1
|
Kamkar L, Saberi S, Totonchi M, Kavousi K. Circulating microRNA panels for multi-cancer detection and gastric cancer screening: leveraging a network biology approach. BMC Med Genomics 2025; 18:27. [PMID: 39915853 PMCID: PMC11804061 DOI: 10.1186/s12920-025-02091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Screening tests, particularly liquid biopsy with circulating miRNAs, hold significant potential for non-invasive cancer detection before symptoms manifest. METHODS This study aimed to identify biomarkers with high sensitivity and specificity for multiple and specific cancer screening. 972 Serum miRNA profiles were compared across thirteen cancer types and healthy individuals using weighted miRNA co-expression network analysis. To prioritize miRNAs, module membership measure and miRNA trait significance were employed. Subsequently, for specific cancer screening, gastric cancer was focused on, using a similar strategy and a further step of preservation analysis. Machine learning techniques were then applied to evaluate two distinct miRNA panels: one for multi-cancer screening and another for gastric cancer classification. RESULTS The first panel (hsa-miR-8073, hsa-miR-614, hsa-miR-548ah-5p, hsa-miR-1258) achieved 96.1% accuracy, 96% specificity, and 98.6% sensitivity in multi-cancer screening. The second panel (hsa-miR-1228-5p, hsa-miR-1343-3p, hsa-miR-6765-5p, hsa-miR-6787-5p) showed promise in detecting gastric cancer with 87% accuracy, 90% specificity, and 89% sensitivity. CONCLUSIONS Both panels exhibit potential for patient classification in diagnostic and prognostic applications, highlighting the significance of liquid biopsy in advancing cancer screening methodologies.
Collapse
Affiliation(s)
- Leila Kamkar
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Saberi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
- Research Center for Gastroenterology and Liver Diseases, Research Institute For Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Mitsunaga S, Ikeda M, Ueno M, Kobayashi S, Tsuda M, Miki I, Kuwahara T, Hara K, Takayama Y, Matsunaga Y, Hanada K, Shimizu A, Yoshida H, Nomoto T, Takahashi K, Iwamoto H, Iwama H, Hatano E, Nakata K, Nakamura M, Sudo H, Takizawa S, Ochiai A. Robust circulating microRNA signature for the diagnosis and early detection of pancreatobiliary cancer. BMC Med 2025; 23:23. [PMID: 39838364 PMCID: PMC11752661 DOI: 10.1186/s12916-025-03849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND A new circulating biomarker superior to carbohydrate antigen 19-9 (CA19-9) is needed for diagnosing pancreatobiliary cancer (PBca). The aim of this study was to identify serum microRNA (miRNA) signatures comprising reproducible and disease-related miRNAs. METHODS This multicenter study involved patients with treatment-naïve PBca and healthy participants. The optimized serum processing conditions were evaluated using t-distributed stochastic neighbor embedding (t-SNE) visualization. Serum miRNA candidates for disease association were selected using weighted gene coexpression network analysis (WGCNA). A miRNA signature combining multiple serum miRNAs was tested in exploratory, validation, and independent validation sets. The synthesis and secretion of diagnostic miRNAs were evaluated using human pancreatic cancer cells. RESULTS In total, 284 (150 healthy and 134 PBca) of 827 serum samples were processed within 2 h of blood collection before freezing, distributed in the same area as that in the t-SNE map, and assigned to an exploratory set. The 193 optimized samples were assigned to either the validation (50 healthy, 47 PBca) or independent validation (50 healthy, 46 PBca) set. Index-1, a combination of five serum miRNAs (hsa-miR-1343-5p, hsa-miR-4632-5p, hsa-miR-4665-5p, hsa-miR-665, and hsa-miR-6803-5p) with disease association in WGCNA, showed a sensitivity and specificity of > 80% and an AUC outperforming that of CA19-9 in the exploratory, validation, and independent validation sets. The AUC of Index-1 was superior to that of CA19-9 (0.856 vs. 0.649, p = 0.038) for detecting T1 tumors. miR-665, a component of Index-1, was expressed in human pancreatic cancer cells, and its transfection inhibited cell growth. CONCLUSIONS The serum miRNA signature Index-1 is useful for detecting PBca and could facilitate the early diagnosis of PBca. These findings can help improve clinical PBca detection by providing an optimized biomarker that overcomes the limitations of the current standard.
Collapse
Affiliation(s)
- Shuichi Mitsunaga
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Satoshi Kobayashi
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Masahiro Tsuda
- Department of Gastroenterological Oncology, Hyogo Cancer Center, Akashi, Japan
| | - Ikuya Miki
- Department of Gastroenterological Oncology, Hyogo Cancer Center, Akashi, Japan
| | - Takamichi Kuwahara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yukiko Takayama
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Yutaro Matsunaga
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Keiji Hanada
- Department of Gastroenterology, Onomichi General Hospital, Onomichi, Hiroshima, Japan
| | - Akinori Shimizu
- Department of Gastroenterology, Onomichi General Hospital, Onomichi, Hiroshima, Japan
| | - Hitoshi Yoshida
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, Japan
| | - Tomohiro Nomoto
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, Japan
| | - Kenji Takahashi
- Department of Medicine, Division of Gastroenterology, Asahikawa Medical University, Asahikawa, Japan
| | - Hidetaka Iwamoto
- Department of Medicine, Division of Gastroenterology, Asahikawa Medical University, Asahikawa, Japan
| | - Hideaki Iwama
- Department of Gastroenterological Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Etsuro Hatano
- Department of Gastroenterological Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | - Atsushi Ochiai
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
3
|
Wang L, Liu H, Chen G, Wu Q, Xu S, Zhou Q, Zhao Y, Wang Q, Yan T, Cheng X. Bubble Ticket Trip: Exploring the Mechanism of miRNA Sorting into Exosomes and Maintaining the Stability of Tumor Microenvironment. Int J Nanomedicine 2024; 19:13671-13685. [PMID: 39723172 PMCID: PMC11669276 DOI: 10.2147/ijn.s498599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Exosomes are vesicles ranging from 30 to 100 nanometers in size that show great potential as carriers for therapeutic uses and drug delivery. Enriching a specific set of miRNAs in exosomes emphasizes the existence of particular sorting mechanisms that manage the targeted cargo packaging. The molecular mechanism for miRNA sorting has not been understood. It is crucial to understand the mechanism of exosome encapsulation to develop its therapeutic potential. In this review, we will explore the particular processes through which exosomes naturally encapsulate miRNA, as well as discuss the effect on tumors after encapsulation of miRNAs. We also summarize the effects of targeted drug delivery using genetic engineering and chemical methods to modify exosome-encapsulated miRNA. Finally, gaining insight into how exosome cargo is sorted could be applied in clinical settings for precise drug delivery and to hinder the progression of diseases.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Huijuan Liu
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Guohui Chen
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Qinglu Wu
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Songrui Xu
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Qichao Zhou
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Yadong Zhao
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Qiaorong Wang
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Ting Yan
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| |
Collapse
|
4
|
Wu P, Li D, Zhang C, Dai B, Tang X, Liu J, Wu Y, Wang X, Shen A, Zhao J, Zi X, Li R, Sun N, He J. A unique circulating microRNA pairs signature serves as a superior tool for early diagnosis of pan-cancer. Cancer Lett 2024; 588:216655. [PMID: 38460724 DOI: 10.1016/j.canlet.2024.216655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 01/16/2024] [Indexed: 03/11/2024]
Abstract
Cancer remains a major burden globally and the critical role of early diagnosis is self-evident. Although various miRNA-based signatures have been developed in past decades, clinical utilization is limited due to a lack of precise cutoff value. Here, we innovatively developed a signature based on pairwise expression of miRNAs (miRPs) for pan-cancer diagnosis using machine learning approach. We analyzed miRNA spectrum of 15832 patients, who were divided into training, validation, test, and external test sets, with 13 different cancers from 10 cohorts. Five different machine-learning (ML) algorithms (XGBoost, SVM, RandomForest, LASSO, and Logistic) were adopted for signature construction. The best ML algorithm and the optimal number of miRPs included were identified using area under the curve (AUC) and youden index in validation set. The AUC of the best model was compared to previously published 25 signatures. Overall, Random Forest approach including 31 miRPs (31-miRP) was developed, proving highly efficient in cancer diagnosis across different datasets and cancer types (AUC range: 0.980-1.000). Regarding diagnosis of cancers at early stage, 31-miRP also exhibited high capacities, with AUC ranging from 0.961 to 0.998. Moreover, 31-miRP exhibited advantages in differentiating cancers from normal tissues (AUC range: 0.976-0.998) as well as differentiating cancers from corresponding benign lesions. Encouragingly, comparing to previously published 25 different signatures, 31-miRP also demonstrated clear advantages. In conclusion, 31-miRP acts as a powerful model for cancer diagnosis, characterized by high specificity and sensitivity as well as a clear cutoff value, thereby holding potential as a reliable tool for cancer diagnosis at early stage.
Collapse
Affiliation(s)
- Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bing Dai
- School of Software, Tsinghua University, Beijing, 100084, China
| | - Xiaoya Tang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue Wu
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingwu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ao Shen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiapeng Zhao
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaohui Zi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruirui Li
- Department of Pathology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Saffari N, Rahgozar S, Faraji E, Sahin F. Plasma-derived exosomal miR-326, a prognostic biomarker and novel candidate for treatment of drug resistant pediatric acute lymphoblastic leukemia. Sci Rep 2024; 14:691. [PMID: 38184700 DOI: 10.1038/s41598-023-50628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a cancer with high incidence rate in pediatrics and drug resistance is a major clinical concern for ALL treatment. The current study was designed to evaluate the role of exosomal miR-326 in diagnosis and treatment of children with B-ALL. Exosomes were isolated from plasma samples of 30 patients and B-ALL cell lines followed by characterization, using nanoparticle tracking analysis, immunoblotting assay and electron microscopy. qPCR showed significantly increased levels of miR-326 in patients exosomes compared with non-cancer controls (P < 0.05, AUC = 0.7500). Moreover, a comparison between the sensitive and drug resistant patients revealed a prognostic value for the exosomal miR326 (P < 0.05, AUC = 0.7755). Co-culture studies on drug resistant patient primary cells and B-ALL cell lines suggested that exosomes with high miR-326 level act as vehicles for reducing cells viability. B-ALL cell line transfection with naked miR-326 mimic confirmed the results, and fluorescence microscopy validated uptake and internalization of exosomes by target cells. The novel introduced features of the exosomal miR-326 address a non-invasive way of diagnosing primary drug resistance in pediatric ALL and advocates a novel therapeutic strategy for this cancer.
Collapse
Affiliation(s)
- Neda Saffari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar jarib Street, Isfahan, 81746-73441, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar jarib Street, Isfahan, 81746-73441, Iran.
| | - Elaheh Faraji
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar jarib Street, Isfahan, 81746-73441, Iran
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Yeditepe University, Atasehir, 34755, Istanbul, Turkey
| |
Collapse
|
6
|
Jing Y, Mao Z, Zhu J, Ma X, Liu H, Chen F. TRAIP serves as a potential prognostic biomarker and correlates with immune infiltrates in lung adenocarcinoma. Int Immunopharmacol 2023; 122:110605. [PMID: 37451021 DOI: 10.1016/j.intimp.2023.110605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the major types of lung cancer with high morbidity and mortality. The TRAF-interacting protein (TRAIP) is a ring-type E3 ubiquitin ligase which has been recently identified to play pivotal roles in various cancers. However, the expression and function of TRAIP in LUAD remain elusive. METHODS In this study, we used bioinformatic tools as well as molecular experiments to explore the exact role of TRAIP and the underlying mechanism. RESULTS Data mining across the UALCAN, GEPIA and GTEx, GEO and HPA databases revealed that TRAIP was significantly overexpressed in LUAD tissues than that in adjacent normal tissues. Kaplan-Meier curve showed that high TRAIP expression was associated with poor overall survival (OS) and relapse-free survival (RFS). Univariate and multivariate cox regression analysis revealed that TRAIP was an independent risk factor in LUAD. And the TRAIP-based nomogram further supported the prognostic role of TRAIP in LUAD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that TRAIP-associated genes were mainly involved in DNA replication, cell cycle and other processes. The immune infiltration analysis indicated that TRAIP expression was tightly correlated with the infiltration of diverse immune cell types, including B cell, CD8 + T cell, neutrophil and dendritic cell. Moreover, TRAIP expression was observed to be significantly associated with tumor infiltrating lymphocytes (TILs) and immune checkpoint molecules. In vitro experiments further confirmed knockdown of TRAIP inhibited cell migration and invasion, as well as decreasing chemokine production and inhibiting M2-like macrophage recruitment. Lastly, CMap analysis identified 10 small molecule compounds that may target TRAIP, providing potential therapies for LUAD. CONCLUSIONS Collectively, our study found that TRAIP is an oncogenic gene in LUAD, which may be a potential prognostic biomarker and promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Kotelevets L, Chastre E. Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications. Cancers (Basel) 2023; 15:1107. [PMID: 36831450 PMCID: PMC9953945 DOI: 10.3390/cancers15041107] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Colorectal cancer (CRC) is a leading public health concern due to its incidence and high mortality rates, highlighting the requirement of an early diagnosis. Evaluation of circulating extracellular vesicles (EVs) might constitute a noninvasive and reliable approach for CRC detection and for patient follow-up because EVs display the molecular features of the cells they originate. EVs are released by almost all cell types and are mainly categorized as exosomes originating from exocytosis of intraluminal vesicles from multivesicular bodies, ectosomes resulting from outward budding of the plasma membrane and apoptotic bodies' ensuing cell shrinkage. These vesicles play a critical role in intercellular communications during physiological and pathological processes. They facilitate CRC progression and premetastatic niche formation, and they enable transfer of chemotherapy resistance to sensitive cells through the local or remote delivery of their lipid, nucleic acid and protein content. On another note, their stability in the bloodstream, their permeation in tissues and their sheltering of packaged material make engineered EVs suitable vectors for efficient delivery of tracers and therapeutic agents for tumor imaging or treatment. Here, we focus on the physiopathological role of EVs in CRCs, their value in the diagnosis and prognosis and ongoing investigations into therapeutic approaches.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
8
|
Fathi M, Aghdaie HA, Ghafouri-Fard S, Shams R. Evaluation of potential of miR-8073 and miR-642 as diagnostic markers in pancreatic cancer. Mol Biol Rep 2022; 49:6475-6481. [PMID: 35596051 DOI: 10.1007/s11033-022-07476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/05/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pancreatic cancer is a cancer with an insidious course. Since disease is often diagnosed at advanced stages, clinical outcome is impaired. Thus identification of biomarkers for this malignancy has importance in enhancement of patients' survival. METHODS AND RESULTS In the current study, we assessed expression levels of miR-8073 and miR-642 in the circulation of 50 patients with pancreatic cancer and 50 controls. Plasma levels of miR-8073 and miR-642 were significantly higher in patients with pancreatic cancer compared with controls (P value < 0.0001 and P value = 0.0068, respectively). Plasma levels of miR-642 were inversely correlated with albumin levels (R=-0.28, P value = 0.049), WBC count (R=-0.35, P value = 0.01), as well as CRP level (R=-0.30, P value = 0.035). On the other hand, levels of this miRNA were positively correlated with lipase level (R = 0.29, P value = 0.042). Levels of miR-8073 were not correlated with any of the available parameters. Plasma levels of miR-8073 could separate patients with pancreatic cancer from controls with AUC, sensitivity and specificity values of 0.82, 0.77 and 0.78, respectively. miR-642 could differentiate these two groups with AUC, sensitivity and specificity values of 0.63, 0.58 and 0.78, respectively. Combination of these two parameters resulted in AUC, sensitivity and specificity values of 0.79, 0.77 and 0.78, respectively. CONCLUSIONS Taken together, these two miRNAs are suggested as possible blood markers for pancreatic cancer.
Collapse
Affiliation(s)
- Mohadeseh Fathi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaie
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Roshanak Shams
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Takuma K, Fujihara S, Fujita K, Iwama H, Nakahara M, Oura K, Tadokoro T, Mimura S, Tani J, Shi T, Morishita A, Kobara H, Himoto T, Masaki T. Antitumor Effect of Regorafenib on MicroRNA Expression in Hepatocellular Carcinoma Cell Lines. Int J Mol Sci 2022; 23:ijms23031667. [PMID: 35163589 PMCID: PMC8835935 DOI: 10.3390/ijms23031667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and is one of the leading causes of cancer-related deaths worldwide. Regorafenib, a multi-kinase inhibitor, is used as a second-line treatment for advanced HCC. Here, we aimed to investigate the mechanism of the antitumor effect of regorafenib on HCC and evaluate altered microRNA (miRNA) expression. Cell proliferation was examined in six HCC cell lines (HuH-7, HepG2, HLF, PLC/PRF/5, Hep3B, and Li-7) using the Cell Counting Kit-8 assay. Xenografted mouse models were used to assess the effects of regorafenib in vivo. Cell cycle analysis, western blotting analysis, and miRNA expression analysis were performed to identify the antitumor inhibitory potential of regorafenib on HCC cells. Regorafenib suppressed proliferation in HuH-7 cell and induced G0/G1 cell cycle arrest and cyclin D1 downregulation in regorafenib-sensitive cells. During miRNA analysis, miRNA molecules associated with the antitumor effect of regorafenib were found. Regorafenib suppresses cell proliferation and tumor growth in HCC by decreasing cyclin D1 via alterations in intracellular and exosomal miRNAs in HCC.
Collapse
Affiliation(s)
- Kei Takuma
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan;
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Joji Tani
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Tingting Shi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Takashi Himoto
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
- Correspondence: ; Tel.: +81-87-891-2156
| |
Collapse
|
10
|
Chang LC, Chiu HM, Wu MS, Shen TL. The Role of Small Extracellular Vesicles in the Progression of Colorectal Cancer and Its Clinical Applications. Int J Mol Sci 2022; 23:1379. [PMID: 35163305 PMCID: PMC8835972 DOI: 10.3390/ijms23031379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and a longstanding critical challenge for public health. Screening has been suggested to effectively reduce both the incidence and mortality of CRC. However, the drawback of the current screening modalities, both stool-based tests and colonoscopies, is limited screening adherence, which reduces the effectiveness of CRC screening. Blood tests are more acceptable than stool tests or colonoscopy as a first-line screening approach. Therefore, identifying blood biomarkers for detecting CRC and its precancerous neoplasms is urgently needed to fulfill the unmet clinical need. Currently, many kinds of blood contents, such as circulating tumor cells, circulating tumor nucleic acids, and extracellular vesicles, have been investigated as biomarkers for CRC detection. Among these, small extracellular vesicles (sEVs) have been demonstrated to detect CRC effectively in recent reports. sEVs enable intercellular shuttling-for instance, trafficking between recipient cancer cells and stromal cells-which can affect tumor initiation, proliferation, angiogenesis, immune regulation; metastasis, the cancer-specific molecules, such as proteins, microRNAs, long noncoding RNAs, and circular RNAs, loaded into cancer-derived sEVs may serve as biomarkers for the detection of cancers, including CRC. Indeed, accumulating evidence has shown that nucleic acids and proteins contained in CRC-derived sEVs are effective as blood biomarkers for CRC detection. However, investigations of the performance of sEVs for diagnosing CRC in clinical trials remains limited. Thus, the effectiveness of sEV biomarkers for diagnosing CRC needs further validation in clinical trials.
Collapse
Affiliation(s)
- Li-Chun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (L.-C.C.); (H.-M.C.); (M.-S.W.)
- Health Management Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Han-Mo Chiu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (L.-C.C.); (H.-M.C.); (M.-S.W.)
- Health Management Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (L.-C.C.); (H.-M.C.); (M.-S.W.)
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 100, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 100, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
11
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
12
|
Lombe CP, Meyer M, Pretorius A. Bioinformatics Prediction and Analysis of MicroRNAs and Their Targets as Biomarkers for Prostate Cancer: A Preliminary Study. Mol Biotechnol 2021; 64:401-412. [PMID: 34665432 DOI: 10.1007/s12033-021-00414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is the second most common form of cancer in men around the world. Due to its heterogeneity, presentations range from aggressive lethal disease to indolent disease. There is a need to identify core biomarkers that are important for early detection and progression, allowing a more precise method for the treatment and management of Pca. We obtained metastatic prostate cancer associated microRNA array profiles from the GSE28029 dataset in the GEO database. MicroRNA target prediction was done using the databases, TargetScanHuman, miRDB and DIANA microT, six target genes (FOXC1, CDKN1A, BIRC2, CTNND1, ELK1 and LRP8) were found to be common among the three different databases. Differential expression of the target genes was performed via the GENT2 database in the GPL96 platform (HG-U133A). Results indicated all genes were downregulated. Gene Ontology (GO) was used to perform enrichment analysis. The GO enrichment analysis indicated that the downregulated genes were enriched in cellular response to gamma radiation, regulation of transcription and response to drugs as well as protein binding and receptor signaling protein activity. The study suggested that CDKN1A, FOXC1 and BIRC2 might be core genes for prostate cancer that play an important role in its diagnosis, development and progression.
Collapse
Affiliation(s)
- Chipampe Patricia Lombe
- Department of Biotechnology, University of the Western Cape, Cape Town, South Africa. .,Biology Department, Mukuba University, Garneton itimpi, Kitwe, Zambia.
| | - Mervin Meyer
- Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Ashley Pretorius
- Department of Biotechnology, University of the Western Cape, Cape Town, South Africa.,Biotechnology Innovation Division, Aminotek, PTY, Cape Town, South Africa
| |
Collapse
|
13
|
Chang YC, Chan MH, Li CH, Fang CY, Hsiao M, Chen CL. Exosomal Components and Modulators in Colorectal Cancer: Novel Diagnosis and Prognosis Biomarkers. Biomedicines 2021; 9:biomedicines9080931. [PMID: 34440135 PMCID: PMC8391321 DOI: 10.3390/biomedicines9080931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The relatively high incidence and mortality rates for colorectal carcinoma (CRC) make it a formidable malignant tumor. Comprehensive strategies have been applied to predict patient survival and diagnosis. Various clinical regimens have also been developed to improve the therapeutic outcome. Extracellular vesicles (EVs) are recently proposed cellular structures that can be produced by natural or artificial methods and have been extensively studied. In addition to their innate functions, EVs can be manipulated to be drug carriers and exert many biological functions. The composition of EVs, their intravesicular components, and the surrounding tumor microenvironment are closely related to the development of colorectal cancer. Determining the expression profiles of exocytosis samples and using them as indicators for selecting effective combination therapy is an indispensable direction for EV study and should be regarded as a novel prediction platform in addition to cancer stage, prognosis, and other clinical assessments. In this review, we summarize the function, regulation, and application of EVs in the colon cancer research field. We provide an update on and discuss potential values for clinical applications of EVs. Moreover, we illustrate the specific markers, mediators, and genetic alterations of EVs in colorectal carcinogenesis. Furthermore, we outline the vital markers present in the EVs and discuss their plausible uses in colon cancer patient therapy in combination with the currently used clinical strategies. The development and application of these EVs will significantly improve the accuracy of diagnosis, lead to more precise prognoses, and may lead to the improved treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Science, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Biomedical Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.H.); (C.-L.C.); Tel.: +886-2-2787-1243 (M.H.); +886-2-2736-1661 (ext. 3139) (C.-L.C.); Fax: +886-2-2789-9931 (M.H.)
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (M.H.); (C.-L.C.); Tel.: +886-2-2787-1243 (M.H.); +886-2-2736-1661 (ext. 3139) (C.-L.C.); Fax: +886-2-2789-9931 (M.H.)
| |
Collapse
|
14
|
Danac JMC, Uy AGG, Garcia RL. Exosomal microRNAs in colorectal cancer: Overcoming barriers of the metastatic cascade (Review). Int J Mol Med 2021; 47:112. [PMID: 33907829 PMCID: PMC8075282 DOI: 10.3892/ijmm.2021.4945] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
The journey of cancer cells from a primary tumor to distant sites is a multi-step process that involves cellular reprogramming, the breaking or breaching of physical barriers and the preparation of a pre-metastatic niche for colonization. The loss of adhesion between cells, cytoskeletal remodeling, the reduction in size and change in cell shape, the destruction of the extracellular matrix, and the modification of the tumor microenvironment facilitate migration and invasion into surrounding tissues. The promotion of vascular leakiness enables intra- and extravasation, while angiogenesis and immune suppression help metastasizing cells become established in the new site. Tumor-derived exosomes have long been known to harbor microRNAs (miRNAs or miRs) that help prepare secondary sites for metastasis; however, their roles in the early and intermediate steps of the metastatic cascade are only beginning to be characterized. The present review article presents a summary and discussion of the miRNAs that form part of colorectal cancer (CRC)-derived exosomal cargoes and which play distinct roles in epithelial to mesenchymal plasticity and metastatic organotropism. First, an overview of epithelial-to-mesenchymal transition (EMT), metastatic organotropism, as well as exosome biogenesis, cargo sorting and uptake by recipient cells is presented. Lastly, the potential of these exosomal miRNAs as prognostic biomarkers for metastatic CRC, and the blocking of these as a possible therapeutic intervention is discussed.
Collapse
Affiliation(s)
- Joshua Miguel C Danac
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Aileen Geobee G Uy
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Reynaldo L Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| |
Collapse
|
15
|
Kalathil D, John S, Nair AS. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front Oncol 2021; 10:626836. [PMID: 33680951 PMCID: PMC7927600 DOI: 10.3389/fonc.2020.626836] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Forkhead box transcription factor, FOXM1 is implicated in several cellular processes such as proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, and redox signaling. In addition to being a boon for the normal functioning of a cell, FOXM1 turns out to be a bane by manifesting in several disease scenarios including cancer. It has been given an oncogenic status based on several evidences indicating its role in tumor development and progression. FOXM1 is highly expressed in several cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in angiogenesis, invasion, migration, self- renewal and drug resistance. In this review, we attempt to understand various mechanisms underlying FOXM1 gene and protein regulation in cancer including the different signaling pathways, post-transcriptional and post-translational modifications. Identifying crucial molecules associated with these processes can aid in the development of potential pharmacological approaches to curb FOXM1 mediated tumorigenesis.
Collapse
Affiliation(s)
- Dhanya Kalathil
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Samu John
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Asha S Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
16
|
MicroRNA-Based Therapeutics for Drug-Resistant Colorectal Cancer. Pharmaceuticals (Basel) 2021; 14:ph14020136. [PMID: 33567635 PMCID: PMC7915952 DOI: 10.3390/ph14020136] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Although therapeutic approaches for patients with colorectal cancer (CRC) have improved in the past decades, the problem of drug resistance still persists and acts as a major obstacle for effective therapy. Many studies have shown that drug resistance is related to reduced drug uptake, modification of drug targets, and/or transformation of cell cycle checkpoints. A growing body of evidence indicates that several microRNAs (miRNAs) may contribute to the drug resistance to chemotherapy, targeted therapy, and immunotherapy by regulating the drug resistance-related target genes in CRC. These drug resistance-related miRNAs may be used as promising biomarkers for predicting drug response or as potential therapeutic targets for treating patients with CRC. In this review, we summarized the recent discoveries regarding anti-cancer drug-related miRNAs and their molecular mechanisms in CRC. Furthermore, we discussed the challenges associated with the clinical application of miRNAs as biomarkers for the diagnosis of drug-resistant patients and as therapeutic targets for CRC treatment.
Collapse
|
17
|
Noh GT, Kwon J, Kim J, Park M, Choi DW, Cho KA, Woo SY, Oh BY, Lee KY, Lee RA. Verification of the role of exosomal microRNA in colorectal tumorigenesis using human colorectal cancer cell lines. PLoS One 2020; 15:e0242057. [PMID: 33175885 PMCID: PMC7657557 DOI: 10.1371/journal.pone.0242057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a group of small membranous vesicles that are shed into the extracellular environment by tumoral or non-tumoral cells and contribute to cellular communication by delivering micro RNAs (miRNAs). In this study, we aimed to evaluate the role of exosomal miRNAs from colorectal cancer cell lines in tumorigenesis, by affecting cancer-associated fibroblasts (CAFs), which are vital constituents of the tumor microenvironment. To analyze the effect of exosomal miRNA on the tumor microenvironment, migration of the monocytic cell line THP-1 was evaluated via Transwell migration assay using CAFs isolated from colon cancer patients. The migration assay was performed with CAFs ± CCL7-blocking antibody and CAFs that were treated with exosomes isolated from colon cancer cell lines. To identify the associated exosomal miRNAs, miRNA sequencing and quantitative reverse transcription polymerase chain reaction were performed. The migration assay revealed that THP-1 migration was decreased in CCL7-blocking antibody-expressing and exosome-treated CAFs. Colon cancer cell lines contained miRNA let-7d in secreted exosomes targeting the chemokine CCL7. Exosomes from colorectal cancer cell lines affected CCL7 secretion from CAFs, possibly via the miRNA let-7d, and interfered with the migration of CCR2+ monocytic THP-1 cells in vitro.
Collapse
Affiliation(s)
- Gyoung Tae Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiyun Kwon
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Jungwoo Kim
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Minhwa Park
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Da-Won Choi
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Kyung-Ah Cho
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - So-Youn Woo
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Bo-Young Oh
- Department of Surgery, Hallym University College of Medicine, Seoul, South Korea
| | - Kang Young Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Ryung-Ah Lee
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
18
|
Chong ZX, Yeap SK, Ho WY. Roles of circulating microRNA(s) in human breast cancer. Arch Biochem Biophys 2020; 695:108583. [DOI: 10.1016/j.abb.2020.108583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
|
19
|
Wang H, Ma Y, Lin Y, Chen R, Xu B, Deng J. SHU00238 Promotes Colorectal Cancer Cell Apoptosis Through miR-4701-3p and miR-4793-3p. Front Genet 2020; 10:1320. [PMID: 31998373 PMCID: PMC6965150 DOI: 10.3389/fgene.2019.01320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/04/2019] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer is one of the most leading causes of death. Searching for new therapeutic targets for colorectal cancer is urgently needed. SHU00238, an isoxazole derivative, was reported to suppress colorectal tumor growth through microRNAs. But the underlying mechanisms still remain unknown. Here, we explored the mechanism of SHU00238 on colorectal cancer by RT-PCR, CCK-8, flow cytometry, mirTarBase, and GO enrichment analysis. We screened partial microRNAs regulated by SHU00238 in colorectal cancer cells. Furthermore, we identified that miR-4701-3p and miR-4793-3p can reverse the acceleration of SHU00238 on colorectal cancer cell apoptosis in HCT116 Cells. Finally, we found that SMARCA5, MBD3, VPS53, EHD4 are estimated to mediate the regulation of miR-4701-3p and miR-4793-3p on colorectal cancer cell apoptosis, which targets ATP-dependent chromatin remodeling pathway and endocytic recycling pathway. Taken together, our study reveals that SHU00238 promotes colorectal cancer cell apoptosis through miR-4701-3p and miR-4793-3p, which provide a potential drug target and therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Chemistry, Qianweichang College, Shanghai University, Shanghai, China.,School of Life Science, Shanghai University, Shanghai, China
| | - Yurui Ma
- School of Life Science, Shanghai University, Shanghai, China
| | - Yifan Lin
- Department of Chemistry, Qianweichang College, Shanghai University, Shanghai, China
| | - Rui Chen
- School of Life Science, Shanghai University, Shanghai, China
| | - Bin Xu
- Department of Chemistry, Qianweichang College, Shanghai University, Shanghai, China.,Innovative Drug Research Center, Shanghai University, Shanghai, China
| | - Jiali Deng
- School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
20
|
Exosomal miRNA: Small Molecules, Big Impact in Colorectal Cancer. JOURNAL OF ONCOLOGY 2019; 2019:8585276. [PMID: 31737071 PMCID: PMC6815599 DOI: 10.1155/2019/8585276] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related deaths worldwide. Tumor microenvironment (TME) contains many cell types including stromal cells, immune cells, and endothelial cells. The TME modulation explains the heterogeneity of response to therapy observed in patients. In this context, exosomes are emerging as major contributors in cancer biology. Indeed, exosomes are implicated in tumor proliferation, angiogenesis, invasion, and premetastatic niche formation. They contain bioactive molecules such as proteins, lipids, and RNAs. More recently, many studies on exosomes have focused on miRNAs, small noncoding RNA molecules able to influence protein expression. In this review, we describe miRNAs transported by exosomes in the context of CRC and discuss their influence on TME and their potential as circulating biomarkers. This overview underlines emerging roles for exosomal miRNAs in cancer research for the near future.
Collapse
|
21
|
The Role of Exo-miRNAs in Cancer: A Focus on Therapeutic and Diagnostic Applications. Int J Mol Sci 2019; 20:ijms20194687. [PMID: 31546654 PMCID: PMC6801421 DOI: 10.3390/ijms20194687] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Exosomes are extracellular vesicles released into biological fluids where they act as carriers of various molecules, including proteins, lipids, and RNAs, between cells, modulating or perturbing specific physiological processes. Recently, it has been suggested that tumoral cells release excessive amounts of exosomes that, through their cargo, promote tumor progression, stimulating growth, angiogenesis, metastasis, insensitivity to chemotherapy, and immune evasion. Increasing evidence highlights exosomal microRNAs (exo-miRNAs) as important players in tumorigenesis. MicroRNA (miRNA) are a class of small non-coding RNA able to regulate gene expression, targeting multiple mRNAs and inducing translational repression and/or mRNA degradation. Exo-miRNAs are highly stable and easily detectable in biological fluids, and for these reasons, miRNAs are potential cancer biomarkers useful diagnostically and prognostically. Furthermore, since exosomes are natural delivery systems between cells, they can be appropriately modified to carry therapeutic miRNAs to specific recipient cells. Here we summarize the main functions of exo-miRNAs and their possible role for diagnostic and therapeutic applications.
Collapse
|
22
|
Qian Z, Gong L, Mou Y, Han Y, Zheng S. MicroRNA‑203a‑3p is a candidate tumor suppressor that targets thrombospondin 2 in colorectal carcinoma. Oncol Rep 2019; 42:1825-1832. [PMID: 31545460 PMCID: PMC6775819 DOI: 10.3892/or.2019.7310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the role of miR-203a-3p in colorectal cancer (CRC) and identify the target gene of microRNA (miR)-203a-3p. A total of 59 sets of cancer tissues and corresponding adjacent non-tumor tissues were collected from CRC patients (aged 31–78 years) between October 2016 and May 2017. Total RNA extraction and reverse transcription-quantitative polymerase chain reaction analysis, transfection assay, and Transwell and apoptosis assays, western blot analysis, a luciferase reporter assay and immunohistochemistry were performed. miR-203a-3p was found to be significantly downregulated in CRC tissues compared with adjacent normal tissues. The overexpression of miR-203a-3p was shown to inhibit the invasion and migration of human CRC SW480 and HT29 cells, and increase their apoptosis rates. Furthermore, miR-203a-3p downregulated the expression of thrombospondin 2 (THBS2) in SW480 and HT29 cells. It was also experimentally demonstrated that miR-203a-3p binds to the 3′-untranslated region of THBS2, downregulating THBS2 expression and thereby inhibiting CRC progression and metastasis. The expression of miR-203a-3p, which serves a tumor-suppressive role, in CRC tissues was significantly downregulated. As miR-203a-3p was determined to target THBS2 to inhibit CRC progression and metastasis; thus, miR-203a-3p may be considered as a potential novel approach to treating CRC.
Collapse
Affiliation(s)
- Zhenyuan Qian
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Lijie Gong
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Yiping Mou
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yong Han
- Clinical Research Institute of Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shusen Zheng
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
23
|
Wang M, Yu W, Gao J, Ma W, Frentsch M, Thiel A, Liu M, Rahman N, Qin Z, Li X. MicroRNA‐487a‐3p functions as a new tumor suppressor in prostate cancer by targeting CCND1. J Cell Physiol 2019; 235:1588-1600. [PMID: 31309555 DOI: 10.1002/jcp.29078] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Mingming Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University Beijing China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences China Agricultural University Beijing China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou China
| | - Wanpeng Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University Beijing China
| | - Jun Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University Beijing China
| | - Wenqiang Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University Beijing China
| | - Macro Frentsch
- Regenerative Immunology and Aging, Berlin‐Brandenburger Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin Berlin Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, Berlin‐Brandenburger Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin Berlin Germany
| | - Mei Liu
- Department of Pathology Chinese PLA General Hospital Beijing China
| | - Nafis Rahman
- Department of Physiology, Institute of Biomedicine University of Turku Turku Finland
| | - Zhihai Qin
- Institute of Biophysics Chinese Academy of Sciences Beijing China
| | - Xiangdong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University Beijing China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences China Agricultural University Beijing China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou China
- Department of Reproduction and Gynecological Endocrinology Medical University of Bialystok Bialystok Poland
| |
Collapse
|