1
|
Loret C, Scherrer C, Rovini A, Lesage E, Richard L, Danigo A, Sturtz F, Favreau F, Faye PA, Lia AS. Addressing myelination disorders: Novel strategies using human 3D peripheral nerve model. Brain Res Bull 2025; 222:111252. [PMID: 39938756 DOI: 10.1016/j.brainresbull.2025.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Peripheral myelination disorders encompass a variety of disorders that affect myelin sheaths in the peripheral nervous system. The Charcot-Marie-Tooth disease (CMT), the most common inherited peripheral neuropathy, is one of the most prevalent among them. CMT stems from a wide range of genetic causes that disrupt the nerve conduction, leading to progressive muscle weakness and atrophy, sensory loss, and motor function impairment. Historically, the study of these disorders has relied heavily on animal studies, owing to the challenges in accessing human cells. However, the advent of human induced pluripotent stem cell (hiPSC)-derived neuronal cells has addressed these limitations in the realm of peripheral myelination disorders. Despite this, obtaining myelin in these models remains an expensive, time-consuming, and material-intensive process. This study presents a novel, cost-effective method utilizing hiPSC-derived Schwann cells and motor neurons in a three-dimensional culture system. Our method successfully enabled the acquisition of myelin in a control clone within just four weeks, as confirmed by electron microscopy. Furthermore, the utility of these approaches was validated by studying CMT4C, also named AR-CMTde-SH3TC2, the most common recessive demyelinating form of CMT. This revealed defects in Schwann cell support to motor neuron neurite outgrowth and impaired myelination in disease-specific hiPSC-derived lines. This approach offers valuable insights into the pathogenesis of peripheral myelination disorders and provides a platform for testing potential therapeutic strategies.
Collapse
Affiliation(s)
- Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France.
| | - Camille Scherrer
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Amandine Rovini
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Esther Lesage
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Laurence Richard
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Service de Neurologie, Limoges F-87000, France
| | - Aurore Danigo
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Service de Neurologie, Limoges F-87000, France
| | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France.
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France; CHU Limoges, Department of Bioinformatics, Limoges F-87000, France
| |
Collapse
|
2
|
Dong H, Qin B, Zhang H, Lei L, Wu S. Current Treatment Methods for Charcot-Marie-Tooth Diseases. Biomolecules 2024; 14:1138. [PMID: 39334903 PMCID: PMC11430469 DOI: 10.3390/biom14091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Charcot-Marie-Tooth (CMT) disease, the most common inherited neuromuscular disorder, exhibits a wide phenotypic range, genetic heterogeneity, and a variable disease course. The diverse molecular genetic mechanisms of CMT were discovered over the past three decades with the development of molecular biology and gene sequencing technologies. These methods have brought new options for CMT reclassification and led to an exciting era of treatment target discovery for this incurable disease. Currently, there are no approved disease management methods that can fully cure patients with CMT, and rehabilitation, orthotics, and surgery are the only available treatments to ameliorate symptoms. Considerable research attention has been given to disease-modifying therapies, including gene silencing, gene addition, and gene editing, but most treatments that reach clinical trials are drug treatments, while currently, only gene therapies for CMT2S have reached the clinical trial stage. In this review, we highlight the pathogenic mechanisms and therapeutic investigations of different subtypes of CMT, and promising therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Hongxian Dong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| | - Boquan Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shizhou Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| |
Collapse
|
3
|
Van Lent J, Prior R, Pérez Siles G, Cutrupi AN, Kennerson ML, Vangansewinkel T, Wolfs E, Mukherjee-Clavin B, Nevin Z, Judge L, Conklin B, Tyynismaa H, Clark AJ, Bennett DL, Van Den Bosch L, Saporta M, Timmerman V. Advances and challenges in modeling inherited peripheral neuropathies using iPSCs. Exp Mol Med 2024; 56:1348-1364. [PMID: 38825644 PMCID: PMC11263568 DOI: 10.1038/s12276-024-01250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date. This lack of treatment highlights the urgent need for more biologically and clinically relevant models recapitulating IPNs. For both neurodevelopmental and neurodegenerative diseases, patient-specific induced pluripotent stem cells (iPSCs) are a particularly powerful platform for disease modeling and preclinical studies. In this review, we provide an update on different in vitro human cellular IPN models, including traditional two-dimensional monoculture iPSC derivatives, and recent advances in more complex human iPSC-based systems using microfluidic chips, organoids, and assembloids.
Collapse
Grants
- R01 NS119678 NINDS NIH HHS
- U01 ES032673 NIEHS NIH HHS
- Wellcome Trust
- R01 AG072052 NIA NIH HHS
- DOC-PRO4 Universiteit Antwerpen (University of Antwerp)
- RF1 AG072052 NIA NIH HHS
- This work was supported in part by the University of Antwerp (DOC-PRO4 PhD fellowship to J.V.L. and TOP-BOF research grant no. 38694 to V.T.), the Association Française contre les Myopathies (AFM research grant no. 24063 to V.T.), Association Belge contre les Maladies Neuromusculaires (ABMM research grant no. 1 to J.V.L and V.T), the interuniversity research fund (iBOF project to. L.V.D.B, E.W. and V.T.). V.T. is part of the μNEURO Research Centre of Excellence of the University of Antwerp and is an active member of the European Network for Stem Cell Core Facilities (CorEUStem, COST Action CA20140). Work in the M.L.K group was supported by the NHMRC Ideas Grant (APP1186867), CMT Australia Grant awarded to M.L.K and G.P.-S and the Australian Medical Research Future Fund (MRFF) Genomics Health Futures Mission Grant 2007681. B.M.C. is supported by the American Academy of Neurology and the Passano Foundation. L.M.J. and B.R.C. are supported by the Charcot-Marie-Tooth Association, NINDS R01 NS119678, NIEHS U01 ES032673. H.T. is supported by Academy of Finland Centre of Excellence in Stem Cell Metabolism and Sigrid Juselius Foundation. Work in the D.L.B. group is supported by a Wellcome Investigator Grant (223149/Z/21/Z), the MRC (MR/T020113/1), and with funding from the MRC and Versus Arthritis to the PAINSTORM consortium as part of the Advanced Pain Discovery Platform (MR/W002388/1).
- Australian Medical Association (Australian Medical Association Limited)
- Universiteit Hasselt (UHasselt)
- American Academy of Neurology (AAN)
- Gladstone Institutes (J. David Gladstone Institutes)
- Academy of Finland (Suomen Akatemia)
- Academy of Medical Royal Colleges (AoMRC)
- Wellcome Trust (Wellcome)
- Oxford University Hospitals NHS Trust (Oxford University Hospitals National Health Service Trust)
- KU Leuven (Katholieke Universiteit Leuven)
- Vlaams Instituut voor Biotechnologie (Flanders Institute for Biotechnology)
- Miami University | Leonard M. Miller School of Medicine (Miller School of Medicine)
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium
- Institute of Oncology Research (IOR), BIOS+, 6500, Bellinzona, Switzerland
- Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Robert Prior
- Universitätsklinikum Bonn (UKB), University of Bonn, Bonn, Germany
| | - Gonzalo Pérez Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Anthony N Cutrupi
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Tim Vangansewinkel
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Esther Wolfs
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
| | | | | | - Luke Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Conklin
- Gladstone Institutes, San Francisco, CA, USA
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Alex J Clark
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - Ludo Van Den Bosch
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000, Leuven, Belgium
| | - Mario Saporta
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium.
| |
Collapse
|
4
|
El Massry M, Msheik Z, El Masri T, Ntoutoume GMAN, Vignaud L, Richard L, Pinault E, Faye PA, Bregier F, Marquet P, Favreau F, Vallat JM, Billet F, Sol V, Sturtz F, Desmouliere A. Improvement of Charcot-Marie-Tooth Phenotype with a Nanocomplex Treatment in Two Transgenic Models of CMT1A. Biomater Res 2024; 28:0009. [PMID: 38560579 PMCID: PMC10981932 DOI: 10.34133/bmr.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/14/2024] [Indexed: 04/04/2024] Open
Abstract
Curcumin has been shown to exert beneficial effects in peripheral neuropathies. Despite its known biological activities, curcumin has unfavorable pharmacokinetics. Its instability has been linked to its failure in clinical trials of curcumin for the treatment of human pathologies. For this reason, we developed curcumin-loaded cyclodextrin/cellulose nanocrystals (NanoCur) to improve its pharmacokinetics. The present study aims to assess the potency of a low dose of NanoCur in 2 Charcot-Marie-Tooth disease type 1A (CMT1A) rodent models at different stages of the disease. The efficiency of NanoCur is also compared to that of Theracurmin (Thera), a commercially available curcumin formulation. The toxicity of a short-term and chronic exposure to the treatment is investigated both in vitro and in vivo, respectively. Furthermore, the entry route, the mechanism of action and the effect on the nerve phenotype are dissected in this study. Overall, the data support an improvement in sensorimotor functions, associated with amelioration in peripheral myelination in NanoCur-treated animals; an effect that was not evident in the Thera-treated group. That was combined with a high margin of safety both in vivo and in vitro. Furthermore, NanoCur appears to inhibit inflammatory pathways that normally include macrophage recruitment to the diseased nerve. This study shows that NanoCur shows therapeutic benefits with minimal systemic toxicity, suggesting that it is a potential therapeutic candidate for CMT1A and, possibly, for other neuropathies.
Collapse
Affiliation(s)
- Mohamed El Massry
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| | - Zeina Msheik
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| | - Tarek El Masri
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Anatomy, Cell Biology & Physiological Sciences, Faculty of Medicine,
American University of Beirut, Beirut, Lebanon
| | | | - Laetitia Vignaud
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| | - Laurence Richard
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Reference Center for Rare Peripheral Neuropathies, Department of Neurology,
University Hospital of Limoges, Limoges, France
| | - Emilie Pinault
- BISCEm (Biologie Intégrative Santé Chimie Environnement) Platform, US 42 Inserm/UAR 2015 CNRS,
University of Limoges, Limoges, France
| | - Pierre-Antoine Faye
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Biochemistry,
University Hospital of Limoges, Limoges, France
| | | | - Pierre Marquet
- INSERM U1248 Pharmacology & Transplantation, CBRS, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Pharmacology and Toxicology,
CHU Limoges, Limoges, France
| | - Frédéric Favreau
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Biochemistry,
University Hospital of Limoges, Limoges, France
| | - Jean-Michel Vallat
- Reference Center for Rare Peripheral Neuropathies, Department of Neurology,
University Hospital of Limoges, Limoges, France
| | - Fabrice Billet
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| | - Vincent Sol
- LABCiS UR22722,
University of Limoges, F-87000 Limoges, France
| | - Franck Sturtz
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Biochemistry,
University Hospital of Limoges, Limoges, France
| | - Alexis Desmouliere
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| |
Collapse
|
5
|
Mandarakas MR, Eichinger KJ, Bray P, Cornett KMD, Shy ME, Reilly MM, Ramdharry GM, Scherer SS, Pareyson D, Estilow T, McKay MJ, Herrmann DN, Burns J. Multicenter Validation of the Charcot-Marie-Tooth Functional Outcome Measure. Neurology 2024; 102:e207963. [PMID: 38237108 PMCID: PMC11097760 DOI: 10.1212/wnl.0000000000207963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/13/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Charcot-Marie-Tooth disease type 1A (CMT1A), caused by a duplication of PMP22, is the most common hereditary peripheral neuropathy. For participants with CMT1A, few clinical trials have been performed; however, multiple therapies have reached an advanced stage of preclinical development. In preparation for imminent clinical trials in participants with CMT1A, we have produced a Clinical Outcome Assessment (COA), known as the CMT-Functional Outcome Measure (CMT-FOM), in accordance with the FDA Roadmap to Patient-Focused Outcome Measurement to capture the key clinical end point of function. METHODS Participants were recruited through CMT clinics in the United States (n = 130), the United Kingdom (n = 52), and Italy (n = 32). To derive the most accurate signal with the fewest items to identify a therapeutic response, a series of validation studies were conducted including item and factor analysis, Rasch model analysis and testing of interrater reliability, discriminative ability, and convergent validity. RESULTS A total of 214 participants aged 18-75 years with CMT1A (58% female) were included in this study. Item, factor, and Rasch analysis supported the viability of the 12-item CMT-FOM as a unidimensional interval scale of function in adults with CMT1A. The CMT-FOM covers strength, upper and lower limb function, balance, and mobility. The 0-100 point scoring system showed good overall model fit, no evidence of misfitting items, and no person misfit, and it was well targeted for adults with CMT1A exhibiting high inter-rater reliability across a range of clinical settings and evaluators. The CMT-FOM was significantly correlated with the CMT Examination Score (r = 0.643; p < 0.001) and the Overall Neuropathy Limitation Scale (r = 0.516; p < 0.001). Significantly higher CMT-FOM total scores were observed in participants self-reporting daily trips and falls, unsteady ankles, hand tremor, and hand weakness (p < 0.05). DISCUSSION The CMT-FOM is a psychometrically robust multi-item, unidimensional, disease-specific COA covering strength, upper and lower limb function, balance, and mobility to capture how participants with CMT1A function to identify therapeutic efficacy.
Collapse
Affiliation(s)
- Melissa R Mandarakas
- From the The University of Sydney School of Health Sciences (M.R.M., P.B., K.M.D.C., M.J.M., J.B.), Faculty of Medicine and Health; Sydney Children's Hospitals Network (Randwick and Westmead) (M.R.M., P.B., K.M.C., J.B.), New South Wales, Australia; Department of Neurology (K.J.E., D.N.H.), University of Rochester, NY; Department of Neurology (M.E.S.), Carver College of Medicine, University of Iowa; Centre for Neuromuscular Diseases (M.M.R., G.M.R.), Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.S.S.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Fondazione IRCCS Istituto Neurologico Carlo Besta (D.P.), Milan, Italy; and The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania (T.E.), Philadelphia
| | - Katy J Eichinger
- From the The University of Sydney School of Health Sciences (M.R.M., P.B., K.M.D.C., M.J.M., J.B.), Faculty of Medicine and Health; Sydney Children's Hospitals Network (Randwick and Westmead) (M.R.M., P.B., K.M.C., J.B.), New South Wales, Australia; Department of Neurology (K.J.E., D.N.H.), University of Rochester, NY; Department of Neurology (M.E.S.), Carver College of Medicine, University of Iowa; Centre for Neuromuscular Diseases (M.M.R., G.M.R.), Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.S.S.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Fondazione IRCCS Istituto Neurologico Carlo Besta (D.P.), Milan, Italy; and The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania (T.E.), Philadelphia
| | - Paula Bray
- From the The University of Sydney School of Health Sciences (M.R.M., P.B., K.M.D.C., M.J.M., J.B.), Faculty of Medicine and Health; Sydney Children's Hospitals Network (Randwick and Westmead) (M.R.M., P.B., K.M.C., J.B.), New South Wales, Australia; Department of Neurology (K.J.E., D.N.H.), University of Rochester, NY; Department of Neurology (M.E.S.), Carver College of Medicine, University of Iowa; Centre for Neuromuscular Diseases (M.M.R., G.M.R.), Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.S.S.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Fondazione IRCCS Istituto Neurologico Carlo Besta (D.P.), Milan, Italy; and The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania (T.E.), Philadelphia
| | - Kayla M D Cornett
- From the The University of Sydney School of Health Sciences (M.R.M., P.B., K.M.D.C., M.J.M., J.B.), Faculty of Medicine and Health; Sydney Children's Hospitals Network (Randwick and Westmead) (M.R.M., P.B., K.M.C., J.B.), New South Wales, Australia; Department of Neurology (K.J.E., D.N.H.), University of Rochester, NY; Department of Neurology (M.E.S.), Carver College of Medicine, University of Iowa; Centre for Neuromuscular Diseases (M.M.R., G.M.R.), Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.S.S.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Fondazione IRCCS Istituto Neurologico Carlo Besta (D.P.), Milan, Italy; and The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania (T.E.), Philadelphia
| | - Michael E Shy
- From the The University of Sydney School of Health Sciences (M.R.M., P.B., K.M.D.C., M.J.M., J.B.), Faculty of Medicine and Health; Sydney Children's Hospitals Network (Randwick and Westmead) (M.R.M., P.B., K.M.C., J.B.), New South Wales, Australia; Department of Neurology (K.J.E., D.N.H.), University of Rochester, NY; Department of Neurology (M.E.S.), Carver College of Medicine, University of Iowa; Centre for Neuromuscular Diseases (M.M.R., G.M.R.), Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.S.S.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Fondazione IRCCS Istituto Neurologico Carlo Besta (D.P.), Milan, Italy; and The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania (T.E.), Philadelphia
| | - Mary M Reilly
- From the The University of Sydney School of Health Sciences (M.R.M., P.B., K.M.D.C., M.J.M., J.B.), Faculty of Medicine and Health; Sydney Children's Hospitals Network (Randwick and Westmead) (M.R.M., P.B., K.M.C., J.B.), New South Wales, Australia; Department of Neurology (K.J.E., D.N.H.), University of Rochester, NY; Department of Neurology (M.E.S.), Carver College of Medicine, University of Iowa; Centre for Neuromuscular Diseases (M.M.R., G.M.R.), Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.S.S.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Fondazione IRCCS Istituto Neurologico Carlo Besta (D.P.), Milan, Italy; and The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania (T.E.), Philadelphia
| | - Gita M Ramdharry
- From the The University of Sydney School of Health Sciences (M.R.M., P.B., K.M.D.C., M.J.M., J.B.), Faculty of Medicine and Health; Sydney Children's Hospitals Network (Randwick and Westmead) (M.R.M., P.B., K.M.C., J.B.), New South Wales, Australia; Department of Neurology (K.J.E., D.N.H.), University of Rochester, NY; Department of Neurology (M.E.S.), Carver College of Medicine, University of Iowa; Centre for Neuromuscular Diseases (M.M.R., G.M.R.), Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.S.S.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Fondazione IRCCS Istituto Neurologico Carlo Besta (D.P.), Milan, Italy; and The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania (T.E.), Philadelphia
| | - Steven S Scherer
- From the The University of Sydney School of Health Sciences (M.R.M., P.B., K.M.D.C., M.J.M., J.B.), Faculty of Medicine and Health; Sydney Children's Hospitals Network (Randwick and Westmead) (M.R.M., P.B., K.M.C., J.B.), New South Wales, Australia; Department of Neurology (K.J.E., D.N.H.), University of Rochester, NY; Department of Neurology (M.E.S.), Carver College of Medicine, University of Iowa; Centre for Neuromuscular Diseases (M.M.R., G.M.R.), Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.S.S.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Fondazione IRCCS Istituto Neurologico Carlo Besta (D.P.), Milan, Italy; and The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania (T.E.), Philadelphia
| | - Davide Pareyson
- From the The University of Sydney School of Health Sciences (M.R.M., P.B., K.M.D.C., M.J.M., J.B.), Faculty of Medicine and Health; Sydney Children's Hospitals Network (Randwick and Westmead) (M.R.M., P.B., K.M.C., J.B.), New South Wales, Australia; Department of Neurology (K.J.E., D.N.H.), University of Rochester, NY; Department of Neurology (M.E.S.), Carver College of Medicine, University of Iowa; Centre for Neuromuscular Diseases (M.M.R., G.M.R.), Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.S.S.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Fondazione IRCCS Istituto Neurologico Carlo Besta (D.P.), Milan, Italy; and The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania (T.E.), Philadelphia
| | - Timothy Estilow
- From the The University of Sydney School of Health Sciences (M.R.M., P.B., K.M.D.C., M.J.M., J.B.), Faculty of Medicine and Health; Sydney Children's Hospitals Network (Randwick and Westmead) (M.R.M., P.B., K.M.C., J.B.), New South Wales, Australia; Department of Neurology (K.J.E., D.N.H.), University of Rochester, NY; Department of Neurology (M.E.S.), Carver College of Medicine, University of Iowa; Centre for Neuromuscular Diseases (M.M.R., G.M.R.), Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.S.S.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Fondazione IRCCS Istituto Neurologico Carlo Besta (D.P.), Milan, Italy; and The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania (T.E.), Philadelphia
| | - Marnee J McKay
- From the The University of Sydney School of Health Sciences (M.R.M., P.B., K.M.D.C., M.J.M., J.B.), Faculty of Medicine and Health; Sydney Children's Hospitals Network (Randwick and Westmead) (M.R.M., P.B., K.M.C., J.B.), New South Wales, Australia; Department of Neurology (K.J.E., D.N.H.), University of Rochester, NY; Department of Neurology (M.E.S.), Carver College of Medicine, University of Iowa; Centre for Neuromuscular Diseases (M.M.R., G.M.R.), Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.S.S.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Fondazione IRCCS Istituto Neurologico Carlo Besta (D.P.), Milan, Italy; and The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania (T.E.), Philadelphia
| | - David N Herrmann
- From the The University of Sydney School of Health Sciences (M.R.M., P.B., K.M.D.C., M.J.M., J.B.), Faculty of Medicine and Health; Sydney Children's Hospitals Network (Randwick and Westmead) (M.R.M., P.B., K.M.C., J.B.), New South Wales, Australia; Department of Neurology (K.J.E., D.N.H.), University of Rochester, NY; Department of Neurology (M.E.S.), Carver College of Medicine, University of Iowa; Centre for Neuromuscular Diseases (M.M.R., G.M.R.), Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.S.S.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Fondazione IRCCS Istituto Neurologico Carlo Besta (D.P.), Milan, Italy; and The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania (T.E.), Philadelphia
| | - Joshua Burns
- From the The University of Sydney School of Health Sciences (M.R.M., P.B., K.M.D.C., M.J.M., J.B.), Faculty of Medicine and Health; Sydney Children's Hospitals Network (Randwick and Westmead) (M.R.M., P.B., K.M.C., J.B.), New South Wales, Australia; Department of Neurology (K.J.E., D.N.H.), University of Rochester, NY; Department of Neurology (M.E.S.), Carver College of Medicine, University of Iowa; Centre for Neuromuscular Diseases (M.M.R., G.M.R.), Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (S.S.S.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia; Fondazione IRCCS Istituto Neurologico Carlo Besta (D.P.), Milan, Italy; and The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania (T.E.), Philadelphia
| |
Collapse
|
6
|
Nam YH, Park S, Yum Y, Jeong S, Park HE, Kim HJ, Lim J, Choi BO, Jung SC. Preclinical Efficacy of Peripheral Nerve Regeneration by Schwann Cell-like Cells Differentiated from Human Tonsil-Derived Mesenchymal Stem Cells in C22 Mice. Biomedicines 2023; 11:3334. [PMID: 38137555 PMCID: PMC10741921 DOI: 10.3390/biomedicines11123334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a hereditary disease with heterogeneous phenotypes and genetic causes. CMT type 1A (CMT1A) is a type of disease affecting the peripheral nerves and is caused by the duplication of the peripheral myelin protein 22 (PMP22) gene. Human tonsil-derived mesenchymal stem cells (TMSCs) are useful for stem cell therapy in various diseases and can be differentiated into Schwann cell-like cells (TMSC-SCs). We investigated the potential of TMSC-SCs called neuronal regeneration-promoting cells (NRPCs) for peripheral nerve and muscle regeneration in C22 mice, a model for CMT1A. We transplanted NRPCs manufactured in a good manufacturing practice facility into the bilateral thigh muscles of C22 mice and performed behavior and nerve conduction tests and histological and ultrastructural analyses. Significantly, the motor function was much improved, the ratio of myelinated axons was increased, and the G-ratio was reduced by the transplantation of NRPCs. The sciatic nerve and gastrocnemius muscle regeneration of C22 mice following the transplantation of NRPCs downregulated PMP22 overexpression, which was observed in a dose-dependent manner. These results suggest that NRPCs are feasible for clinical research for the treatment of CMT1A patients. Research applying NRPCs to other peripheral nerve diseases is also needed.
Collapse
Affiliation(s)
- Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
| | - Yoonji Yum
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
| | - Soyeon Jeong
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
| | - Hyo Eun Park
- Cellatoz Therapeutics Inc., Seongnam-si 13487, Gyeonggi-do, Republic of Korea; (H.E.P.); (H.J.K.); (J.L.)
| | - Ho Jin Kim
- Cellatoz Therapeutics Inc., Seongnam-si 13487, Gyeonggi-do, Republic of Korea; (H.E.P.); (H.J.K.); (J.L.)
| | - Jaeseung Lim
- Cellatoz Therapeutics Inc., Seongnam-si 13487, Gyeonggi-do, Republic of Korea; (H.E.P.); (H.J.K.); (J.L.)
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (S.P.); (Y.Y.); (S.J.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
7
|
Cavalcanti EBU, Leal RDCC, Marques Junior W, Nascimento OJMD. Charcot-Marie-Tooth disease: from historical landmarks in Brazil to current care perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:913-921. [PMID: 37611635 PMCID: PMC10631856 DOI: 10.1055/s-0043-1770348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/16/2023] [Indexed: 08/25/2023]
Abstract
Hereditary motor and sensory neuropathy, also known as Charcot-Marie-Tooth disease (CMT), traditionally refers to a group of genetic disorders in which neuropathy is the main or sole feature. Its prevalence varies according to different populations studied, with an estimate between 1:2,500 to 1:10,000. Since the identification of PMP22 gene duplication on chromosome 17 by Vance et al., in 1989, more than 100 genes have been related to this group of disorders, and we have seen advances in the care of patients, with identification of associated conditions and better supportive treatments, including clinical and surgical interventions. Also, with discoveries in the field of genetics, including RNA interference and gene editing techniques, new treatment perspectives begin to emerge. In the present work, we report the most import landmarks regarding CMT research in Brazil and provide a comprehensive review on topics such as frequency of different genes associated with CMT in our population, prevalence of pain, impact on pregnancy, respiratory features, and development of new therapies.
Collapse
Affiliation(s)
| | | | - Wilson Marques Junior
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurologia, Ribeirão Preto SP, Brazil.
| | | |
Collapse
|
8
|
Van Lent J, Vendredy L, Adriaenssens E, Da Silva Authier T, Asselbergh B, Kaji M, Weckhuysen S, Van Den Bosch L, Baets J, Timmerman V. Downregulation of PMP22 ameliorates myelin defects in iPSC-derived human organoid cultures of CMT1A. Brain 2023; 146:2885-2896. [PMID: 36511878 PMCID: PMC10316758 DOI: 10.1093/brain/awac475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 10/11/2023] Open
Abstract
Charcot-Marie-Tooth disease is the most common inherited disorder of the PNS. CMT1A accounts for 40-50% of all cases and is caused by a duplication of the PMP22 gene on chromosome 17, leading to dysmyelination in the PNS. Patient-derived models to study such myelination defects are lacking as the in vitro generation of human myelinating Schwann cells has proved to be particularly challenging. Here, we present an induced pluripotent stem cell-derived organoid culture, containing various cell types of the PNS, including myelinating human Schwann cells, which mimics the human PNS. Single-cell analysis confirmed the PNS-like cellular composition and provides insight into the developmental trajectory. We used this organoid model to study disease signatures of CMT1A, revealing early ultrastructural myelin alterations, including increased myelin periodic line distance and hypermyelination of small axons. Furthermore, we observed the presence of onion-bulb-like formations in a later developmental stage. These hallmarks were not present in the CMT1A-corrected isogenic line or in a CMT2A iPSC line, supporting the notion that these alterations are specific to CMT1A. Downregulation of PMP22 expression using short-hairpin RNAs or a combinatorial drug consisting of baclofen, naltrexone hydrochloride and D-sorbitol was able to ameliorate the myelin defects in CMT1A-organoids. In summary, this self-organizing organoid model can capture biologically meaningful features of the disease and capture the physiological complexity, forms an excellent model for studying demyelinating diseases and supports the therapeutic approach of reducing PMP22 expression.
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Elias Adriaenssens
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Tatiana Da Silva Authier
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Marcus Kaji
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, Antwerp 2610, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, Leuven Brain Institute, KU Leuven—University of Leuven, Leuven 3000, Belgium
- VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp 2610, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
9
|
Ostertag C, Klein D, Martini R. Presymptomatic macrophage targeting has a long-lasting therapeutic effect on treatment termination. Exp Neurol 2022; 357:114195. [PMID: 35931123 DOI: 10.1016/j.expneurol.2022.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022]
Abstract
Macrophage-mediated inflammation is a potent driver of disease progression in mouse models of Charcot-Marie-Tooth (CMT) 1 diseases. This leads to the possibility to consider these cells as therapeutic targets to dampen disease outcome in the so far non-treatable neuropathies. As a pharmacological proof-of-principle study, long-term targeting of nerve macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 showed a substantial alleviation of the neuropathy in distinct CMT1 mouse models. However, regarding translational options, clinically relevant questions emerged regarding treatment onset, duration and termination. Corroborating previous data, we here show that in a model for CMT1B, peripheral neuropathy was substantially alleviated after early continuous PLX5622 treatment in CMT1B mice, leading to preserved motor function. However, late-onset treatment failed to mitigate histopathological and clinical features, despite a similar reduction in the number of macrophages. Surprisingly, in CMT1B mice, terminating early PLX5622 treatment at six months was still sufficient to preserve motor function at 12 months of age, suggesting a long-lasting, therapeutic effect of early macrophage depletion. This novel and unexpected finding may have important translational implications, since we here show that continuous macrophage targeting appears not to be necessary for disease alleviation, provided that the treatment starts within an early, critical time window.
Collapse
Affiliation(s)
- Charlotte Ostertag
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
10
|
Stavrou M, Kagiava A, Choudury SG, Jennings MJ, Wallace LM, Fowler AM, Heslegrave A, Richter J, Tryfonos C, Christodoulou C, Zetterberg H, Horvath R, Harper SQ, Kleopa KA. A translatable RNAi-driven gene therapy silences PMP22/Pmp22 genes and improves neuropathy in CMT1A mice. J Clin Invest 2022; 132:159814. [PMID: 35579942 PMCID: PMC9246392 DOI: 10.1172/jci159814] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A), the most common inherited demyelinating peripheral neuropathy, is caused by PMP22 gene duplication. Overexpression of WT PMP22 in Schwann cells destabilizes the myelin sheath, leading to demyelination and ultimately to secondary axonal loss and disability. No treatments currently exist that modify the disease course. The most direct route to CMT1A therapy will involve reducing PMP22 to normal levels. To accomplish this, we developed a gene therapy strategy to reduce PMP22 using artificial miRNAs targeting human PMP22 and mouse Pmp22 mRNAs. Our lead therapeutic miRNA, miR871, was packaged into an adeno-associated virus 9 (AAV9) vector and delivered by lumbar intrathecal injection into C61-het mice, a model of CMT1A. AAV9-miR871 efficiently transduced Schwann cells in C61-het peripheral nerves and reduced human and mouse PMP22 mRNA and protein levels. Treatment at early and late stages of the disease significantly improved multiple functional outcome measures and nerve conduction velocities. Furthermore, myelin pathology in lumbar roots and femoral motor nerves was ameliorated. The treated mice also showed reductions in circulating biomarkers of CMT1A. Taken together, our data demonstrate that AAV9-miR871–driven silencing of PMP22 rescues a CMT1A model and provides proof of principle for treating CMT1A using a translatable gene therapy approach.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Sarah G Choudury
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lindsay M Wallace
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Allison M Fowler
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Amanda Heslegrave
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jan Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Henrik Zetterberg
- Institute of Laboratory Medicine, Göteborgs University, Göteborg, Sweden
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Scott Q Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
11
|
Klein D, Groh J, Yuan X, Berve K, Stassart R, Fledrich R, Martini R. Early targeting of endoneurial macrophages alleviates the neuropathy and affects abnormal Schwann cell differentiation in a mouse model of Charcot-Marie-Tooth 1A. Glia 2022; 70:1100-1116. [PMID: 35188681 DOI: 10.1002/glia.24158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients.
Collapse
Affiliation(s)
- Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Xidi Yuan
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Berve
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Ruth Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Robert Fledrich
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Attarian S, Young P, Brannagan TH, Adams D, Van Damme P, Thomas FP, Casanovas C, Kafaie J, Tard C, Walter MC, Péréon Y, Walk D, Stino A, de Visser M, Verhamme C, Amato A, Carter G, Magy L, Statland JM, Felice K. A double-blind, placebo-controlled, randomized trial of PXT3003 for the treatment of Charcot-Marie-Tooth type 1A. Orphanet J Rare Dis 2021; 16:433. [PMID: 34656144 PMCID: PMC8520617 DOI: 10.1186/s13023-021-02040-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 1A (CMT1A) is a rare, orphan, hereditary neuromuscular disorder with no cure and for which only symptomatic treatment is currently available. A previous phase 2 trial has shown preliminary evidence of efficacy for PXT3003 in treating CMT1A. This phase 3, international, randomized, double-blind, placebo-controlled study further investigated the efficacy and safety of high- or low-dose PXT3003 (baclofen/naltrexone/D-sorbitol [mg]: 6/0.70/210 or 3/0.35/105) in treating subjects with mild to moderate CMT1A. METHODS In this study, 323 subjects with mild-to-moderate CMT1A were randomly assigned in a 1:1:1 ratio to receive 5 mL of high- or low-dose PXT3003, or placebo, orally twice daily for up to 15 months. Efficacy was assessed using the change in Overall Neuropathy Limitations Scale total score from baseline to months 12 and 15 (primary endpoint). Secondary endpoints included the 10-m walk test and other assessments. The high-dose group was discontinued early due to unexpected crystal formation in the high-dose formulation, which resulted in an unanticipated high discontinuation rate, overall and especially in the high-dose group. The statistical analysis plan was adapted to account for the large amount of missing data before database lock, and a modified full analysis set was used in the main analyses. Two sensitivity analyses were performed to check the interpretation based on the use of the modified full analysis set. RESULTS High-dose PXT3003 demonstrated significant improvement in the Overall Neuropathy Limitations Scale total score vs placebo (mean difference: - 0.37 points; 97.5% CI [- 0.68 to - 0.06]; p = 0.008), and consistent treatment effects were shown in the sensitivity analyses. Both PXT3003 doses were safe and well-tolerated. CONCLUSION The high-dose group demonstrated a statistically significant improvement in the primary endpoint and a good safety profile. Overall, high-dose PXT3003 is a promising treatment option for patients with Charcot-Marie-Tooth disease type 1A.
Collapse
Affiliation(s)
- Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, CHU La Timone, Marseille, France.
| | - Peter Young
- Department of Neurology, Medical Park Bad Feilnbach, Bad Feilnbach, Germany
| | - Thomas H Brannagan
- Columbia University Medical Center, The Neurological Institute, New York, USA
| | - David Adams
- French Reference Center for Rare Peripheral Neuropathies, Service de Neurologie Adulte, APHP, CHU Bicêtre, Le Kremlin Bicêtre, France
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven, KU, Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Florian P Thomas
- Department of Neurology, Hackensack University Medical Center, Hackensack, USA
- Department of Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Carlos Casanovas
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain
- Neurometabolic Diseases Group, Bellvitge Research Institute (IDIBELL) and CIBERER, Barcelona, Spain
| | - Jafar Kafaie
- Department of Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Céline Tard
- U1171, Centre de référence des maladies neuromusculaires Nord Est Ile de France, Hôpital Salengro CHU de Lille, Lille, France
| | - Maggie C Walter
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Yann Péréon
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, CHU Nantes, Hôtel-Dieu, Nantes, France
| | - David Walk
- Clinical Neuroscience Research Unit, University of Minnesota, Minneapolis, USA
| | - Amro Stino
- University of Michigan Health System, Ann Arbor, MI, USA
| | - Marianne de Visser
- Department of Neurology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Camiel Verhamme
- Department of Neurology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Anthony Amato
- Department of Neurology, Brigham and Women's Hospital, Boston, USA
| | - Gregory Carter
- St. Luke's Rehabilitation Institute, Physical Medicine and Rehabilitation, Spokane, USA
| | | | | | - Kevin Felice
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, USA
| |
Collapse
|
13
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
14
|
Pisciotta C, Saveri P, Pareyson D. Updated review of therapeutic strategies for Charcot-Marie-Tooth disease and related neuropathies. Expert Rev Neurother 2021; 21:701-713. [PMID: 34033725 DOI: 10.1080/14737175.2021.1935242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Charcot-Marie-Tooth disease (CMT) and related neuropathies represent the most prevalent inherited neuromuscular disorders. Nonetheless, there is still no pharmacological treatment available for any CMT type. However, the landscape is rapidly evolving and several novel approaches are providing encouraging results in preclinical studies and leading to clinical trials.Areas covered: The authors review the most promising therapies under study and the ongoing/planned clinical trials. Several approaches to address PMP22 overexpression underlying CMT1A, the most frequent subtype, are being tested. Gene silencing, targeting PMP22, and gene therapy, to introduce specific genes or to substitute or modulate defective ones, are being experimented in animal models. Compounds acting on ER stress, unfolded protein response, neuregulin pathways, phosphoinositides metabolism, axonal transport and degeneration, inflammation, polyol pathway, deoxysphingolipid metabolism, purine nucleotide pool are potential therapeutic candidates for different forms of CMT and related neuropathies.Expert opinion: We are getting closer to find effective therapies for CMT, but are far behind the exciting examples of other genetic neuromuscular disorders. The authors analyze the possible reasons for this gap and the way to fill it. Preclinical and clinical research is ongoing with coordinated efforts and they are confident that in the next few years we will see the first effective treatments.
Collapse
Affiliation(s)
- Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Saveri
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
15
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
16
|
Ghosh S, Tourtellotte WG. The Complex Clinical and Genetic Landscape of Hereditary Peripheral Neuropathy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:487-509. [PMID: 33497257 DOI: 10.1146/annurev-pathol-030320-100822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hereditary peripheral neuropathy (HPN) is a complex group of neurological disorders caused by mutations in genes expressed by neurons and Schwann cells. The inheritance of a single mutation or multiple mutations in several genes leads to disease phenotype. Patients exhibit symptoms during development, at an early age or later in adulthood. Most of the mechanistic understanding about these neuropathies comes from animal models and histopathological analyses of postmortem human tissues. Diagnosis is often very complex due to the heterogeneity and overlap in symptoms and the frequent overlap between various genes and different mutations they possess. Some symptoms in HPN are common through different subtypes such as axonal degeneration, demyelination, and loss of motor and sensory neurons, leading to similar physiologic abnormalities. Recent advances in gene-targeted therapies, genetic engineering, and next-generation sequencing have augmented our understanding of the underlying pathogenetic mechanisms of HPN.
Collapse
Affiliation(s)
- Soumitra Ghosh
- Department of Pathology and Laboratory Medicine, Neurology, and Neurological Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA;
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Neurology, and Neurological Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA;
| |
Collapse
|
17
|
Boutary S, Echaniz-Laguna A, Adams D, Loisel-Duwattez J, Schumacher M, Massaad C, Massaad-Massade L. Treating PMP22 gene duplication-related Charcot-Marie-Tooth disease: the past, the present and the future. Transl Res 2021; 227:100-111. [PMID: 32693030 DOI: 10.1016/j.trsl.2020.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most frequent inherited neuropathy, affecting 1/1500 to 1/10000. CMT1A represents 60%-70% of all CMT and is caused by a duplication on chromosome 17p11.2 leading to an overexpression of the Peripheral Myelin Protein 22 (PMP22). PMP22 gene is under tight regulation and small changes in its expression influences myelination and affect motor and sensory functions. To date, CMT1A treatment is symptomatic and classic pharmacological options have been disappointing. Here, we review the past, present, and future treatment options for CMT1A, with a special emphasis on the highly promising potential of PMP22-targeted small interfering RNA and antisense oligonucleotides.
Collapse
Affiliation(s)
- Suzan Boutary
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Andoni Echaniz-Laguna
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - David Adams
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Julien Loisel-Duwattez
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | | | - Charbel Massaad
- Faculty of Basic and Biomedical Sciences, Paris Descartes University, INSERM UMRS 1124, Paris, France
| | | |
Collapse
|
18
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
19
|
Thenmozhi R, Lee JS, Park NY, Choi BO, Hong YB. Gene Therapy Options as New Treatment for Inherited Peripheral Neuropathy. Exp Neurobiol 2020; 29:177-188. [PMID: 32624504 PMCID: PMC7344374 DOI: 10.5607/en20004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited peripheral neuropathy (IPN) is caused by heterogeneous genetic mutations in more than 100 genes. So far, several treatment options for IPN have been developed and clinically evaluated using small molecules. However, gene therapy-based therapeutic strategies have not been aggressively investigated, likely due to the complexities of inheritance in IPN. Indeed, because the majority of the causative mutations of IPN lead to gain-of-function rather than loss-of-function, developing a therapeutic strategy is more difficult, especially considering gene therapy for genetic diseases began with the simple idea of replacing a defective gene with a functional copy. Recent advances in gene manipulation technology have brought novel approaches to gene therapy and its clinical application for IPN treatment. For example, in addition to the classically used gene replacement for mutant genes in recessively inherited IPN, other techniques including gene addition to modify the disease phenotype, modulations of target gene expression, and techniques to edit mutant genes have been developed and evaluated as potent therapeutic strategies for dominantly inherited IPN. In this review, the current status of gene therapy for IPN and future perspectives will be discussed.
Collapse
Affiliation(s)
| | - Ji-Su Lee
- Stem Cell & Regenerative Medicne Institute, Samsung Medical Center, Seoul 06351, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Na Young Park
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Byung-Ok Choi
- Stem Cell & Regenerative Medicne Institute, Samsung Medical Center, Seoul 06351, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| |
Collapse
|
20
|
Pantera H, Hu B, Moiseev D, Dunham C, Rashid J, Moran JJ, Krentz K, Rubinstein CD, Won S, Li J, Svaren J. Pmp22 super-enhancer deletion causes tomacula formation and conduction block in peripheral nerves. Hum Mol Genet 2020; 29:1689-1699. [PMID: 32356557 PMCID: PMC7322568 DOI: 10.1093/hmg/ddaa082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 11/12/2022] Open
Abstract
Copy number variation of the peripheral nerve myelin gene Peripheral Myelin Protein 22 (PMP22) causes multiple forms of inherited peripheral neuropathy. The duplication of a 1.4 Mb segment surrounding this gene in chromosome 17p12 (c17p12) causes the most common form of Charcot-Marie-Tooth disease type 1A, whereas the reciprocal deletion of this gene causes a separate neuropathy termed hereditary neuropathy with liability to pressure palsies (HNPP). PMP22 is robustly induced in Schwann cells in early postnatal development, and several transcription factors and their cognate regulatory elements have been implicated in coordinating the gene's proper expression. We previously found that a distal super-enhancer domain was important for Pmp22 expression in vitro, with particular impact on a Schwann cell-specific alternative promoter. Here, we investigate the consequences of deleting this super-enhancer in vivo. We find that loss of the super-enhancer in mice reduces Pmp22 expression throughout development and into adulthood, with greater impact on the Schwann cell-specific promoter. Additionally, these mice display tomacula formed by excessive myelin folding, a pathological hallmark of HNPP, as have been previously observed in heterozygous Pmp22 mice as well as sural biopsies from patients with HNPP. Our findings demonstrate a mechanism by which smaller copy number variations, not including the Pmp22 gene, are sufficient to reduce gene expression and phenocopy a peripheral neuropathy caused by the HNPP-associated deletion encompassing PMP22.
Collapse
Affiliation(s)
- Harrison Pantera
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bo Hu
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Daniel Moiseev
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Chris Dunham
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Jibraan Rashid
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - John J Moran
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kathleen Krentz
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - C Dustin Rubinstein
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seongsik Won
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jun Li
- Department of Neurology and Translational Neuroscience Initiative, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
21
|
Prukop T, Wernick S, Boussicault L, Ewers D, Jäger K, Adam J, Winter L, Quintes S, Linhoff L, Barrantes-Freer A, Bartl M, Czesnik D, Zschüntzsch J, Schmidt J, Primas G, Laffaire J, Rinaudo P, Brureau A, Nabirotchkin S, Schwab MH, Nave KA, Hajj R, Cohen D, Sereda MW. Synergistic PXT3003 therapy uncouples neuromuscular function from dysmyelination in male Charcot-Marie-Tooth disease type 1A (CMT1A) rats. J Neurosci Res 2020; 98:1933-1952. [PMID: 32588471 DOI: 10.1002/jnr.24679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth disease 1 A (CMT1A) is caused by an intrachromosomal duplication of the gene encoding for PMP22 leading to peripheral nerve dysmyelination, axonal loss, and progressive muscle weakness. No therapy is available. PXT3003 is a low-dose combination of baclofen, naltrexone, and sorbitol which has been shown to improve disease symptoms in Pmp22 transgenic rats, a bona fide model of CMT1A disease. However, the superiority of PXT3003 over its single components or dual combinations have not been tested. Here, we show that in a dorsal root ganglion (DRG) co-culture system derived from transgenic rats, PXT3003 induced myelination when compared to its single and dual components. Applying a clinically relevant ("translational") study design in adult male CMT1A rats for 3 months, PXT3003, but not its dual components, resulted in improved performance in behavioral motor and sensory endpoints when compared to placebo. Unexpectedly, we observed only a marginally increased number of myelinated axons in nerves from PXT3003-treated CMT1A rats. However, in electrophysiology, motor latencies correlated with increased grip strength indicating a possible effect of PXT3003 on neuromuscular junctions (NMJs) and muscle fiber pathology. Indeed, PXT3003-treated CMT1A rats displayed an increased perimeter of individual NMJs and a larger number of functional NMJs. Moreover, muscles of PXT3003 CMT1A rats displayed less neurogenic atrophy and a shift toward fast contracting muscle fibers. We suggest that ameliorated motor function in PXT3003-treated CMT1A rats result from restored NMJ function and muscle innervation, independent from myelination.
Collapse
Affiliation(s)
- Thomas Prukop
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie Wernick
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - David Ewers
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Karoline Jäger
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Adam
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lorenz Winter
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Susanne Quintes
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Lisa Linhoff
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Michael Bartl
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Czesnik
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | | - Markus H Schwab
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Bouçanova F, Chrast R. Metabolic Interaction Between Schwann Cells and Axons Under Physiological and Disease Conditions. Front Cell Neurosci 2020; 14:148. [PMID: 32547370 PMCID: PMC7274022 DOI: 10.3389/fncel.2020.00148] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Recent research into axon-glial interactions in the nervous system has made a compelling case that glial cells have a relevant role in the metabolic support of axons, and that, in the case of myelinating cells, this role is independent of myelination itself. In this mini-review article, we summarize some of those observations and focus on Schwann cells (SC), drawing parallels between glia of the central and peripheral nervous systems (PNS), pointing out limitations in current knowledge, and discussing its potential clinical relevance. First, we introduce SC, their development and main roles, and follow with an evolutionary perspective of glial metabolic function. Then we provide evidence of the myelin-independent aspects of axonal support and their coupling to neuronal metabolism. Finally, we address the opportunity to use SC-axon metabolic interactions as therapeutic targets to treat peripheral neuropathies.
Collapse
Affiliation(s)
- Filipa Bouçanova
- Department of Neuroscience, KarolinskaInstitutet, Stockholm, Sweden.,Department of Clinical Neuroscience, KarolinskaInstitutet, Stockholm, Sweden
| | - Roman Chrast
- Department of Neuroscience, KarolinskaInstitutet, Stockholm, Sweden.,Department of Clinical Neuroscience, KarolinskaInstitutet, Stockholm, Sweden
| |
Collapse
|
23
|
Nerve damage induced skeletal muscle atrophy is associated with increased accumulation of intramuscular glucose and polyol pathway intermediates. Sci Rep 2020; 10:1908. [PMID: 32024865 PMCID: PMC7002415 DOI: 10.1038/s41598-020-58213-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/23/2019] [Indexed: 01/21/2023] Open
Abstract
Perturbations in skeletal muscle metabolism have been reported for a variety of neuromuscular diseases. However, the role of metabolism after constriction injury to a nerve and the associated muscle atrophy is unclear. We have analyzed rat tibialis anterior (TA) four weeks after unilateral constriction injury to the sciatic nerve (DMG) and in the contralateral control leg (CTRL) (n = 7) to investigate changes of the metabolome, immunohistochemistry and protein levels. Untargeted metabolomics identified 79 polar metabolites, 27 of which were significantly altered in DMG compared to CTRL. Glucose concentrations were increased 2.6-fold in DMG, while glucose 6-phosphate (G6-P) was unchanged. Intermediates of the polyol pathway were increased in DMG, particularly fructose (1.7-fold). GLUT4 localization was scattered as opposed to clearly at the sarcolemma. Despite the altered localization, we found GLUT4 protein levels to be increased 7.8-fold while GLUT1 was decreased 1.7-fold in nerve damaged TA. PFK1 and GS levels were both decreased 2.1-fold, indicating an inability of glycolysis and glycogen synthesis to process glucose at sufficient rates. In conclusion, chronic nerve constriction causes increased GLUT4 levels in conjunction with decreased glycolytic activity and glycogen storage in skeletal muscle, resulting in accumulation of intramuscular glucose and polyol pathway intermediates.
Collapse
|
24
|
Nabirotchkin S, Peluffo AE, Rinaudo P, Yu J, Hajj R, Cohen D. Next-generation drug repurposing using human genetics and network biology. Curr Opin Pharmacol 2020; 51:78-92. [PMID: 31982325 DOI: 10.1016/j.coph.2019.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Drug repurposing has attracted increased attention, especially in the context of drug discovery rates that remain too low despite a recent wave of approvals for biological therapeutics (e.g. gene therapy). These new biological entities-based treatments have high costs that are difficult to justify for small markets that include rare diseases. Drug repurposing, involving the identification of single or combinations of existing drugs based on human genetics data and network biology approaches represents a next-generation approach that has the potential to increase the speed of drug discovery at a lower cost. This Pharmacological Perspective reviews progress and perspectives in combining human genetics, especially genome-wide association studies, with network biology to drive drug repurposing for rare and common diseases with monogenic or polygenic etiologies. Also, highlighted here are important features of this next generation approach to drug repurposing, which can be combined with machine learning methods to meet the challenges of personalized medicine.
Collapse
Affiliation(s)
- Serguei Nabirotchkin
- Network Biology & Drug Discovery Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Alex E Peluffo
- Data Science Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France.
| | - Philippe Rinaudo
- Data Science Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Jinchao Yu
- Data Science Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Rodolphe Hajj
- Preclinical Research and Pharmacology Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Daniel Cohen
- Chief Executive Officer, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| |
Collapse
|
25
|
Pantera H, Shy ME, Svaren J. Regulating PMP22 expression as a dosage sensitive neuropathy gene. Brain Res 2019; 1726:146491. [PMID: 31586623 DOI: 10.1016/j.brainres.2019.146491] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Structural variation in the human genome has emerged as a major cause of disease as genomic data have accumulated. One of the most common structural variants associated with human disease causes the heritable neuropathy known as Charcot-Marie-Tooth (CMT) disease type 1A. This 1.4 Mb duplication causes nearly half of the CMT cases that are genetically diagnosed. The PMP22 gene is highly induced in Schwann cells during development, although its precise role in myelin formation and homeostasis is still under active investigation. The PMP22 gene can be considered as a nucleoprotein complex with enzymatic activity to produce the PMP22 transcript, and the complex is allosterically regulated by transcription factors that respond to intracellular signals and epigenomic modifications. The control of PMP22 transcript levels has been one of the major therapeutic targets of therapy development, and this review summarizes those approaches as well as efforts to characterize the regulation of the PMP22 gene.
Collapse
Affiliation(s)
- Harrison Pantera
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
26
|
Charcot-Marie-Tooth: From Molecules to Therapy. Int J Mol Sci 2019; 20:ijms20143419. [PMID: 31336816 PMCID: PMC6679156 DOI: 10.3390/ijms20143419] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) is the most prevalent category of inherited neuropathy. The most common inheritance pattern is autosomal dominant, though there also are X-linked and autosomal recessive subtypes. In addition to a variety of inheritance patterns, there are a myriad of genes associated with CMT, reflecting the heterogeneity of this disorder. Next generation sequencing (NGS) has expanded and simplified the diagnostic yield of genes/molecules underlying and/or associated with CMT, which is of paramount importance in providing a substrate for current and future targeted disease-modifying treatment options. Considerable research attention for disease-modifying therapy has been geared towards the most commonly encountered genetic mutations (PMP22, GJB1, MPZ, and MFN2). In this review, we highlight the clinical background, molecular understanding, and therapeutic investigations of these CMT subtypes, while also discussing therapeutic research pertinent to the remaining less common CMT subtypes.
Collapse
|