MAPK or JNK had no effect. IL-1β induced ERK1/2 phosphorylation, which was attenuated in the presence of an ERK1/2 inhibitor. IL-1β failed to induce IL-8 expression in cells transfected with siRNA for ERK1, or ERK2. Notably, a Tpl2 inhibitor reduced IL-1β-induced IL-8 expression and ERK1/2 phosphorylation. We confirmed that the silencing of Tpl2 in siRNA-transfected fibroblasts prevented both in IL-1β-induced IL-8 expression and ERK1/2 phosphorylation. Taken together, our data indicate the importance of Tpl2 in the modulation of ERK1/2 signaling involved in the IL-1β-induced development of autoimmune diseases affecting the dermal tissue, such as atopic dermatitis.
Collapse
Affiliation(s)
- Atsuto Naruke
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
- * E-mail:
| | - Junichi Nunomura
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Yoko Suwabe
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Masumi Nakano
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Shinichi Namba
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Nanako Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| |
Collapse
|
13
|
Chen YH, Lei SS, Li B, Luo R, He X, Wang YZ, Zhou FC, Lv GY, Chen SH. Systematic Understanding of the Mechanisms of Flos Chrysanthemi Indici-mediated Effects on Hypertension via Computational Target Fishing. Comb Chem High Throughput Screen 2021; 23:92-110. [PMID: 31969096 DOI: 10.2174/1386207323666200122105410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023]
Abstract
AIMS AND OBJECTIVE Hypertension-induced stroke and coronary artery disease are significant causes of global morbidity and mortality. Metabolic hypertension has recently become the leading cause of hypertension. Flos Chrysanthemi Indici (CIF) has a long history as a treatment of hypertension as part of traditional Chinese medicine. However, its mechanisms of activity remain largely unknown. This study was aimed to uncover the potential anti-hypertensive mechanisms of CIF based on network pharmacology. MATERIALS AND METHODS In this research, a systems pharmacology approach integrating the measurement of active compounds, target fishing, gene screening, Gene Ontology (GO) pathway analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology Based Annotation System (KOBAS) database analysis, and compound-target network construction were performed to explore the anti-hypertensive mechanisms of CIF. RESULTS These studies revealed that 12 bioactive compounds in CIF had good druggability, 5 of which were flavonoids. After screening, 8 of those 12 bioactive compounds interacted with 118 hypertensionrelated target genes, which were mapped to 218 signal pathways. Network analysis showed that these targets were associated with improving insulin resistance, improving vascular function, inhibiting renninangiotensin- aldosterone system (RAAS), inhibiting the sympathetic nervous system (SNS) and regulating other physiological processes. CONCLUSION In summary, CIF is predicted to target multiple proteins and pathways to form a network that exerts systematic pharmacological effects in order to regulate blood pressure and metabolic disorder.
Collapse
Affiliation(s)
- Ye-Hui Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Shan-Shan Lei
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bo Li
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Rong Luo
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xinglishang He
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yu-Zhi Wang
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Fu-Chen Zhou
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gui-Yuan Lv
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Su-Hong Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
14
|
Suwabe Y, Nakano R, Namba S, Yachiku N, Kuji M, Sugimura M, Kitanaka N, Kitanaka T, Konno T, Sugiya H, Nakayama T. Involvement of GLUT1 and GLUT3 in the growth of canine melanoma cells. PLoS One 2021; 16:e0243859. [PMID: 33539362 PMCID: PMC7861381 DOI: 10.1371/journal.pone.0243859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
The rate of glucose uptake dramatically increases in cancer cells even in the presence of oxygen and fully functioning mitochondria. Cancer cells produce ATP by glycolysis rather than oxidative phosphorylation under aerobic conditions, a process termed as the “Warburg effect.” In the present study, we treated canine melanoma cells with the glucose analog 2-deoxy-D-glucose (2-DG) and investigated its effect on cell growth. 2-DG attenuated cell growth in a time- and dose-dependent manner. Cell growth was also inhibited following treatment with the glucose transporter (GLUT) inhibitor WZB-117. The treatment of 2-DG and WZB-117 attenuated the glucose consumption, lactate secretion and glucose uptake of the cells. The mRNA expression of the subtypes of GLUT was examined and GLUT1 and GLUT3 were found to be expressed in melanoma cells. The growth, glucose consumption and lactate secretion of melanoma cells transfected with siRNAs of specific for GLUT1 and GLUT3 was suppressed. These findings suggest that glucose uptake via GLUT1 and GLUT3 plays a crucial role for the growth of canine melanoma cells.
Collapse
Affiliation(s)
- Yoko Suwabe
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Shinichi Namba
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Naoya Yachiku
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Manami Kuji
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Mana Sugimura
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Nanako Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tadayoshi Konno
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratories of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratories of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
15
|
Han C, Zhang A, Liu Z, Moore C, Fu YX. Small molecular drugs reshape tumor microenvironment to synergize with immunotherapy. Oncogene 2021; 40:885-898. [PMID: 33288883 DOI: 10.1038/s41388-020-01575-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 02/08/2023]
Abstract
Recently, immune checkpoint blockade (ICB), especially anti-programmed death 1 (anti-PD-1) and anti-programmed death-ligand 1 (anti-PD-L1) therapy, has become an increasingly appealing therapeutic strategy for cancer patients. However, only a small portion of patients responds to anti-PD treatment. Therefore, treatment strategies are urgently needed to reverse the ICB-resistant tumor microenvironment (TME). It has become clear that the TME has diminished innate sensing that is critical to activate adaptive immunity. In addition, tumor cells upregulate various immunosuppressive factors to diminish the immune response and resist immunotherapy. In this review, we briefly update the current small molecular drugs that could synergize with immunotherapy, especially anti-PD therapy. We will discuss the modes of action by those drugs including inducing innate sensing and limiting immunosuppressive factors in the TME.
Collapse
Affiliation(s)
- Chuanhui Han
- The Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anli Zhang
- The Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhida Liu
- The Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Casey Moore
- The Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yang-Xin Fu
- The Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Nakano R, Kitanaka T, Namba S, Kitanaka N, Suwabe Y, Konno T, Yamazaki J, Nakayama T, Sugiya H. Non-Transcriptional and Translational Function of Canonical NF- κB Signaling in Activating ERK1/2 in IL-1 β-Induced COX-2 Expression in Synovial Fibroblasts. Front Immunol 2020; 11:579266. [PMID: 33117381 PMCID: PMC7576893 DOI: 10.3389/fimmu.2020.579266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022] Open
Abstract
The pro-inflammatory cytokine interleukin 1β (IL-1β) induces the synthesis of prostaglandin E2 by upregulating cyclooxygenase-2 (COX-2) in the synovial tissue of individuals with autoimmune diseases, such as rheumatoid arthritis (RA). IL-1β-mediated stimulation of NF-κB and MAPK signaling is important for the pathogenesis of RA; however, crosstalk(s) between NF-κB and MAPK signaling remains to be understood. In this study, we established a model for IL-1β-induced synovitis and investigated the role of NF-κB and MAPK signaling in synovitis. We observed an increase in the mRNA and protein levels of COX-2 and prostaglandin E2 release in cells treated with IL-1β. NF-κB and ERK1/2 inhibitors significantly reduced IL-1β-induced COX-2 expression. IL-1β induced the phosphorylation of canonical NF-κB complex (p65 and p105) and degradation of IκBα. IL-1β also induced ERK1/2 phosphorylation but did not affect the phosphorylation levels of p38 MAPK and JNK. IL-1β failed to induce COX-2 expression in cells transfected with siRNA for p65, p105, ERK1, or ERK2. Notably, NF-κB inhibitors reduced IL-1β-induced ERK1/2 phosphorylation; however, the ERK1/2 inhibitor had no effect on the phosphorylation of the canonical NF-κB complex. Although transcription and translation inhibitors had no effect on IL-1β-induced ERK1/2 phosphorylation, the silencing of canonical NF-κB complex in siRNA-transfected fibroblasts prevented IL-1β-induced phosphorylation of ERK1/2. Taken together, our data indicate the importance of the non-transcriptional/translational activity of canonical NF-κB in the activation of ERK1/2 signaling involved in the IL-1β-induced development of autoimmune diseases affecting the synovial tissue, such as RA.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Taku Kitanaka
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Shinichi Namba
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Nanako Kitanaka
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoko Suwabe
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tadayoshi Konno
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Jun Yamazaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.,Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
17
|
Chen YH, Luo R, Lei SS, Li B, Zhou FC, Wang HY, Chen X, He X, Wang YZ, Zhan LH, Lu TT, Su J, Yu QX, Li B, Lv GY, Chen SH. Anti-inflammatory effect of Ganluyin, a Chinese classic prescription, in chronic pharyngitis rat model. BMC Complement Med Ther 2020; 20:265. [PMID: 32859182 PMCID: PMC7456022 DOI: 10.1186/s12906-020-03057-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022] Open
Abstract
Background Ganluyin (GLY) is a famous classical prescription with a long history of use as a treatment for inflammatory conditions such as chronic pharyngitis (CP) in many parts of China. However, it has not been developed as a modern pharmaceutic and its anti-inflammatory mechanisms remain unclear. The aim of this study was to assess the anti-inflammatory efficacy of GLY and potential mechanisms in a rat model of CP. Methods The chemical profile of GLY was analyzed by HPLC-UV. We used a mouse model of ear edema and a rat model of paw edema. Specifically, xylene was used to induce edema on the surface of one ear in mice, and carrageenan was injected subcutaneously into the right hind paws of rats to induce paw edema. The paw thickness, ear weight, and ear perfusion were measured and recorded. The CP model in rats was induced by irritating the throat with 5% ammonia and was used to evaluate the therapeutic efficacy of GLY. Levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), and prostaglandin E2 (PGE2) were measured by ELISA in serum, and protein expression of cyclooxygenase-2 (COX-2) and nuclear factor kappa-B p65 (NF-κB p65) in the throat were detected by immunohistochemistry and Western blot to evaluate the anti-inflammatory mechanism of GLY. Hematological assays were also conducted. Results There were four flavonoids identified in GLY: naringin, neohesperidin, baicalin, and wogonoside. The oral administration of GLY showed a significant inhibitory effect on xylene-induced ear swelling and ear blood flow in mice and significantly ameliorated rat right hind paw edema at doses of 6.2 and 12.4 g/kg. Mechanistic studies found that the anti-inflammatory activity of GLY was related to the inhibition of pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α, and PGE2 and that GLY reduced the expression of COX-2 and NF-κB p65 proteins in the throat, attenuated throat injury, and reduced inflammatory exudates. Hematological analysis showed that treatment with GLY prevented increases in white blood cell (WBC), neutrophil (NEUT), lymphocyte (LYMPH) and monocyte (MONO) levels. Conclusions These studies indicated that GLY has beneficial anti-inflammatory effects on CP and that it acts through reducing pro-inflammatory factors such as IL-1β, IL-6, TNF-α, and PGE2, as well as decreasing WBC, NEUT, LYMPH and MONO levels and decreasing the expression of COX-2 and NF-κB p65 proteins. These findings may lay the groundwork for further studies of GLY as a suitable candidate for the treatment of inflammatory diseases such as CP.
Collapse
Affiliation(s)
- Ye-Hui Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Rong Luo
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Shan-Shan Lei
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Bing Li
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Fu-Chen Zhou
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Hui-Ying Wang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Xue Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Xinglishang He
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Yu-Zhi Wang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Liang-Hui Zhan
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Ting-Ting Lu
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Jie Su
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Qiao-Xian Yu
- Zhejiang Senyu Co., Ltd, Yiwu, Zhejiang, 322099, People's Republic of China
| | - Bo Li
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.
| | - Gui-Yuan Lv
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| | - Su-Hong Chen
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.
| |
Collapse
|
18
|
Cyclooxygenase 2 as a Marker of Early Pregnancy Loss in Cytomegalovirus Infection. ACTA BIOMEDICA SCIENTIFICA 2020. [DOI: 10.29413/abs.2020-5.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. Increased expression of cyclooxygenase 2 in the placenta plays a significant role in the formation of placental disorders in the pathological course of pregnancy. It was shown that a high level of expression of cyclooxygenase 2 leads to excessive synthesis of prostaglandins, which stimulate the contractile activity of the uterine myometrium and trigger the abortion mechanism. An analysis of modern literature has shown a lack of data proving the involvement of cyclooxygenase 2 in the pathogenesis of early miscarriages in cytomegalovirus infection. Objective. To establish the pathogenetic role of cyclooxygenase 2 in early pregnancy in the course of miscarriage during exacerbation of cytomegalovirus infection. Materials and methods. The study included 86 women with a gestational age of 8–12 weeks, of which 46 women with spontaneous abortion (O03) and exacerbation of cytomegalovirus infection (main group) and 40 women with medical abortion (O04) without cytomegalovirus infection (control group). The material for the study was peripheral blood serum, urine, homogenate of the villous chorion of the placental tissue. The content of cyclooxygenase 2, the level of IgM and IgG antibodies to cytomegalovirus, low-type IgG antibodies to cytomegalovirus (avidity index) were analyzed by enzyme-linked immunosorbent assay; the content of arachidonic acid – by capillary gas-liquid chromatography. Results. During the study, women of the main group found an increase in the concentration of arachidonic acid by 59 % (p < 0.001) and the activity of the lipolytic enzyme cyclooxygenase 2 – by 58 % (p < 0.001) in the placenta villous chorion homogenate. Conclusion. With an exacerbation of cytomegalovirus infection in the homogenate of the villous placenta chorion of pregnant women with spontaneous abortion, an increase in the content of arachidonic acid and the level of cyclooxygenase 2 is observed. An increased level of cyclooxygenase 2 indicates the development of pregnancy complications and can be used as a non-specific marker predictor of pregnancy termination during exacerbation of cytosis.
Collapse
|
19
|
All-trans retinoic acid induces reprogramming of canine dedifferentiated cells into neuron-like cells. PLoS One 2020; 15:e0229892. [PMID: 32231396 PMCID: PMC7108708 DOI: 10.1371/journal.pone.0229892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/16/2020] [Indexed: 12/18/2022] Open
Abstract
The specification of cell identity depends on the exposure of cells to sequences of bioactive ligands. All-trans retinoic acid (ATRA) affects neuronal development in the early stage, and it is involved in neuronal lineage reprogramming. We previously established a fibroblast-like dedifferentiated fat cells (DFATs) derived from highly homogeneous mature adipocytes, which are more suitable for the study of cellular reprogramming. Canine cognitive dysfunction is similar to human cognitive dysfunction, suggesting that dogs could be a pathological and pharmacological model for human neuronal diseases. However, the effect of ATRA on neuronal reprogramming in dogs has remained unclear. Therefore, in this study, we investigated the effect of ATRA on the neuronal reprogramming of canine DFATs. ATRA induced the expression of neuronal marker mRNA/protein. The neuron-like cells showed Ca2+ influx with depolarization (50 mM KCl; 84.75 ± 4.05%) and Na+ channel activation (50 μM veratridine; 96.02 ± 2.02%). Optical imaging of presynaptic terminal activity and detection of neurotransmitter release showed that the neuron-like cells exhibited the GABAergic neuronal property. Genome-wide RNA-sequencing analysis shows that the transcriptome profile of canine DFATs is effectively reprogrammed towards that of cortical interneuron lineage. Collectively, ATRA can produce functional GABAergic cortical interneuron-like cells from canine DFATs, exhibiting neuronal function with > 80% efficiency. We further demonstrated the contribution of JNK3 to ATRA-induced neuronal reprogramming in canine DFATs. In conclusion, the neuron-like cells from canine DFATs could be a powerful tool for translational research in cell transplantation therapy, in vitro disease modeling, and drug screening for neuronal diseases.
Collapse
|
20
|
Tudor DV, Bâldea I, Lupu M, Kacso T, Kutasi E, Hopârtean A, Stretea R, Gabriela Filip A. COX-2 as a potential biomarker and therapeutic target in melanoma. Cancer Biol Med 2020; 17:20-31. [PMID: 32296574 PMCID: PMC7142851 DOI: 10.20892/j.issn.2095-3941.2019.0339] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
With a constantly increasing incidence, cutaneous melanoma has raised the need for a better understanding of its complex microenvironment that may further guide therapeutic options. Melanoma is a model tumor in immuno-oncology. Inflammation represents an important hallmark of cancer capable of inducing and sustaining tumor development. The inflammatory process also orchestrates the adaptative immunosuppression of tumor cells that helps them to evade immune destruction. Besides its role in proliferation, angiogenesis, and apoptosis, cyclooxygenase-2 (COX-2) is a well-known promoter of immune suppression in melanoma. COX-2 inhibitors are closely involved in this condition. This review attempts to answer two controversial questions: is COX-2 a valuable prognostic factor? Among all COX-2 inhibitors, is celecoxib a suitable adjuvant in melanoma therapy?
Collapse
Affiliation(s)
- Diana Valentina Tudor
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Ioana Bâldea
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Mihai Lupu
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Teodor Kacso
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Eniko Kutasi
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Andreea Hopârtean
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Roland Stretea
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Adriana Gabriela Filip
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| |
Collapse
|