1
|
Jones MH, Gergely ZR, Steckhahn D, Zhou B, Betterton MD. Kinesin-5/Cut7 C-terminal tail phosphorylation is essential for microtubule sliding force and bipolar mitotic spindle assembly. Curr Biol 2024; 34:4781-4793.e6. [PMID: 39413787 PMCID: PMC11550858 DOI: 10.1016/j.cub.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024]
Abstract
Kinesin-5 motors play an essential role during mitotic spindle assembly in many organisms1,2,3,4,5,6,7,8,9,10,11: they crosslink antiparallel spindle microtubules, step toward plus ends, and slide the microtubules apart.12,13,14,15,16,17 This activity separates the spindle poles and chromosomes. Kinesin-5s are not only plus-end-directed but can walk or be carried toward MT minus ends,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34 where they show enhanced localization.3,5,7,27,29,32 The kinesin-5 C-terminal tail interacts with and regulates the motor, affecting structure, motility, and sliding force of purified kinesin-535,36,37 along with motility and spindle assembly in cells.27,38,39 The tail contains phosphorylation sites, particularly in the conserved BimC box.6,7,40,41,42,43,44 Nine mitotic tail phosphorylation sites were identified in the kinesin-5 motor of the fission yeast Schizosaccharomyces pombe,45,46,47,48 suggesting that multi-site phosphorylation may regulate kinesin-5s. Here, we show that mutating all nine sites to either alanine or glutamate causes temperature-sensitive lethality due to a failure of bipolar spindle assembly. We characterize kinesin-5 localization and sliding force in the spindle based on Cut7-dependent microtubule minus-end protrusions in cells lacking kinesin-14 motors.39,49,50,51,52 Imaging and computational modeling show that Cut7p simultaneously moves toward the minus ends of protrusion MTs and the plus ends of spindle midzone MTs. Phosphorylation mutants show dramatic decreases in protrusions and sliding force. Comparison to a model of force to create protrusions suggests that tail truncation and phosphorylation mutants decrease Cut7p sliding force similarly to tail-truncated human Eg5.36 Our results show that C-terminal tail phosphorylation is required for kinesin-5/Cut7 sliding force and bipolar spindle assembly in fission yeast.
Collapse
Affiliation(s)
- Michele H Jones
- Department of Physics, University of Colorado Boulder, Colorado Avenue, Boulder, CO 80309, USA; Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Colorado Avenue, Boulder, CO 80309, USA
| | - Zachary R Gergely
- Department of Physics, University of Colorado Boulder, Colorado Avenue, Boulder, CO 80309, USA; Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Colorado Avenue, Boulder, CO 80309, USA
| | - Daniel Steckhahn
- Department of Physics, University of Colorado Boulder, Colorado Avenue, Boulder, CO 80309, USA
| | - Bojun Zhou
- Department of Physics, University of Colorado Boulder, Colorado Avenue, Boulder, CO 80309, USA
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Colorado Avenue, Boulder, CO 80309, USA; Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Colorado Avenue, Boulder, CO 80309, USA.
| |
Collapse
|
2
|
Gergely ZR, Jones MH, Zhou B, Cash C, McIntosh JR, Betterton MD. Distinct regions of the kinesin-5 C-terminal tail are essential for mitotic spindle midzone localization and sliding force. Proc Natl Acad Sci U S A 2023; 120:e2306480120. [PMID: 37725645 PMCID: PMC10523502 DOI: 10.1073/pnas.2306480120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 09/21/2023] Open
Abstract
Kinesin-5 motor proteins play essential roles during mitosis in most organisms. Their tetrameric structure and plus-end-directed motility allow them to bind to and move along antiparallel microtubules, thereby pushing spindle poles apart to assemble a bipolar spindle. Recent work has shown that the C-terminal tail is particularly important to kinesin-5 function: The tail affects motor domain structure, ATP hydrolysis, motility, clustering, and sliding force measured for purified motors, as well as motility, clustering, and spindle assembly in cells. Because previous work has focused on presence or absence of the entire tail, the functionally important regions of the tail remain to be identified. We have therefore characterized a series of kinesin-5/Cut7 tail truncation alleles in fission yeast. Partial truncation causes mitotic defects and temperature-sensitive growth, while further truncation that removes the conserved BimC motif is lethal. We compared the sliding force generated by cut7 mutants using a kinesin-14 mutant background in which some microtubules detach from the spindle poles and are pushed into the nuclear envelope. These Cut7-driven protrusions decreased as more of the tail was truncated, and the most severe truncations produced no observable protrusions. Our observations suggest that the C-terminal tail of Cut7p contributes to both sliding force and midzone localization. In the context of sequential tail truncation, the BimC motif and adjacent C-terminal amino acids are particularly important for sliding force. In addition, moderate tail truncation increases midzone localization, but further truncation of residues N-terminal to the BimC motif decreases midzone localization.
Collapse
Affiliation(s)
- Zachary R Gergely
- Department of Physics, University of Colorado, Boulder, CO 80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Michele H Jones
- Department of Physics, University of Colorado, Boulder, CO 80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Bojun Zhou
- Department of Physics, University of Colorado, Boulder, CO 80309
| | - Cai Cash
- Department of Physics, University of Colorado, Boulder, CO 80309
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Meredith D Betterton
- Department of Physics, University of Colorado, Boulder, CO 80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
3
|
Gergely Z, Jones MH, Zhou B, Cash C, McIntosh R, Betterton M. Distinct regions of the kinesin-5 C-terminal tail are essential for mitotic spindle midzone localization and sliding force. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538972. [PMID: 37205432 PMCID: PMC10187184 DOI: 10.1101/2023.05.01.538972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Kinesin-5 motor proteins play essential roles during mitosis in most organisms. Their tetrameric structure and plus-end-directed motility allow them to bind to and move along antiparallel microtubules, thereby pushing spindle poles apart to assemble a bipolar spindle. Recent work has shown that the C-terminal tail is particularly important to kinesin-5 function: the tail affects motor domain structure, ATP hydrolysis, motility, clustering, and sliding force measured for purified motors, as well as motility, clustering, and spindle assembly in cells. Because previous work has focused on presence or absence of the entire tail, the functionally important regions of the tail remain to be identified. We have therefore characterized a series of kinesin-5/Cut7 tail truncation alleles in fission yeast. Partial truncation causes mitotic defects and temperature-sensitive growth, while further truncation that removes the conserved BimC motif is lethal. We compared the sliding force generated by cut7 mutants using a kinesin-14 mutant background in which some microtubules detach from the spindle poles and are pushed into the nuclear envelope. These Cut7-driven protrusions decreased as more of the tail was truncated, and the most severe truncations produced no observable protrusions. Our observations suggest that the C-terminal tail of Cut7p contributes to both sliding force and midzone localization. In the context of sequential tail truncation, the BimC motif and adjacent C-terminal amino acids are particularly important for sliding force. In addition, moderate tail truncation increases midzone localization, but further truncation of residues N terminal to the BimC motif decreases midzone localization.
Collapse
|
4
|
Liu L, Downs M, Guidry J, Wojcik EJ. Inter-organelle interactions between the ER and mitotic spindle facilitates Zika protease cleavage of human Kinesin-5 and results in mitotic defects. iScience 2021; 24:102385. [PMID: 33997675 PMCID: PMC8100630 DOI: 10.1016/j.isci.2021.102385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/21/2021] [Accepted: 03/30/2021] [Indexed: 12/03/2022] Open
Abstract
Here we identify human Kinesin-5, Kif11/HsEg5, as a cellular target of Zika protease. We show that Zika NS2B-NS3 protease targets several sites within the motor domain of HsEg5 irrespective of motor binding to microtubules. The native integral ER-membrane protease triggers mitotic spindle positioning defects and a prolonged metaphase delay in cultured cells. Our data support a model whereby loss of function of HsEg5 is mediated by Zika protease and is spatially restricted to the ER-mitotic spindle interface during mitosis. The resulting phenotype is distinct from the monopolar phenotype that typically results from uniform inhibition of HsEg5 by RNAi or drugs. In addition, our data reveal novel inter-organelle interactions between the mitotic apparatus and the surrounding reticulate ER network. Given that Kif11 is haplo-insufficient in humans, and reduced dosage results in microcephaly, we propose that Zika protease targeting of HsEg5 may be a key event in the etiology of Zika syndrome microcephaly. Zika protease cleavage of Kinesin-5 impairs mitotic progression Inter-organelle interactions spatially control Zika proteolysis of Kinesin-5 Native Zika protease affects mitosis differently than soluble Zika protease Zika protease may elicit fetal microcephaly and blindness via Kif11/Kinesin-5
Collapse
Affiliation(s)
- Liqiong Liu
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Micquel Downs
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Jesse Guidry
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
- The Proteomics Core Facility, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| | - Edward J Wojcik
- Department of Biochemistry and Molecular Biology, LSU School of Medicine & Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Khalaf K, Janowicz K, Dyszkiewicz-Konwińska M, Hutchings G, Dompe C, Moncrieff L, Jankowski M, Machnik M, Oleksiewicz U, Kocherova I, Petitte J, Mozdziak P, Shibli JA, Iżycki D, Józkowiak M, Piotrowska-Kempisty H, Skowroński MT, Antosik P, Kempisty B. CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials. Genes (Basel) 2020; 11:E921. [PMID: 32796761 PMCID: PMC7463827 DOI: 10.3390/genes11080921] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Even though chemotherapy and immunotherapy emerged to limit continual and unregulated proliferation of cancer cells, currently available therapeutic agents are associated with high toxicity levels and low success rates. Additionally, ongoing multi-targeted therapies are limited only for few carcinogenesis pathways, due to continually emerging and evolving mutations of proto-oncogenes and tumor-suppressive genes. CRISPR/Cas9, as a specific gene-editing tool, is used to correct causative mutations with minimal toxicity, but is also employed as an adjuvant to immunotherapy to achieve a more robust immunological response. Some of the most critical limitations of the CRISPR/Cas9 technology include off-target mutations, resulting in nonspecific restrictions of DNA upstream of the Protospacer Adjacent Motifs (PAM), ethical agreements, and the lack of a scientific consensus aiming at risk evaluation. Currently, CRISPR/Cas9 is tested on animal models to enhance genome editing specificity and induce a stronger anti-tumor response. Moreover, ongoing clinical trials use the CRISPR/Cas9 system in immune cells to modify genomes in a target-specific manner. Recently, error-free in vitro systems have been engineered to overcome limitations of this gene-editing system. The aim of the article is to present the knowledge concerning the use of CRISPR Cas9 technique in targeting treatment-resistant cancers. Additionally, the use of CRISPR/Cas9 is aided as an emerging supplementation of immunotherapy, currently used in experimental oncology. Demonstrating further, applications and advances of the CRISPR/Cas9 technique are presented in animal models and human clinical trials. Concluding, an overview of the limitations of the gene-editing tool is proffered.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
| | - Krzysztof Janowicz
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznań, Poland
| | - Greg Hutchings
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
| | - Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Lisa Moncrieff
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-408 Poznan, Poland; (M.M.); (U.O.); (D.I.)
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-408 Poznan, Poland; (M.M.); (U.O.); (D.I.)
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
| | - Jim Petitte
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07023-070, Brazil;
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-408 Poznan, Poland; (M.M.); (U.O.); (D.I.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (M.J.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (M.J.); (H.P.-K.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (K.K.); (K.J.); (M.D.-K.); (G.H.); (M.J.); (I.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
6
|
Saeki E, Yasuhira S, Shibazaki M, Tada H, Doita M, Masuda T, Maesawa C. Correction: Involvement of C-terminal truncation mutation of kinesin-5 in resistance to kinesin-5 inhibitor. PLoS One 2019; 14:e0212821. [PMID: 30785962 PMCID: PMC6382123 DOI: 10.1371/journal.pone.0212821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|