1
|
Li Y, Xia Z, Nguyen L, Wan HY, Wan L, Wang M, Jia N, Matli VRR, Li Y, Seeley M, Moran EF, Liu J. Spatiotemporal dynamics of coastal dead zones in the Gulf of Mexico over 20 years using remote sensing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179461. [PMID: 40280098 DOI: 10.1016/j.scitotenv.2025.179461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Spreading marine dead zones (or hypoxia) are threatening coastal ecosystems and affecting billions of people's livelihoods globally. However, the lack of field observations makes it challenging to estimate dead zones with spatial precision and across large scales. While satellites offer great potential for detecting environmental changes through large-scale and temporal consistent data, they have yet to be fully integrated into the spatio-temporal dynamic mapping of hypoxia. To address this limitation, we integrated satellite imagery with field observations in random forest models on the Google Earth Engine platform to characterize dead zone dynamics from 2000 to 2019. We applied the workflow to the Gulf of Mexico, which has the largest dead zones in North America. Our model explained 64 % (± 5 %) of the variance in predicting dead zones using satellite data. The analysis revealed that dead zones in the Gulf peaked in 2009 (17,699 ± 679 km2) and contracted afterward in terms of both size and persistence (% days with hypoxia). Despite this contraction, the average size between 2010 and 2019 was twice that of the coastal reduction goal (< 5000 km2) set by the Gulf of Mexico Hypoxia Task Force. Furthermore, dead zones occurred more frequently in the western Gulf, and nearly half of the western region experienced dead zones annually. In addition to inter-annual changes, our analysis highlighted the intra-annual dynamics of this phenomenon. Notably, dead zones expanded in June, peaking in size from mid-August to early September. The high temporal and spatial resolution of this dataset allows policymakers to develop targeted management plans and environmental policies. Our approach, which incorporates remote sensing for long-term monitoring of coastal dead zones, can be applied to worldwide monitoring initiatives when paired with local field observations.
Collapse
Affiliation(s)
- Yingjie Li
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA; Environmental Science and Policy Program, Michigan State University, East Lansing, MI 48823, USA; Natural Capital Project, Woods Institute for the Environment, Doerr School of Sustainability, Stanford University, Stanford, CA 94305, USA.
| | - Zilong Xia
- Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, Jiangsu 210023, China
| | - Lan Nguyen
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ho Yi Wan
- Department of Wildlife, California State Polytechnic University Humboldt, Arcata, CA 95521, USA; Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Luwen Wan
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA; Earth and Environmental Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Mengqiu Wang
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430072, China; Department of Earth Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Nan Jia
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA; Environmental Science and Policy Program, Michigan State University, East Lansing, MI 48823, USA
| | | | - Yi Li
- State Key Laboratory of Marine Environmental Science, Key Laboratory of Coastal and Wetland Ecosystems (Ministry of Education), College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Megan Seeley
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ 85281, USA; Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ 85281, USA
| | - Emilio F Moran
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA; Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48824, USA; Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Jianguo Liu
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA; Environmental Science and Policy Program, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
2
|
Liu S, Chen Q, Hou C, Dong C, Qiu X, Tang K. Recovery of 1559 metagenome-assembled genomes from the East China Sea's low-oxygen region. Sci Data 2024; 11:994. [PMID: 39266528 PMCID: PMC11393323 DOI: 10.1038/s41597-024-03850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
The Changjiang Estuary and adjacent East China Sea are well-known hypoxic aquatic environments. Eutrophication-driven hypoxia frequently occurs in coastal areas, posing a major threat to the ecological environment, including altering community structure and metabolic processes of marine organisms, and enhancing diversion of energy shunt into microbial communities. However, the responses of microbial communities and their metabolic pathways to coastal hypoxia remain poorly understood. Here, we studied the microbial communities collected from spatiotemporal samplings using metagenomic sequencing in the Changjiang Estuary and adjacent East China Sea. This generated 1.31 Tbp of metagenomics data, distributed across 103 samples corresponding to 8 vertical profiles. We further reported 1,559 metagenome-assembled genomes (MAGs), of which 508 were high-quality MAGs (Completeness > 90% and Contamination < 10%). Phylogenomic analysis classified them into 181 archaeal and 1,378 bacterial MAGs. These results provided a valuable metagenomic dataset available for further investigation of the effects of hypoxia on marine microorganisms.
Collapse
Affiliation(s)
- Shujing Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
| | - Quanrui Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
| | - Congcong Hou
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
| | - Changjie Dong
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
| | - Xuanyun Qiu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
3
|
Henson MW, Thrash JC. Microbial ecology of northern Gulf of Mexico estuarine waters. mSystems 2024; 9:e0131823. [PMID: 38980056 PMCID: PMC11334486 DOI: 10.1128/msystems.01318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Estuarine and coastal ecosystems are of high economic and ecological importance, owing to their diverse communities and the disproportionate role they play in carbon cycling, particularly in carbon sequestration. Organisms inhabiting these environments must overcome strong natural fluctuations in salinity, nutrients, and turbidity, as well as numerous climate change-induced disturbances such as land loss, sea level rise, and, in some locations, increasingly severe tropical cyclones that threaten to disrupt future ecosystem health. The northern Gulf of Mexico (nGoM) along the Louisiana coast contains dozens of estuaries, including the Mississippi-Atchafalaya River outflow, which dramatically influence the region due to their vast upstream watershed. Nevertheless, the microbiology of these estuaries and surrounding coastal environments has received little attention. To improve our understanding of microbial ecology in the understudied coastal nGoM, we conducted a 16S rRNA gene amplicon survey at eight sites and multiple time points along the Louisiana coast and one inland swamp spanning freshwater to high brackish salinities, totaling 47 duplicated Sterivex (0.2-2.7 µm) and prefilter (>2.7 µm) samples. We cataloged over 13,000 Amplicon Sequence ariants (ASVs) from common freshwater and marine clades such as SAR11 (Alphaproteobacteria), Synechococcus (Cyanobacteria), and acI and Candidatus Actinomarina (Actinobacteria). We observed correlations with freshwater or marine habitats in many organisms and characterized a group of taxa with specialized distributions across brackish water sites, supporting the hypothesis of an endogenous brackish-water community. Additionally, we observed brackish-water associations for several aquatic clades typically considered marine or freshwater taxa, such as SAR11 subclade II, SAR324, and the acI Actinobacteria. The data presented here expand the geographic coverage of microbial ecology in estuarine communities, help delineate the native and transitory members of these environments, and provide critical aquatic microbiological baseline data for coastal and estuarine sites in the nGoM.IMPORTANCEEstuarine and coastal waters are diverse ecosystems influenced by tidal fluxes, interconnected wetlands, and river outflows, which are of high economic and ecological importance. Microorganisms play a pivotal role in estuaries as "first responders" and ecosystem architects, yet despite their ecological importance, they remain underrepresented in microbial studies compared to open ocean environments. This leads to substantial knowledge gaps that are important for understanding global biogeochemical cycling and making decisions about conservation and management strategies in these environments. Our study makes key contributions to the microbial ecology of estuarine and coastal habitats in the northern Gulf of Mexico. Our microbial community data support the concept of a globally distributed, core brackish microbiome and emphasize previously underrecognized brackish-water taxa. Given the projected worsening of land loss, oil spills, and natural disasters in this region, our results will serve as important baseline data for researchers investigating the microbial communities found across estuaries.
Collapse
Affiliation(s)
- Michael W. Henson
- Department of Biological Sciences, Northern University, DeKalb, Illinois, USA
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Lu Y, Cheung S, Koh XP, Xia X, Jing H, Lee P, Kao SJ, Gan J, Dai M, Liu H. Active degradation-nitrification microbial assemblages in the hypoxic zone in a subtropical estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166694. [PMID: 37660824 DOI: 10.1016/j.scitotenv.2023.166694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
In 2017 summer, we observed widespread bottom hypoxia at the lower estuary of the Pearl River estuary (PRE). Our previous study noticed that AOA and bacteria were highly abundant and clustered within the hypoxia zone. Moreover, nitrification and respiration rates were also evidently higher in these hypoxic waters. These observations prompt us to investigate whether these two oxygen-consuming microorganisms have symbiotic relationships and whether specific groups consistently coexist and form ecological-meaningful associations. In this study, we use network analysis to investigate the presence and active communities (DNA-RNA) based on bacterial and AOA communities sequencing (inferred from the 16S rRNA and amoA gene, respectively) to gain more insight into ecological-meaningful associations. We observed a highly diverse and active bacterial community in the hypoxia zone. The RNA networks were more modulized than the corresponding DNA networks, indicating that the active communities were better parsed into functional microbial assemblages. The network topology revealed that Gammaproteobacteria, Bacteroidetes (Flavobacteriales), Alphaproteobacteria (Rhodobacterales and Rhodospirillales), Marinimicrobia, Cyanobacteria (Synechococcales), and AOA sublineages were module hubs and connectors, indicating that they were the keystone taxa of the microbial communities. The hub-subnetwork further showed robust co-occurrence between Gammaproteobacteria, Bacteroidetes (Flavobacteriales), Alphaproteobacteria (Rhodobacterales and Rhodospirillales), Marinimicrobia with AOA sublineages, and Nitrospinae (presumably NOB) reflecting the formation of Degradation-Nitrification (sequential oxidation of Organic matter degradation to ammonia, then nitrate) microbial assemblage in the hypoxia zone. The subnetworks revealed AOA ecotype-specific modularization and niche partitioning of different AOA sublineages. Interestingly, the recurring co-occurrence of nitrifiers assemblage in the RNA subnetworks (SCM1-like-II (AOA) and Nitrospinae OTUs (NOB) suggests an active interaction via nitrite exchange. The Degradation-Nitrification microbial assemblage may contribute substantially to the oxygen consumption in the hypoxia formation in PRE. Our results provide new insight into the functional microbial assemblages, which is worth further investigation on their ecological implication in estuarine waters.
Collapse
Affiliation(s)
- Yanhong Lu
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, Guangdong; Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong; Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong; Shenzhen Marine Development and Promotion Center, Shenzhen, Guangdong.
| | - Shunyan Cheung
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Xiu Pei Koh
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan
| | - Puiyin Lee
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian
| | - Jianping Gan
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Minhan Dai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong; Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Zhan Y, Ning B, Sun J, Chang Y. Living in a hypoxic world: A review of the impacts of hypoxia on aquaculture. MARINE POLLUTION BULLETIN 2023; 194:115207. [PMID: 37453286 DOI: 10.1016/j.marpolbul.2023.115207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Hypoxia is a harmful result of anthropogenic climate change. With the expansion of global low-oxygen zones (LOZs), many organisms have faced unprecedented challenges affecting their survival and reproduction. Extensive research has indicated that oxygen limitation has drastic effects on aquatic animals, including on their development, morphology, behavior, reproduction, and physiological metabolism. In this review, the global distribution and formation of LOZs were analyzed, and the impacts of hypoxia on aquatic animals and the molecular responses of aquatic animals to hypoxia were then summarized. The commonalities and specificities of the response to hypoxia in aquatic animals in different LOZs were discussed lastly. In general, this review will deepen the knowledge of the impacts of hypoxia on aquaculture and provide more information and research directions for the development of fishery resource protection strategies.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Bingyu Ning
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, Liaoning, PR China; College of Life Science, Liaoning Normal University, Dalian 116029, Liaoning, PR China.
| |
Collapse
|
6
|
Gómez-Acata ES, Teutli C, Falcón LI, García-Maldonado JQ, Prieto-Davó A, Yanez-Montalvo A, Cadena S, Chiappa-Carrara X, Herrera-Silveira JA. Sediment microbial community structure associated to different ecological types of mangroves in Celestún, a coastal lagoon in the Yucatan Peninsula, Mexico. PeerJ 2023; 11:e14587. [PMID: 36785710 PMCID: PMC9921989 DOI: 10.7717/peerj.14587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/28/2022] [Indexed: 02/11/2023] Open
Abstract
Mangroves are unique coastal ecosystems, which have many important ecological functions, as they are a reservoir of many marine species well adapted to saline conditions and are fundamental as sites of carbon storage. Although the microbial contribution to nutrient cycling in these ecosystems has been well recognized, there is a lack of information regarding the microbial composition and structure of different ecological types of mangrove forests. In this study, we characterized the microbial community (Bacteria and Archaea) in sediments associated with five ecological types of mangrove forests in a coastal lagoon dominated by Avicennia germinans and Rhizophora mangle, through 16S rRNA-V4 gene sequencing. Overall, Proteobacteria (51%), Chloroflexi (12%), Gemmatimonadetes (5%) and Planctomycetes (6%) were the most abundant bacterial phyla, while Thaumarchaeota (30%), Bathyarchaeota (21%) and Nanoarchaeaeota (18%) were the dominant archaeal phyla. The microbial composition associated with basin mangroves dominated by Avicennia germinans was significantly different from the other ecological types, which becomes relevant for restoration strategies.
Collapse
Affiliation(s)
| | - Claudia Teutli
- Escuela Nacional de Estudios Superiores, Mérida, Yucatán, México,Laboratorio Nacional de Resiliencia Costera (LANRESC), Sisal, Yucatán, México
| | | | - José Q. García-Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México
| | | | | | - Santiago Cadena
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México
| | - Xavier Chiappa-Carrara
- Escuela Nacional de Estudios Superiores, Mérida, Yucatán, México,Unidad Multidisciplinaria de Docencia e Investigación, Unidad Sisal, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - Jorge A. Herrera-Silveira
- Laboratorio Nacional de Resiliencia Costera (LANRESC), Sisal, Yucatán, México,Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México
| |
Collapse
|
7
|
Microbial Community Dynamics Provide Evidence for Hypoxia during a Coral Reef Mortality Event. Appl Environ Microbiol 2022; 88:e0034722. [PMID: 35435720 DOI: 10.1128/aem.00347-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In July 2016, a severe coral reef invertebrate mortality event occurred approximately 200 km southeast of Galveston, Texas, at the East Flower Garden Bank, wherein ∼82% of corals in a 0.06-km2 area died. Based on surveys of dead corals and other invertebrates shortly after this mortality event, responders hypothesized that localized hypoxia was the most likely direct cause. However, no dissolved oxygen data were available to test this hypothesis, because oxygen is not continuously monitored within the Flower Garden Banks sanctuary. Here, we quantify microbial plankton community diversity based on four cruises over 2 years at the Flower Garden Banks, including a cruise just 5 to 8 days after the mortality event was first observed. In contrast with observations collected during nonmortality conditions, microbial plankton communities in the thermocline were differentially enriched with taxa known to be active and abundant in oxygen minimum zones or that have known adaptations to oxygen limitation shortly after the mortality event (e.g., SAR324, Thioglobaceae, Nitrosopelagicus, and Thermoplasmata MGII). Unexpectedly, these enrichments were not localized to the East Bank but were instead prevalent across the entire study area, suggesting there was a widespread depletion of dissolved oxygen concentrations in the thermocline around the time of the mortality event. Hydrographic analysis revealed the southern East Bank coral reef (where the localized mortality event occurred) was uniquely within the thermocline at this time. Our results demonstrate how temporal monitoring of microbial communities can be a useful tool to address questions related to past environmental events. IMPORTANCE In the northwestern Gulf of Mexico in July 2016, ∼82% of corals in a small area of the East Flower Garden Bank coral reef suddenly died without warning. Oxygen depletion is believed to have been the cause. However, there was considerable uncertainty, as no oxygen data were available from the time of the event. Microbes are sensitive to changes in oxygen and can be used as bioindicators of oxygen loss. In this study, we analyze microbial communities in water samples collected over several years at the Flower Garden Banks, including shortly after the mortality event. Our findings indicate that compared to normal conditions, oxygen depletion was widespread in the deep-water layer during the mortality event. Hydrographic analysis of water masses further revealed some of this low-oxygen water likely upwelled onto the coral reef.
Collapse
|
8
|
The marine nitrogen cycle: new developments and global change. Nat Rev Microbiol 2022; 20:401-414. [PMID: 35132241 DOI: 10.1038/s41579-022-00687-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/25/2022]
Abstract
The ocean is home to a diverse and metabolically versatile microbial community that performs the complex biochemical transformations that drive the nitrogen cycle, including nitrogen fixation, assimilation, nitrification and nitrogen loss processes. In this Review, we discuss the wealth of new ocean nitrogen cycle research in disciplines from metaproteomics to global biogeochemical modelling and in environments from productive estuaries to the abyssal deep sea. Influential recent discoveries include new microbial functional groups, novel metabolic pathways, original conceptual perspectives and ground-breaking analytical capabilities. These emerging research directions are already contributing to urgent efforts to address the primary challenge facing marine microbiologists today: the unprecedented onslaught of anthropogenic environmental change on marine ecosystems. Ocean warming, acidification, nutrient enrichment and seawater stratification have major effects on the microbial nitrogen cycle, but widespread ocean deoxygenation is perhaps the most consequential for the microorganisms involved in both aerobic and anaerobic nitrogen transformation pathways. In turn, these changes feed back to the global cycles of greenhouse gases such as carbon dioxide and nitrous oxide. At a time when our species casts a lengthening shadow across all marine ecosystems, timely new advances offer us unique opportunities to understand and better predict human impacts on nitrogen biogeochemistry in the changing ocean of the Anthropocene.
Collapse
|
9
|
Guo R, Ma X, Zhang J, Liu C, Thu CA, Win TN, Aung NL, Win HS, Naing S, Li H, Zhou F, Wang P. Microbial community structures and important taxa across oxygen gradients in the Andaman Sea and eastern Bay of Bengal epipelagic waters. Front Microbiol 2022; 13:1041521. [PMID: 36406446 PMCID: PMC9667114 DOI: 10.3389/fmicb.2022.1041521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/29/2022] [Indexed: 05/01/2023] Open
Abstract
In oceanic oxygen minimum zones (OMZs), the abundances of aerobic organisms significantly decrease and energy shifts from higher trophic levels to microorganisms, while the microbial communities become critical drivers of marine biogeochemical cycling activities. However, little is known of the microbial ecology of the Andaman Sea and eastern Bay of Bengal (BoB) OMZs. In the present study, a total of 131 samples which from the Andaman Sea and eastern BoB epipelagic waters were analyzed. The microbial community distribution patterns across oxygen gradients, including oxygenic zones (OZs, dissolved oxygen [DO] ≥ 2 mg/L), oxygen limited zones (OLZs, 0.7 mg/L < DO < 2 mg/L), and OMZs (DO ≤ 0.7 mg/L), were investigated. Mantel tests and Spearman's correlation analysis revealed that DO was the most important driver of microbial community structures among several environmental factors. Microbial diversity, richness, and evenness were highest in the OLZs and lowest in the OZs. The microbial community compositions of OZ and OMZ waters were significantly different. Random forest analysis revealed 24 bioindicator taxa that differentiated OZ, OLZ, and OMZ water communities. These bioindicator taxa included Burkholderiaceae, HOC36, SAR11 Clade IV, Thioglobaceae, Nitrospinaceae, SAR86, and UBA10353. Further, co-occurrence network analysis revealed that SAR202, AEGEAN-169, UBA10353, SAR406, and Rhodobacteraceae were keystone taxa among the entire interaction network of the microbial communities. Functional prediction further indicated that the relative abundances of microbial populations involved in nitrogen and sulfur cycling were higher in OMZs. Several microbial taxa, including the Thioglobaceae, Nitrospinaceae, SAR202, SAR406, WPS-2, UBA10353, and Woeseiaceae, may be involved in nitrogen and/or sulfur cycling, while also contributing to oxygen consumption in these waters. This study consequently provides new insights into the microbial community structures and potentially important taxa that contribute to oxygen consumption in the Andaman Sea and eastern BoB OMZ.
Collapse
Affiliation(s)
- Ruoyu Guo
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan, China
| | - Xiao Ma
- Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Jingjing Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Chenggang Liu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Chit Aung Thu
- Research and Development Section, Department of Fisheries, Naypyidaw, Myanmar
| | - Tun Naing Win
- Department of Meteorology and Hydrology, Ministry of Transport and Communication, Naypyidaw, Myanmar
| | - Nyan Lin Aung
- Environmental Conservation Department, Ministry of Natural Resources and Environmental Conservation, Naypyidaw, Myanmar
| | - Hlaing Swe Win
- National Analytical Laboratory, Department of Research in Innovation, Ministry of Education, Naypyidaw, Myanmar
| | - Sanda Naing
- Port and Harbour Engineering Department, Myanmar Maritime University, Thanlyin, Myanmar
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Feng Zhou
- Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- *Correspondence: Feng Zhou,
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Observation and Research Station of Yangtze River Delta Marine Ecosystems, Ministry of Natural Resources, Zhoushan, China
- Pengbin Wang,
| |
Collapse
|
10
|
Thompson L, Maiti K, White JR, DuFore CM, Liu H. The impact of recently excavated dredge pits on coastal hypoxia in the northern Gulf of Mexico shelf. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105199. [PMID: 33221552 DOI: 10.1016/j.marenvres.2020.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Large volumes of sand are needed in order to combat coastal land loss due to global sea-level rise for restoration of barrier island systems and beaches undergoing rapid erosion and submergence. The sediment required for such projects often originates from dredging of sand deposits on the adjacent shelf. Two dredge pits, with contrasting geology and located at varying distances from the Mississippi River Delta in the northern Gulf of Mexico shelf were sampled during spring and summer. Samples were also collected concurrently from surrounding continental shelf stations that are subject to seasonal hypoxia every summer. The bottom water dissolved O2 inside the dredge pits were found to be consistently hypoxic or near hypoxic throughout both seasons, with high sediment O2 consumption (SOC) rates of 23.7 to 51.8 mmol m-2 d-1 in spring and 34.3 to 51.3 mmol m-2 d-1 in summer. In contrast, control stations immediately outside the dredge pits showed lower SOC rates ranging between 6.3 and 35.9 mmol m-2 d-1. The SOC rates of the surrounding continental shelf subjected to annual seasonal hypoxia ranged between 25.7 and 59.6 mmol m-2 d-1 indicating that the dredge pits experienced similar high rates of SOC. Our results suggest that sluggish water circulation inside these topographic depressions coupled with higher SOC rates does result in persistent low bottom O2 conditions inside these dredge pits well beyond the duration of the seasonal hypoxia period in this region. This is the first study to provide insight on the impacts of dredge pits to surrounding hypoxia in this region which is critical as future dredging operations are expected to increase worldwide with projected sea-level rise.
Collapse
Affiliation(s)
- Laura Thompson
- Department of Oceanography and Coastal Sciences, Louisiana State University, Energy Coast & Environment Building, Baton Rouge, LA, 70803, USA
| | - Kanchan Maiti
- Department of Oceanography and Coastal Sciences, Louisiana State University, Energy Coast & Environment Building, Baton Rouge, LA, 70803, USA.
| | - John R White
- Department of Oceanography and Coastal Sciences, Louisiana State University, Energy Coast & Environment Building, Baton Rouge, LA, 70803, USA
| | | | - Haoran Liu
- Department of Oceanography and Coastal Sciences, Louisiana State University, Energy Coast & Environment Building, Baton Rouge, LA, 70803, USA
| |
Collapse
|