1
|
Acar T, Moreau S, Jardinaud MF, Houdinet G, Maviane-Macia F, De Meyer F, Hoste B, Leroux O, Coen O, Le Ru A, Peeters N, Carlier A. The association between Dioscorea sansibarensis and Orrella dioscoreae as a model for hereditary leaf symbiosis. PLoS One 2024; 19:e0302377. [PMID: 38648204 PMCID: PMC11034651 DOI: 10.1371/journal.pone.0302377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Hereditary, or vertically-transmitted, symbioses affect a large number of animal species and some plants. The precise mechanisms underlying transmission of functions of these associations are often difficult to describe, due to the difficulty in separating the symbiotic partners. This is especially the case for plant-bacteria hereditary symbioses, which lack experimentally tractable model systems. Here, we demonstrate the potential of the leaf symbiosis between the wild yam Dioscorea sansibarensis and the bacterium Orrella dioscoreae (O. dioscoreae) as a model system for hereditary symbiosis. O. dioscoreae is easy to grow and genetically manipulate, which is unusual for hereditary symbionts. These properties allowed us to design an effective antimicrobial treatment to rid plants of bacteria and generate whole aposymbiotic plants, which can later be re-inoculated with bacterial cultures. Aposymbiotic plants did not differ morphologically from symbiotic plants and the leaf forerunner tip containing the symbiotic glands formed normally even in the absence of bacteria, but microscopic differences between symbiotic and aposymbiotic glands highlight the influence of bacteria on the development of trichomes and secretion of mucilage. This is to our knowledge the first leaf symbiosis where both host and symbiont can be grown separately and where the symbiont can be genetically altered and reintroduced to the host.
Collapse
Affiliation(s)
- Tessa Acar
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Sandra Moreau
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | | | | | | | | | - Bart Hoste
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | | | - Olivier Coen
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Aurélie Le Ru
- Plateforme Imagerie TRI-FRAIB, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Nemo Peeters
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Aurelien Carlier
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Zeng Q, Zhao Y, Shen W, Han D, Yang M. Seed-to-Seed: Plant Core Vertically Transmitted Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19255-19264. [PMID: 38044571 DOI: 10.1021/acs.jafc.3c07092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The plant core microbiota transmitted by seeds have been demonstrated to exist in seeds and adult plants of several crops for multiple generations. They are closely related to plants and are relatively conserved throughout evolution, domestication, and breeding. These microbiota play a vital role in the early stages of plant growth. However, information about their colonization routes, transmission pathways, and final fate remains fragmentary. This review delves into the concept of these microbiota, their colonization sources, transmission pathways, and how they change throughout plant evolution, domestication, and breeding, as well as their effects on plants, based on relevant literature. Finally, the significant potential of incorporating the practical application of seed-transmitted microbiota into plant microbial breeding is emphasized.
Collapse
Affiliation(s)
- Quan Zeng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Shen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dejun Han
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Quach QN, Clay K, Lee ST, Gardner DR, Cook D. Phylogenetic patterns of bioactive secondary metabolites produced by fungal endosymbionts in morning glories (Ipomoeeae, Convolvulaceae). THE NEW PHYTOLOGIST 2023; 238:1351-1361. [PMID: 36727281 DOI: 10.1111/nph.18785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Heritable fungal endosymbiosis is underinvestigated in plant biology and documented in only three plant families (Convolvulaceae, Fabaceae, and Poaceae). An estimated 40% of morning glory species in the tribe Ipomoeeae (Convolvulaceae) have associations with one of two distinct heritable, endosymbiotic fungi (Periglandula and Chaetothyriales) that produce the bioactive metabolites ergot alkaloids, indole diterpene alkaloids, and swainsonine, which have been of interest for their toxic effects on animals and potential medical applications. Here, we report the occurrence of ergot alkaloids, indole diterpene alkaloids, and swainsonine in the Convolvulaceae; and the fungi that produce them based on synthesis of previous studies and new indole diterpene alkaloid data from 27 additional species in a phylogenetic, geographic, and life-history context. We find that individual morning glory species host no more than one metabolite-producing fungal endosymbiont (with one possible exception), possibly due to costs to the host and overlapping functions of the alkaloids. The symbiotic morning glory lineages occur in distinct phylogenetic clades, and host species have significantly larger seed size than nonsymbiotic species. The distinct and widely distributed endosymbiotic relationships in the morning glory family and their alkaloids provide an accessible study system for understanding heritable plant-fungal symbiosis evolution and their potential functions for host plants.
Collapse
Affiliation(s)
- Quynh N Quach
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Stephen T Lee
- United States Department of Agriculture, Agricultural Research Service, Logan, UT, 84341, USA
| | - Dale R Gardner
- United States Department of Agriculture, Agricultural Research Service, Logan, UT, 84341, USA
| | - Daniel Cook
- United States Department of Agriculture, Agricultural Research Service, Logan, UT, 84341, USA
| |
Collapse
|
4
|
Danneels B, Blignaut M, Marti G, Sieber S, Vandamme P, Meyer M, Carlier A. Cyclitol metabolism is a central feature of Burkholderia leaf symbionts. Environ Microbiol 2023; 25:454-472. [PMID: 36451580 DOI: 10.1111/1462-2920.16292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
The symbioses between plants of the Rubiaceae and Primulaceae families with Burkholderia bacteria represent unique and intimate plant-bacterial relationships. Many of these interactions have been identified through PCR-dependent typing methods, but there is little information available about their functional and ecological roles. We assembled 17 new endophyte genomes representing endophytes from 13 plant species, including those of two previously unknown associations. Genomes of leaf endophytes belonging to Burkholderia s.l. show extensive signs of genome reduction, albeit to varying degrees. Except for one endophyte, none of the bacterial symbionts could be isolated on standard microbiological media. Despite their taxonomic diversity, all endophyte genomes contained gene clusters linked to the production of specialized metabolites, including genes linked to cyclitol sugar analog metabolism and in one instance non-ribosomal peptide synthesis. These genes and gene clusters are unique within Burkholderia s.l. and are likely horizontally acquired. We propose that the acquisition of secondary metabolite gene clusters through horizontal gene transfer is a prerequisite for the evolution of a stable association between these endophytes and their hosts.
Collapse
Affiliation(s)
- Bram Danneels
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Monique Blignaut
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Guillaume Marti
- Metatoul-AgromiX Platform, LRSV, Université de Toulouse, CNRS, UT3, INP, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Simon Sieber
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Marion Meyer
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Aurélien Carlier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
5
|
Danneels B, Carlier A. Whole-Genome Sequencing of Bacterial Endophytes From Fresh and Preserved Plant Specimens. Methods Mol Biol 2022; 2605:133-155. [PMID: 36520392 DOI: 10.1007/978-1-0716-2871-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many plants harbor symbiotic bacteria in their leaves, sometimes within structures visible with the naked eye. These bacteria play critical roles for host development and defense, but are often not amenable to culture. Gaining insight into the functions of these obligate endophytic bacteria hinges on culture-independent omics approaches, which have seen tremendous development in recent years. We describe in this chapter a set of protocols for the extraction and bioinformatic analysis of bacterial genomic DNA from leaf samples of various origins, including fresh, silica-preserved, or herbarium specimens.
Collapse
Affiliation(s)
- Bram Danneels
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.,CBU, Department of Informatics, University of Bergen, Bergen, Norway
| | - Aurélien Carlier
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France. .,Laboratory of Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Abstract
Hereditary symbioses have the potential to drive transgenerational effects, yet the mechanisms responsible for transmission of heritable plant symbionts are still poorly understood. The leaf symbiosis between Dioscorea sansibarensis and the bacterium Orrella dioscoreae offers an appealing model system to study how heritable bacteria are transmitted to the next generation. Here, we demonstrate that inoculation of apical buds with a bacterial suspension is sufficient to colonize newly formed leaves and propagules, and to ensure transmission to the next plant generation. Flagellar motility is not required for movement inside the plant but is important for the colonization of new hosts. Further, tissue-specific regulation of putative symbiotic functions highlights the presence of two distinct subpopulations of bacteria in the leaf gland and at the shoot meristem. We propose that bacteria in the leaf gland dedicate resources to symbiotic functions, while dividing bacteria in the shoot tip ensure successful colonization of meristematic tissue, glands, and propagules. Compartmentalization of intrahost populations together with tissue-specific regulation may serve as a robust mechanism for the maintenance of mutualism in leaf symbiosis.
Collapse
|
7
|
Georgiou A, Sieber S, Hsiao CC, Grayfer T, Gorenflos López JL, Gademann K, Eberl L, Bailly A. Leaf nodule endosymbiotic Burkholderia confer targeted allelopathy to their Psychotria hosts. Sci Rep 2021; 11:22465. [PMID: 34789815 PMCID: PMC8599487 DOI: 10.1038/s41598-021-01867-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022] Open
Abstract
After a century of investigations, the function of the obligate betaproteobacterial endosymbionts accommodated in leaf nodules of tropical Rubiaceae remained enigmatic. We report that the α-D-glucose analogue (+)-streptol, systemically supplied by mature Ca. Burkholderia kirkii nodules to their Psychotria hosts, exhibits potent and selective root growth inhibiting activity. We provide compelling evidence that (+)-streptol specifically affects meristematic root cells transitioning to anisotropic elongation by disrupting cell wall organization in a mechanism of action that is distinct from canonical cellulose biosynthesis inhibitors. We observed no inhibitory or cytotoxic effects on organisms other than seed plants, further suggesting (+)-streptol as a bona fide allelochemical. We propose that the suppression of growth of plant competitors is a major driver of the formation and maintenance of the Psychotria-Burkholderia association. In addition to potential agricultural applications as a herbicidal agent, (+)-streptol might also prove useful to dissect plant cell and organ growth processes.
Collapse
Affiliation(s)
- Antri Georgiou
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Chien-Chi Hsiao
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Tatyana Grayfer
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jacob L Gorenflos López
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Leo Eberl
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| | - Aurélien Bailly
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| |
Collapse
|
8
|
Sinnesael A, Leroux O, Janssens SB, Smets E, Panis B, Verstraete B. Is the bacterial leaf nodule symbiosis obligate for Psychotria umbellata? The development of a Burkholderia-free host plant. PLoS One 2019; 14:e0219863. [PMID: 31310638 PMCID: PMC6634412 DOI: 10.1371/journal.pone.0219863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND & AIMS The bacterial leaf nodule symbiosis is an interaction where bacteria are housed in specialised structures in the leaves of their plant host. In the Rubiaceae plant family, host plants interact with Burkholderia bacteria. This interaction might play a role in the host plant defence system. It is unique due to its high specificity; the vertical transmission of the endophyte to the next generation of the host plant; and its supposedly obligatory character. Although previous attempts have been made to investigate this obligatory character by developing Burkholderia-free plants, none have succeeded and nodulating plants were still produced. In order to investigate the obligatory character of this endosymbiosis, our aims were to develop Burkholderia-free Psychotria umbellata plants and to investigate the effect of the absence of the endophytes on the host in a controlled environment. METHODS The Burkholderia-free plants were obtained via embryo culture, a plant cultivation technique. In order to analyse the endophyte-free status, we screened the plants morphologically, microscopically and molecularly over a period of three years. To characterise the phenotype and growth of the in vitro aposymbiotic plants, we compared the growth of the Burkholderia-free plants to the nodulating plants under the same in vitro conditions. KEY RESULTS All the developed plants were Burkholderia-free and survived in a sterile in vitro environment. The growth analysis showed that plants without endophytes had a slower development. CONCLUSIONS Embryo culture is a cultivation technique with a high success rate for the development of Burkholderia-free plants of P. umbellata. The increased growth rate in vitro when the specific endophyte is present cannot be explained by possible benefits put forward in previous studies. This might indicate that the benefits of the endosymbiosis are not yet completely understood.
Collapse
Affiliation(s)
- Arne Sinnesael
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Meise Botanic Garden, Meise, Belgium
| | | | - Steven B. Janssens
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Meise Botanic Garden, Meise, Belgium
| | - Erik Smets
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Bart Panis
- Bioversity International, Leuven, Belgium
| | | |
Collapse
|
9
|
Mannaa M, Park I, Seo YS. Genomic Features and Insights into the Taxonomy, Virulence, and Benevolence of Plant-Associated Burkholderia Species. Int J Mol Sci 2018; 20:E121. [PMID: 30598000 PMCID: PMC6337347 DOI: 10.3390/ijms20010121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 11/17/2022] Open
Abstract
The members of the Burkholderia genus are characterized by high versatility and adaptability to various ecological niches. With the availability of the genome sequences of numerous species of Burkholderia, many studies have been conducted to elucidate the unique features of this exceptional group of bacteria. Genomic and metabolic plasticity are common among Burkholderia species, as evidenced by their relatively large multi-replicon genomes that are rich in insertion sequences and genomic islands and contain a high proportion of coding regions. Such unique features could explain their adaptability to various habitats and their versatile lifestyles, which are reflected in a multiplicity of species including free-living rhizospheric bacteria, plant endosymbionts, legume nodulators, and plant pathogens. The phytopathogenic Burkholderia group encompasses several pathogens representing threats to important agriculture crops such as rice. Contrarily, plant-beneficial Burkholderia have also been reported, which have symbiotic and growth-promoting roles. In this review, the taxonomy of Burkholderia is discussed emphasizing the recent updates and the contributions of genomic studies to precise taxonomic positioning. Moreover, genomic and functional studies on Burkholderia are reviewed and insights are provided into the mechanisms underlying the virulence and benevolence of phytopathogenic and plant-beneficial Burkholderia, respectively, on the basis of cutting-edge knowledge.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Inmyoung Park
- Department of Oriental Food and Culinary Arts, Youngsan University, Busan 48015, Korea.
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| |
Collapse
|