1
|
Kim B, Lee YJ, Choi I, Kang YM, Kwak D, Seo MG. Prevalence and zoonotic potential of pathogens in micromammals (rodents and insectivores) in the Republic of Korea. Acta Trop 2025; 266:107649. [PMID: 40355036 DOI: 10.1016/j.actatropica.2025.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/20/2025] [Accepted: 05/10/2025] [Indexed: 05/14/2025]
Abstract
Micromammals (rodents and insectivores), are reservoirs of numerous zoonotic pathogens and play a critical role in infectious disease transmission. The rising prevalence of micromammals-associated pathogens in the Republic of Korea highlights the urgent need for targeted surveillance. Here, we analyzed micromammal blood samples collected from 16 nationwide sites during spring 2022, autumn 2022, and spring 2023 to investigate the following key zoonotic diseases: severe fever with thrombocytopenia syndrome, Lyme disease, Q fever, scrub typhus, anaplasmosis, ehrlichiosis, and rickettsioses. Our analysis revealed that of the 756 micromammal samples analyzed, 0.1 % had Borrelia afzelii, Borrelia valaisiana, and Orientia tsutsugamushi, 12.7 % contained Anaplasma phagocytophilum, and 82 % Neoehrlichia mikurensis. Importantly, we detected Borrelia valaisiana in micromammals in the Republic of Korea for the first time. Phylogenetic analysis identified close genetic links between local and global pathogen strains, highlighting potential cross-border transmission risks. The high prevalence of Neoehrlichia mikurensis emphasizes the zoonotic threat of micromammals. These findings provide crucial insights about enhancing micromammals-associate pathogen surveillance, inform public health strategies, and reinforce the importance of monitoring micromammal populations for zoonotic infection risk mitigation in Korea and beyond.
Collapse
Affiliation(s)
- Beoul Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - You-Jeong Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Insu Choi
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong-Myung Kang
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dongmi Kwak
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min-Goo Seo
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Wennerås C, Wass L, Bergström B, Grankvist A, Lingblom C. Ten years of detecting Neoehrlichia mikurensis infections in Sweden: demographic, clinical and inflammatory parameters. Eur J Clin Microbiol Infect Dis 2024; 43:2083-2092. [PMID: 39136831 PMCID: PMC11535080 DOI: 10.1007/s10096-024-04909-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/22/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE To increase knowledge about the varied clinical manifestations of human infection with the emerging tick-borne pathogen Neoehrlichia mikurensis. METHODS All patients diagnosed in Sweden with N. mikurensis infection during a 10-year period (2013-2023) were investigated regarding their demographic factors, risk factors, comorbidities, clinical signs and symptoms, and laboratory results. Multivariate models were generated using "Orthogonal Projections to Latent Structures-Discriminant Analysis" to identify clinical and immune parameters associated with N. mikurensis infection. RESULTS During the 10-year period, 134 patients were diagnosed with N. mikurensis infection, 102 of whom were included in this study. Most of the patients (79%) were immunosuppressed. The main comorbidities were malignant B-cell lymphomas, multiple sclerosis, and rheumatoid arthritis. Rituximab therapy (59%) and splenectomy (14%) featured prominently. All patients resided in the southern tick-endemic part of Sweden, yet one-third of them were diagnosed in wintertime when ticks are inactive. Two asymptomatically infected blood donors were identified but transfusion-transmitted infection was not confirmed. Increased levels of C-reactive protein, orosomucoid, and total IgM in serum were associated with neoehrlichiosis. Previously unreported symptoms such as ankle edema, neck pain, numbness, and sudden deafness were detected in some patients. One case of aplastic anemia partially improved after eradication of the infection. CONCLUSIONS Neoehrlichiosis is a multi-faceted emerging infectious disease.
Collapse
Affiliation(s)
- Christine Wennerås
- Department of Infectious Diseases, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Sweden.
| | - Linda Wass
- Department of Infectious Diseases, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Beatrice Bergström
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Anna Grankvist
- Department of Infectious Diseases, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Christine Lingblom
- Department of Infectious Diseases, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Sweden
| |
Collapse
|
3
|
Wang X, Pang B, Kou Z, Zhao J, Yan Y, Chen T, Yang L. Detection and phylogenetic classification of Neoehrlichia mikurensis in rodents from the region of Liupan Mountain, China. Front Microbiol 2024; 15:1409593. [PMID: 39027101 PMCID: PMC11255843 DOI: 10.3389/fmicb.2024.1409593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Neoehrlichia mikurensis (N. mikurensis) is an emerging tick-borne pathogen that can cause neoehrlichiosis. Rodents are considered the major host for N. mikurensis. Currently, N. mikurensis has been detected in rodents in several studies from China and other countries. However, no research on N. mikurensis infection in rodents has been reported in the Liupan mountain region. The region of Liupan Mountain, located in northwestern China, is the center of the triangle formed by the cities of Xi'an, Yinchuan, and Lanzhou, with multiple tourist sites in the region. To survey whether there is N. mikurensis in hosts, rodents were captured in this region in September 2020. A nested polymerase chain reaction was used to detect the DNA of N. mikurensis, followed by nucleotide sequencing and phylogenetic analysis. In the region, among 88 rodents, 3 rodents were detected positive for N. mikurensis, a detection rate of 3.4%. Based on phylogenetic analysis of the partial groEL gene sequences, N. mikurensis from rodents in Liupan Mountain clustered in the same evolutionary branch with those found in rodents from Japan, Russia, and northeastern China, and also in ticks and clinical cases from Heilongjiang Province in northeastern China.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Pang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Zengqiang Kou
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Jiaqi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Yan
- Jingyuan Center for Disease Control and Prevention, Guyuan, China
| | - Tan Chen
- Jingyuan Center for Disease Control and Prevention, Guyuan, China
| | - Liping Yang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Corduneanu A, Zając Z, Kulisz J, Wozniak A, Foucault-Simonin A, Moutailler S, Wu-Chuang A, Peter Á, Sándor AD, Cabezas-Cruz A. Detection of bacterial and protozoan pathogens in individual bats and their ectoparasites using high-throughput microfluidic real-time PCR. Microbiol Spectr 2023; 11:e0153123. [PMID: 37606379 PMCID: PMC10581248 DOI: 10.1128/spectrum.01531-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/05/2023] [Indexed: 08/23/2023] Open
Abstract
Among the most studied mammals in terms of their role in the spread of various pathogens with possible zoonotic effects are bats. These are animals with a very complex lifestyle, diet, and behavior. They are able to fly long distances, thus maintaining and spreading the pathogens they may be carrying. These pathogens also include vector-borne parasites and bacteria that can be spread by ectoparasites such as ticks and bat flies. In the present study, high-throughput screening was performed and we detected three bacterial pathogens: Bartonella spp., Neoehrlichia mikurensis and Mycoplasma spp., and a protozoan parasite: Theileria spp. in paired samples from bats (blood and ectoparasites). In the samples from the bat-arthropod pairs, we were able to detect Bartonella spp. and Mycoplasma spp. which also showed a high phylogenetic diversity, demonstrating the importance of these mammals and the arthropods associated with them in maintaining the spread of pathogens. Previous studies have also reported the presence of these pathogens, with one exception, Neoehrlichia mikurensis, for which phylogenetic analysis revealed less genetic divergence. High-throughput screening can detect more bacteria and parasites at once, reduce screening costs, and improve knowledge of bats as reservoirs of vector-borne pathogens. IMPORTANCE The increasing number of zoonotic pathogens is evident through extensive studies and expanded animal research. Bats, known for their role as reservoirs for various viruses, continue to be significant. However, new findings highlight the emergence of Bartonella spp., such as the human-infecting B. mayotimonensis from bats. Other pathogens like N. mikurensis, Mycoplasma spp., and Theileria spp. found in bat blood and ectoparasites raise concerns, as their impact remains uncertain. These discoveries underscore the urgency for heightened vigilance and proactive measures to understand and monitor zoonotic pathogens. By deepening our knowledge and collaboration, we can mitigate these risks, safeguarding human and animal well-being.
Collapse
Affiliation(s)
- Alexandra Corduneanu
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Aneta Wozniak
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Áron Peter
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Attila D. Sándor
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, Hungary
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
5
|
Bamford C, Blumberg LH, Bosman M, Frean J, Hoek KG, Miles J, Sriruttan C, Vorster I, Oosthuizen MC. Neoehrlichiosis in Symptomatic Immunocompetent Child, South Africa. Emerg Infect Dis 2023; 29:407-410. [PMID: 36692458 PMCID: PMC9881780 DOI: 10.3201/eid2902.221451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We describe a case of neoehrlichiosis in an immunocompetent child with acute febrile illness in South Africa. Neoehrlichiosis was diagnosed by PCR on 16S rDNA from bone marrow aspirate. Phylogenetic analysis indicated an organism closely related to Candidatus Neoehrlichia. Clinicians should be aware of possible ehrlichiosis even in immunocompetent patients.
Collapse
|
6
|
Barraza-Guerrero SI, Meza-Herrera CA, García-De la Peña C, González-Álvarez VH, Vaca-Paniagua F, Díaz-Velásquez CE, Sánchez-Tortosa F, Ávila-Rodríguez V, Valenzuela-Núñez LM, Herrera-Salazar JC. General Microbiota of the Soft Tick Ornithodoros turicata Parasitizing the Bolson Tortoise ( Gopherus flavomarginatus) in the Mapimi Biosphere Reserve, Mexico. BIOLOGY 2020; 9:biology9090275. [PMID: 32899580 PMCID: PMC7565578 DOI: 10.3390/biology9090275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
The general bacterial microbiota of the soft tick Ornithodoros turicata found on Bolson tortoises (Gopherus flavomarginatus) were analyzed using next generation sequencing. The main aims of the study were to establish the relative abundance of bacterial taxa in the tick, and to document the presence of potentially pathogenic species for this tortoise, other animals, and humans. The study was carried-out in the Mapimi Biosphere Reserve in the northern-arid part of Mexico. Bolson tortoises (n = 45) were inspected for the presence of soft ticks, from which 11 tortoises (24.4%) had ticks in low loads (1–3 ticks per individual). Tick pools (five adult ticks each) were analyzed through 16S rRNA V3–V4 region amplification in a MiSeq Illumina, using EzBioCloud as a taxonomical reference. The operational taxonomic units (OTUs) revealed 28 phyla, 84 classes, 165 orders, 342 families, 1013 genera, and 1326 species. The high number of taxa registered for O. turicata may be the result of the variety of hosts that this tick parasitizes as they live inside G. flavomarginatus burrows. While the most abundant phyla were Proteobacteria, Actinobacteria, and Firmicutes, the most abundant species were two endosymbionts of ticks (Midichloria-like and Coxiella-like). Two bacteria documented as pathogenic to Gopherus spp. were registered (Mycoplasma spp. and Pasteurella testudinis). The bovine and ovine tick-borne pathogens A. marginale and A. ovis, respectively, were recorded, as well as the zoonotic bacteria A. phagocytophilum,Coxiella burnetii, and Neoehrlichia sp. Tortoises parasitized with O. turicata did not show evident signs of disease, which could indicate a possible ecological role as a reservoir that has yet to be demonstrated. In fact, the defense mechanisms of this tortoise against the microorganisms transmitted by ticks during their feeding process are still unknown. Future studies on soft ticks should expand our knowledge about what components of the microbiota are notable across multiple host–microbe dynamics. Likewise, studies are required to better understand the host competence of this tortoise, considered the largest terrestrial reptile in North America distributed throughout the Chihuahuan Desert since the late Pleistocene.
Collapse
Affiliation(s)
- Sergio I. Barraza-Guerrero
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, 35230 Bermejillo, Durango, Mexico; (S.I.B.-G.); (C.A.M.-H.)
| | - César A. Meza-Herrera
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, 35230 Bermejillo, Durango, Mexico; (S.I.B.-G.); (C.A.M.-H.)
| | - Cristina García-De la Peña
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, 35010 Gómez Palacio, Durango, Mexico; (V.Á.-R.); (L.M.V.-N.); (J.C.H.-S.)
- Correspondence: ; Tel.: +52-871-386-7276; Fax: +52-871-715-2077
| | - Vicente H. González-Álvarez
- Facultad de Medicina Veterinaria y Zootecnia No. 2, Universidad Autónoma de Guerrero, 41940 Cuajinicuilapa, Guerrero, Mexico;
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, 54090 Tlalnepantla, Estado de México, Mexico; (F.V.-P.); (C.E.D.-V.)
- Instituto Nacional de Cancerología, 14080 Ciudad de México, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090 Tlalnepantla, Estado de México, Mexico
| | - Clara E. Díaz-Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, 54090 Tlalnepantla, Estado de México, Mexico; (F.V.-P.); (C.E.D.-V.)
| | - Francisco Sánchez-Tortosa
- Departamento de Zoología, Universidad de Córdoba.Edificio C-1, Campus Rabanales, 14071 Cordoba, Spain;
| | - Verónica Ávila-Rodríguez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, 35010 Gómez Palacio, Durango, Mexico; (V.Á.-R.); (L.M.V.-N.); (J.C.H.-S.)
| | - Luis M. Valenzuela-Núñez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, 35010 Gómez Palacio, Durango, Mexico; (V.Á.-R.); (L.M.V.-N.); (J.C.H.-S.)
| | - Juan C. Herrera-Salazar
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, 35010 Gómez Palacio, Durango, Mexico; (V.Á.-R.); (L.M.V.-N.); (J.C.H.-S.)
| |
Collapse
|