1
|
Azcárate-García T, Avila C, Figuerola B. Skeletal magnesium content in Antarctic echinoderms along a latitudinal gradient. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106771. [PMID: 39342871 DOI: 10.1016/j.marenvres.2024.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Ocean warming and acidification driven by anthropogenic CO2 emissions may impact the mineral composition of marine calcifiers. Species with high skeletal Mg content could be more susceptible in polar regions due to the increased solubility of CO2 at lower temperatures. We aimed to assess the environmental influence on skeletal Mg content of Antarctic echinoderms belonging to Asteroidea, Ophiuroidea, Echinoidea and Holothuroidea classes, along a latitudinal gradient from the South Shetland Islands to Rothera (Adelaide Island). We found that all skeletal structures, except for echinoid spines, exhibited high Mg content, with asteroids showing the highest levels. Our results suggest that asteroids and holothuroids exert a higher biological capacity to regulate Mg incorporation into their skeletons. In contrast, the variability observed in the skeletal Mg content of ophiuroids and echinoids appears to be more influenced by local environmental conditions. Species-specific differences in how environmental factors affect the skeletal Mg content can thus be expected as a response to global climate change.
Collapse
Affiliation(s)
- Tomás Azcárate-García
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, Barcelona, 08003, Catalonia, Spain; Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Blanca Figuerola
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, Barcelona, 08003, Catalonia, Spain.
| |
Collapse
|
2
|
Azcárate-García T, Avila C, Figuerola B. Skeletal Mg content in common echinoderm species from Deception and Livingston Islands (South Shetland Islands, Antarctica) in the context of global change. MARINE POLLUTION BULLETIN 2024; 199:115956. [PMID: 38154175 DOI: 10.1016/j.marpolbul.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Echinoderms with high levels of magnesium (Mg) in their skeletons may be especially sensitive to ocean acidification, as the solubility of calcite increases with its Mg content. However, other structural characteristics and environmental/biological factors may affect skeletal solubility. To better understand which factors can influence skeletal mineralogy, we analyzed the Mg content of Antarctic echinoderms from Deception Island, an active volcano with reduced pH and relatively warm water temperatures, and Livingston Island. We found significant interclass and inter- and intraspecific differences in the Mg content, with asteroids exhibiting the highest levels, followed by ophiuroids and echinoids. Specimens exposed to hydrothermal fluids showed lower Mg levels, which may indicate local environmental effects. These patterns suggest that environmental factors such as seawater Mg2+/Ca2+ ratio and temperature may influence the Mg content of some echinoderms and affect their susceptibility to future environmental changes.
Collapse
Affiliation(s)
- Tomás Azcárate-García
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain; Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, Barcelona 08028, Catalonia, Spain.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, Barcelona 08028, Catalonia, Spain
| | - Blanca Figuerola
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain.
| |
Collapse
|
3
|
Kannan G, Mghili B, Di Martino E, Sanchez-Vidal A, Figuerola B. Increasing risk of invasions by organisms on marine debris in the Southeast coast of India. MARINE POLLUTION BULLETIN 2023; 195:115469. [PMID: 37703630 DOI: 10.1016/j.marpolbul.2023.115469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023]
Abstract
Increasing amount of anthropogenic litter in the marine environment has provided an enormous number of substrates for a wide range of marine organisms, thus serving as a potential vector for the transport of fouling organisms. Here, we examined the fouling organisms on different types of stranded litter (plastic, glass, rubber, foam sponge, cloth, metal and wood) on eight beaches along the southeast coast of India. In total, 17 encrusting species belonging to seven phyla (Arthropoda, Bryozoa, Mollusca, Annelida, Cnidaria, Chlorophyta and Foraminifera) were identified on 367 items, with one invasive species, the mussel Mytella strigata, detected. The most common species associated with marine litter were the cosmopolitan bryozoans Jellyella tuberculata (%O = 31.64 %) and J. eburnea (28.61 %), the barnacle species Lepas anserifera (29.97 %), Amphibalanus amphitrite (22.34 %) and Amphibalanus sp. (14.16 %), and the oyster species Saccostrea cucullata (13.62 %) and Magallana bilineata (5.44 %). We also reported the first records on stranded litter of four species: the gastropod species Pirenella cingulata and Umbonium vestiarium, the foraminiferan Ammonia beccarii, and the oyster M. bilineata. This study is thus the first documentation of marine litter as a vector for species dispersal in India, where the production and consumption of plastic rank among the highest in the world. We also highlight the increasing risk of invasions by non-indigenous organisms attached to debris along the southeast coast of India. Comprehensive monitoring efforts are thus needed to elucidate the type of vectors responsible for the arrival of invasive species in this region. Raising awareness and promoting education are vital components in fostering sustainable solutions to combat plastic pollution in the country and globally.
Collapse
Affiliation(s)
- Gunasekaran Kannan
- Centre for Aquaculture, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco
| | - Emanuela Di Martino
- Natural History Museum, University of Oslo - Blindern, P.O. Box 1172, Oslo 0318, Norway
| | - Anna Sanchez-Vidal
- GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona 08028, Spain
| | - Blanca Figuerola
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, Barcelona 08003, Spain.
| |
Collapse
|
4
|
Jossart Q, Bauman D, Moreau CV, Saucède T, Christiansen H, Brasier MJ, Convey P, Downey R, Figuerola B, Martin P, Norenburg J, Rosenfeld S, Verheye M, Danis B. A pioneer morphological and genetic study of the intertidal fauna of the Gerlache Strait (Antarctic Peninsula). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:514. [PMID: 36973586 DOI: 10.1007/s10661-023-11066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The underexplored intertidal ecosystems of Antarctica are facing rapid changes in important environmental factors. Associated with temperature increase, reduction in coastal ice will soon expose new ice-free areas that will be colonized by local or distant biota. To enable detection of future changes in faunal composition, a biodiversity baseline is urgently required. Here, we evaluated intertidal faunal diversity at 13 locations around the Gerlache Strait (western Antarctic Peninsula), using a combination of a quadrat approach, morphological identification and genetic characterization. Our data highlight a community structure comprising four generally distributed and highly abundant species (the flatworm Obrimoposthia wandeli, the bivalve Kidderia subquadrata, and the gastropods Laevilitorina umbilicata and Laevilitorina caliginosa) as well as 79 rarer and less widely encountered species. The most abundant species thrive in the intertidal zone due to their ability to either survive overwinter in situ or to rapidly colonize this zone when conditions allow. In addition, we confirmed the presence of multiple trophic levels at nearly all locations, suggesting that complex inter-specific interactions occur within these communities. Diversity indices contrasted between sampling locations (from 3 to 32 species) and multivariate approaches identified three main groups. This confirms the importance of environmental heterogeneity in shaping diversity patterns within the investigated area. Finally, we provide the first genetic and photographic baseline of the Antarctic intertidal fauna (106 sequences, 137 macrophotographs), as well as preliminary insights on the biogeography of several species. Taken together, these results provide a timely catalyst to assess the diversity and to inform studies of the potential resilience of these intertidal communities.
Collapse
Affiliation(s)
- Quentin Jossart
- Marine Biology, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Marine Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
- UMR CNRS 6282, Université de Bourgogne, Dijon, France.
| | - David Bauman
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, Montpellier, IRD, France
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Camille Ve Moreau
- Marine Biology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Henrik Christiansen
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Madeleine J Brasier
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Peter Convey
- British Antarctic Survey, NERC, Cambridge, United Kingdom
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (MI-BASE), Santiago, Chile
| | - Rachel Downey
- Fenner School of Environment & Society, Australian National University, Canberra, Australia
| | | | - Patrick Martin
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Jon Norenburg
- Smithsonian Institution National Museum of Natural History, Washington, United States of America
| | - Sebastian Rosenfeld
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (MI-BASE), Santiago, Chile
- Laboratorio de Ecosistemas Marinos Antarticos y Subantarticos, Universidad de Magallanes, Punta Arenas, Chile
- Centro de Investigación Gaia‑Antártica, Universidad de Magallanes, Punta Arenas, Chile
| | - Marie Verheye
- Laboratory of Trophic and Isotopes Ecology (LETIS), Université de Liège, Liège, Belgium
- Laboratory of Evolutionary Ecology, Université de Liège, Liège, Belgium
| | - Bruno Danis
- Marine Biology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
5
|
Hu H, Liang F, Zhu H, Zhang X, Cui K, Deb H, Zhang Y. Formation and Phase Selection of CaCO
3
in the Intervention of Lignin Monomer Model Compounds. CRYSTAL RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1002/crat.202000187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Huifeng Hu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Textiles Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Fugen Liang
- Zhejiang Transfar Whyyon Chemical Co., Ltd. Hangzhou 311231 China
| | - Haidong Zhu
- Hangzhou Vocational and Technical College Hangzhou 310018 China
| | - Xiumei Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Textiles Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Kecong Cui
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Textiles Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Hridam Deb
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Textiles Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Yong Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Textiles Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| |
Collapse
|
6
|
Figuerola B, Avila C. The Phylum Bryozoa as a Promising Source of Anticancer Drugs. Mar Drugs 2019; 17:E477. [PMID: 31426556 PMCID: PMC6722838 DOI: 10.3390/md17080477] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Recent advances in sampling and novel techniques in drug synthesis and isolation have promoted the discovery of anticancer agents from marine organisms to combat this major threat to public health worldwide. Bryozoans, which are filter-feeding, aquatic invertebrates often characterized by a calcified skeleton, are an excellent source of pharmacologically interesting compounds including well-known chemical classes such as alkaloids and polyketides. This review covers the literature for secondary metabolites isolated from marine cheilostome and ctenostome bryozoans that have shown potential as cancer drugs. Moreover, we highlight examples such as bryostatins, the most known class of marine-derived compounds from this animal phylum, which are advancing through anticancer clinical trials due to their low toxicity and antineoplastic activity. The bryozoan antitumor compounds discovered until now show a wide range of chemical diversity and biological activities. Therefore, more research focusing on the isolation of secondary metabolites with potential anticancer properties from bryozoans and other overlooked taxa covering wider geographic areas is needed for an efficient bioprospecting of natural products.
Collapse
Affiliation(s)
- Blanca Figuerola
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Catalonia, Spain
| |
Collapse
|