1
|
Burdorf RM, Zhou S, Amon C, Long N, Hill CS, Adams L, Tegha G, Chagomerana MB, Jumbe A, Maliwichi M, Wallie S, Li Y, Swanstrom R, Hosseinipour MC. Impact of Low-Frequency Human Immunodeficiency Virus Type 1 Drug Resistance Mutations on Antiretroviral Therapy Outcomes. J Infect Dis 2024; 230:86-94. [PMID: 39052733 PMCID: PMC11272071 DOI: 10.1093/infdis/jiae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND The association between low-frequency human immunodeficiency virus type 1 (HIV-1) drug resistance mutations (DRMs) and treatment failure (TF) is controversial. We explore this association using next-generation sequencing (NGS) methods that accurately sample low-frequency DRMs. METHODS We enrolled women with HIV-1 in Malawi who were either antiretroviral therapy (ART) naive (cohort A), had ART failure (cohort B), or had discontinued ART (cohort C). At entry, cohorts A and C began a nonnucleoside reverse transcriptase inhibitor-based regimen and cohort B started a protease inhibitor-based regimen. We used Primer ID MiSeq to identify regimen-relevant DRMs in entry and TF plasma samples, and a Cox proportional hazards model to calculate hazard ratios (HRs) for entry DRMs. Low-frequency DRMs were defined as ≤20%. RESULTS We sequenced 360 participants. Cohort B and C participants were more likely to have TF than cohort A participants. The presence of K103N at entry significantly increased TF risk among A and C participants at both high and low frequency, with HRs of 3.12 (95% confidence interval [CI], 1.58-6.18) and 2.38 (95% CI, 1.00-5.67), respectively. At TF, 45% of participants showed selection of DRMs while in the remaining participants there was an apparent lack of selective pressure from ART. CONCLUSIONS Using accurate NGS for DRM detection may benefit an additional 10% of patients by identifying low-frequency K103N mutations.
Collapse
Affiliation(s)
- Rachel M Burdorf
- Lineberger Comprehensive Cancer Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | | | - Nathan Long
- Lineberger Comprehensive Cancer Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | | | - Lily Adams
- Lineberger Comprehensive Cancer Center
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | | | - Maganizo B Chagomerana
- UNC Project–Malawi, Lilongwe
- Department of Medicine, University of North Carolina at Chapel Hill
| | | | | | | | - Yijia Li
- Department of Medicine, University of Pittsburgh Medical Center, Pennsylvania
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill
| | - Mina C Hosseinipour
- UNC Project–Malawi, Lilongwe
- Department of Medicine, University of North Carolina at Chapel Hill
| |
Collapse
|
2
|
Takem EN, Coox C, Shang J, Ndongmo C, Dokubo EK. The association between HIV pretreatment drug resistance and virological outcomes in children and adults in sub-Saharan Africa: A systematic review and meta-analysis. PLoS One 2024; 19:e0300456. [PMID: 38626183 PMCID: PMC11020706 DOI: 10.1371/journal.pone.0300456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/27/2024] [Indexed: 04/18/2024] Open
Abstract
INTRODUCTION Pretreatment drug resistance (PDR) could occur in antiretroviral treatment (ART) naïve individuals, those previously exposed to ART, or individuals re-initiating ARV after a long period of interruption. Few studies have shown its association with virological outcomes, although inconsistent. The objective of this review was to provide a synthesis of the association between PDR and virological outcomes (virological failure or suppression). METHODS This report is presented following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The method was subdivided into three main phases: record identification, screening, and report inclusion. Record identification consisted of an initial search with search term "HIV pretreatment drug resistance". Another search was done using terms "Pretreatment drug resistance OR pre-treatment drug resistance OR Pretreatment drug resist* OR pre-treatment drug resist* OR pretreatment antiretroviral resistance OR pretreatment medic* OR pretreatment medic* resist*" and a list of all the countries in sub-Saharan Africa. After the electronic search, studies were screened from full list based on their title and abstract and then full articles retrieved and studies were assessed based on set criteria. Inclusion criteria involved observational studies that report the association between PDR and virological failure. Data from trials that reported the association were also included. Published articles like modelling studies and reviews, and studies with data that had been previously included in the review were excluded. The Mantel Haenszel method with odds ratios was used for synthesis (meta-analyses) with the weights of each study which depends on the number of events and totals. RESULTS A total of 733 records(studies) were obtained from all database search of which 74 reported on PDR, virological outcomes in sub-Saharan Africa (SSA). Out of the 74 articles, 11 were excluded and 26 did not explicitly report data needed, and 5 did not meet the inclusion criteria. Of the remaining 32 studies, 19 studies that had complete data on the number of participants with PDR and no PDR according to virological failure (VF) were included in the metanalyses. The pooled results from eleven (13) of these studies showed those with PDR had higher odds of virological failure compared to those without PDR OR 3.64[95% CI 2.93, 4.52]. The result was similar when stratified in adults and in children. In six (6) studies that had Virological suppression (VS) as outcome, there was a reduction in the odds of VS in those with PDR compared to those without PDR, OR 0.42 (95% CI 0.30, 0.58). CONCLUSION In conclusion, this systematic review indicates that PDR increases the risk of virological failure in sub-Saharan Africa. The risk could be reduced by PDR monitoring for NNRTIs and INSTIs.
Collapse
Affiliation(s)
| | | | - Judith Shang
- Centers for Disease Control and Prevention (CDC), Cameroon
| | | | | |
Collapse
|
3
|
Ouyang F, Yuan D, Zhai W, Liu S, Zhou Y, Yang H. HIV-1 Drug Resistance Detected by Next-Generation Sequencing among ART-Naïve Individuals: A Systematic Review and Meta-Analysis. Viruses 2024; 16:239. [PMID: 38400015 PMCID: PMC10893194 DOI: 10.3390/v16020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/31/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND There are an increasing number of articles focused on the prevalence and clinical impact of pretreatment HIV drug resistance (PDR) detected by Sanger sequencing (SGS). PDR may contribute to the increased likelihood of virologic failure and the emergence of new resistance mutations. As SGS is gradually replaced by next-generation sequencing (NGS), it is necessary to assess the levels of PDR using NGS in ART-naïve patients systematically. NGS can detect the viral variants (low-abundance drug-resistant HIV-1 variants (LA-DRVs)) of virus quasi-species at levels below 20% that SGS may fail to detect. NGS has the potential to optimize current HIV drug resistance surveillance methods and inform future research directions. As the NGS technique has high sensitivity, it is highly likely that the level of pretreatment resistance would be underestimated using conventional techniques. METHODS For the systematic review and meta-analysis, we searched for original studies published in PubMed, Web of Science, Scopus, and Embase before 30 March 2023 that focused exclusively on the application of NGS in the detection of HIV drug resistance. Pooled prevalence estimates were calculated using a random effects model using the 'meta' package in R (version 4.2.3). We described drug resistance detected at five thresholds (>1%, 2%, 5%, 10%, and 20% of virus quasi-species). Chi-squared tests were used to analyze differences between the overall prevalence of PDR reported by SGS and NGS. RESULTS A total of 39 eligible studies were selected. The studies included a total of 15,242 ART-naïve individuals living with HIV. The prevalence of PDR was inversely correlated with the mutation detection threshold. The overall prevalence of PDR was 29.74% at the 1% threshold, 22.43% at the 2% threshold, 15.47% at the 5% threshold, 12.95% at the 10% threshold, and 11.08% at the 20% threshold. The prevalence of PDR to INSTIs was 1.22% (95%CI: 0.58-2.57), which is the lowest among the values for all antiretroviral drugs. The prevalence of LA-DRVs was 9.45%. At the 2% and 20% detection threshold, the prevalence of PDR was 22.43% and 11.08%, respectively. Resistance to PIs and INSTIs increased 5.52-fold and 7.08-fold, respectively, in those with a PDR threshold of 2% compared with those with PDR at 20%. However, resistance to NRTIs and NNRTIs increased 2.50-fold and 2.37-fold, respectively. There was a significant difference between the 2% and 5% threshold for detecting HIV drug resistance. There was no statistically significant difference between the results reported by SGS and NGS when using the 20% threshold for reporting resistance mutations. CONCLUSION In this study, we found that next-generation sequencing facilitates a more sensitive detection of HIV-1 drug resistance than SGS. The high prevalence of PDR emphasizes the importance of baseline resistance and assessing the threshold for optimal clinical detection using NGS.
Collapse
Affiliation(s)
- Fei Ouyang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
| | - Defu Yuan
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
| | - Wenjing Zhai
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
| | - Shanshan Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
| | - Ying Zhou
- Department of HIV/STD Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Haitao Yang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China; (F.O.); (D.Y.); (W.Z.); (S.L.)
- Jiangsu Health Development Research Center, Nanjing 210029, China
| |
Collapse
|
4
|
Li M, Song C, Hu J, Dong A, Kang R, Feng Y, Xing H, Ruan Y, Shao Y, Hong K, Liao L. Impact of pretreatment low-abundance HIV-1 drug resistance on virological failure after 1 year of antiretroviral therapy in China. J Antimicrob Chemother 2023; 78:2743-2751. [PMID: 37769159 DOI: 10.1093/jac/dkad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
OBJECTIVES To assess the impact of pretreatment low-abundance HIV drug-resistant variants (LA-DRVs) on virological outcomes among ART-naive HIV-1-infected Chinese people who initiated ART. METHODS A nested case-control study was conducted among HIV-1-infected individuals who had pretreatment drug resistance (PDR) genotypic results. Cases were defined as individuals with virological failure (HIV-1 RNA viral load ≥1000 copies/mL) after 1 year of ART, and controls were individuals from the same cohort whose viral load was less than 1000 copies/mL. Next-generation sequencing was used to identify low-abundance PDR mutations at detection thresholds of 10%, 2% and 1%. The mutant load was calculated by multiplying the abundance of HIV-1 drug-resistant variants by the pretreatment viral load. The impact of pretreatment low-abundance mutations on virological failure was estimated in logistic regression models. RESULTS Participants (43 cases and 100 controls) were included in this study for the analysis. The proportion of participants with PDR was higher in cases than in controls at different detection thresholds (44.2% versus 22.0%, P = 0.007 at 10% threshold; 58.1% versus 31.0%, P = 0.002 at 2% threshold; 90.7% versus 69.0%, P = 0.006 at 1% threshold). Compared with participants without PDR, participants with ≥10% detectable PDR mutations were associated with an increased risk of virological failure (adjusted OR 8.0, 95% CI 2.4-26.3, P = 0.001). Besides this, individuals with pretreatment LA-DRVs (2%-9% abundance range) had 5-fold higher odds of virological failure (adjusted OR 5.0, 95% CI 1.3-19.6, P = 0.021). Furthermore, LA-DRVs at 2%-9% abundance resistant to NRTIs and mutants with abundance of ≥10% resistant to NNRTIs had a 4-fold and 8-fold risk of experiencing virological failure, respectively. It was also found that a mutant load of more than 1000 copies/mL was predictive of virological failure (adjusted OR 7.2, 95% CI 2.5-21.1, P = 0.0003). CONCLUSIONS Low-abundance PDR mutations ranging from 2% to 9% of abundance can increase the risk of virological failure. Further studies are warranted to define a clinically relevant threshold of LA-DRVs and the role of NRTI LA-DRVs.
Collapse
Affiliation(s)
- Miaomiao Li
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Chang Song
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Jing Hu
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Aobo Dong
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Ruihua Kang
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Yi Feng
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Hui Xing
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Yuhua Ruan
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Yiming Shao
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Kunxue Hong
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Lingjie Liao
- National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| |
Collapse
|
5
|
Ntamatungiro AJ, Kagura J, Weisser M, Francis JM. Pre-treatment HIV-1 drug resistance in antiretroviral therapy-naive adults in Eastern Africa: a systematic review and meta-analysis. J Antimicrob Chemother 2022; 77:3231-3241. [PMID: 36225089 DOI: 10.1093/jac/dkac338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pre-treatment HIV drug resistance (PDR) may result in increased risk of virological failure and acquisition of new resistance mutations. With recently increasing ART coverage and periodic modifications of the guidelines for HIV treatment, there is a need for an updated systematic review to assess the levels of the PDR among adults newly initiating ART in Eastern Africa. METHODS We conducted a systematic search for studies published between 1 January 2017 and 30 April 2022 in the MEDLINE Complete and CINAHL Complete, searched simultaneously using EBSCOhost, and Web of Science. To determine the overall PDR prevalence estimates, we extracted data from eligible articles and analysed prevalence estimates using Stata 14.2. RESULTS A total of 22 eligible observation studies were selected. The studies included a total of 5852 ART-naive people living with HIV. The overall pooled prevalence of PDR was 10.0% (95% CI: 7.9%-12.0%, I2 = 88.9%) and 9.4% (95% CI: 7.0%-11.9%, I2 = 90.4%) for NNRTIs, 2.6% (95% CI: 1.8%-3.4%, I2 = 69.2%) for NRTIs and 0.7% (95% CI: 0.3%-1.2%, I2 = 29.0%) for PIs. No major integrase strand transfer inhibitors (INSTI)-related mutations were identified. CONCLUSIONS We observed a moderate overall PDR prevalence among new ART initiators in this study. PDR to NNRTIs is more prevalent, underscoring the importance of the current WHO recommendation for replacement of NNRTIs by INSTIs. PDR to NRTIs was low but notable, which warrants continuous surveillance of pre-existing resistance to the dolutegravir co-administered NRTI in Eastern Africa.
Collapse
Affiliation(s)
- Alex J Ntamatungiro
- Ifakara Health Institute, Ifakara, Tanzania.,Division of Epidemiology and Biostatistics, University of the Witwatersrand, Johannesburg, South Africa
| | - Juliana Kagura
- Division of Epidemiology and Biostatistics, University of the Witwatersrand, Johannesburg, South Africa
| | - Maja Weisser
- Ifakara Health Institute, Ifakara, Tanzania.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Joel M Francis
- Department of Family Medicine and Primary Care, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Maruapula D, Seatla KK, Morerinyane O, Molebatsi K, Giandhari J, de Oliveira T, Musonda RM, Leteane M, Mpoloka SW, Rowley CF, Moyo S, Gaseitsiwe S. Low-frequency HIV-1 drug resistance mutations in antiretroviral naïve individuals in Botswana. Medicine (Baltimore) 2022; 101:e29577. [PMID: 35838991 PMCID: PMC11132386 DOI: 10.1097/md.0000000000029577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Individuals living with human immunodeficiency virus (HIV) who experience virological failure (VF) after combination antiretroviral therapy (cART) initiation may have had low-frequency drug resistance mutations (DRMs) at cART initiation. There are no data on low-frequency DRMs among cART-naïve HIV-positive individuals in Botswana. METHODS We evaluated the prevalence of low-frequency DRMs among cART-naïve individuals previously sequenced using Sanger sequencing. The generated pol amplicons were sequenced by next-generation sequencing. RESULTS We observed low-frequency DRMs (detected at <20% in 33/103 (32%) of the successfully sequenced individuals, of whom four also had mutations detected at >20%. K65R was the most common low-frequency DRM detected in 8 individuals. Eighty-two of the 103 individuals had follow-up viral load data while on cART. Twenty-seven of the 82 individuals harbored low-frequency DRMs. Only 12 of 82 individuals experienced VF. The following low-frequency DRMs were observed in four individuals experiencing VF: K65R, K103N, V108I, and Y188C. No statistically significant difference was observed in the prevalence of low-frequency DRMs between individuals experiencing VF (4/12) and those not experiencing VF (23/70) (P = .97). However, individuals with non-nucleoside reverse transcriptase inhibitors-associated low-frequency DRMs were 2.68 times more likely to experience VF (odds ratio, 2.68; 95% confidential interval, 0.4-13.9) compared with those without (P = .22). CONCLUSION Next-generation sequencing was able to detect low-frequency DRMs in this cohort in Botswana, but these DRMs did not contribute significantly to VF.
Collapse
Affiliation(s)
- Dorcas Maruapula
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Kaelo K. Seatla
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- School of Allied Health Professions, University of Botswana, Gaborone, Botswana
| | | | - Kesaobaka Molebatsi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Statistics, University of Botswana, Gaborone, Botswana
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rosemary M. Musonda
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Melvin Leteane
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Sununguko W Mpoloka
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Christopher F. Rowley
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
7
|
Ogola B, Matume ND, Mavhandu-Ramarumo LG, Tebit DM, Bessong PO. Drug Resistance Mutations in a Population Before Antiretroviral Therapy Initiation in Northern South Africa. AIDS Res Hum Retroviruses 2022; 38:248-256. [PMID: 34107774 DOI: 10.1089/aid.2021.0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
South Africa introduced the "diagnose and treat" universal HIV treatment program in September 2016. This program enables all identified HIV-positive patients to immediately start first-line antiretroviral therapy (ART). However, the presence of drug-resistant (DR) viruses in the drug-naive population complicates the choice of ART. We used next-generation sequencing (NGS) to determine the prevalence and diversity of HIV DR mutations in patients entering HIV treatment programs in northern South Africa. RNA was isolated from plasma of drug-naive HIV-1-infected patients. Using reverse transcriptase polymerase chain reaction, the HIV-1-pol gene comprising the complete protease (PR) and the first 900 bp of reverse transcriptase (RT) was amplified and sequenced on an Illumina MiniSeq platform. Consensus sequences were derived at >20% threshold and at >5% threshold using Geneious PRIME® software version 2020.1.2. HIV-1 surveillance drug resistance mutations (SDRM) were inferred using Calibrated Population Resistance tool in HIV Drug Resistance Database. Viral subtypes were determined using REGA and RIP genotyping tools. The HIV PR/RT region was successfully sequenced from 241 patients. From these, 23 (9.5%) had at least one SDRM detected at >20% threshold, with a prevalence of 9.5% (n = 18), 3% (n = 7), and 0.4% (n = 1) for non-nucleoside reverse transcriptase inhibitors (NNRTI), nucleoside reverse transcriptase inhibitors (NRTI), and protease inhibitors (PI), respectively. The number of patients with SDRM increased to 31 (12.9%) when minority variants were accounted for at >5% threshold. The most frequent SDRMs based on drug class were; K103N (7.9%-NNRTI), K65R (2.5%-NRTI), and D30N (0.8%-PI). Four cases of dual NRTI/NNRTI mutations were identified. All consensus sequences were subtype C, except three, which were C/A1, C/F1, and C/G recombinants. NGS analysis confirms that individuals entering HIV treatment programs in northern South Africa, habor moderate levels of SDRM, including cases of dual-class drug resistance. Further SDRM studies may be required to better understand resistance in the drug-naive population in the era of "diagnose and treat" in Limpopo Province, South Africa.
Collapse
Affiliation(s)
- Bixa Ogola
- HIV/AIDS & Global Health Research Program, University of Venda, Thohoyandou, South Africa
| | - Nontokozo D. Matume
- HIV/AIDS & Global Health Research Program, University of Venda, Thohoyandou, South Africa
| | | | - Denis M. Tebit
- HIV/AIDS & Global Health Research Program, University of Venda, Thohoyandou, South Africa
- Global Biomed Scientific LLC, PO Box 2368, Forest, VA 24551, USA
| | - Pascal O. Bessong
- HIV/AIDS & Global Health Research Program, University of Venda, Thohoyandou, South Africa
- Center for Global Health Equity, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
High Level of Pre-Treatment HIV-1 Drug Resistance and Its Association with HLA Class I-Mediated Restriction in the Pumwani Sex Worker Cohort. Viruses 2022; 14:v14020273. [PMID: 35215866 PMCID: PMC8879707 DOI: 10.3390/v14020273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
Background: We analyzed the prevalence of pre-antiretroviral therapy (ART) drug resistance mutations (DRMs) in a Kenyan population. We also examined whether host HLA class I genes influence the development of pre-ART DRMs. Methods: The HIV-1 proviral DNAs were amplified from blood samples of 266 ART-naïve women from the Pumwani Sex Worker cohort of Nairobi, Kenya using a nested PCR method. The amplified HIV genomes were sequenced using next-generation sequencing technology. The prevalence of pre-ART DRMs was investigated. Correlation studies were performed between HLA class I alleles and HIV-1 DRMs. Results: Ninety-eight percent of participants had at least one DRM, while 38% had at least one WHO surveillance DRM. M184I was the most prevalent clinically important variant, seen in 37% of participants. The DRMs conferring resistance to one or more integrase strand transfer inhibitors were also found in up to 10% of participants. Eighteen potentially relevant (p < 0.05) positive correlations were found between HLA class 1 alleles and HIV drug-resistant variants. Conclusions: High levels of HIV drug resistance were found in all classes of antiretroviral drugs included in the current first-line ART regimens in Africa. The development of DRMs may be influenced by host HLA class I-restricted immunity.
Collapse
|
9
|
Sarinoglu RC, Sili U, Hasdemir U, Aksu B, Soyletir G, Korten V. Diversity of HIV-1 subtypes and transmitted drug-resistance mutations among minority HIV-1 variants in a Turkish cohort. Curr HIV Res 2021; 20:54-62. [PMID: 34802406 DOI: 10.2174/1570162x19666211119111740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The World Health Organization (WHO) recommends the surveillance of transmitted drug resistance mutations (TDRMs) to ensure the effectiveness and sustainability of HIV treatment programs. OBJECTIVE Our aim was to determine the TDRMs and evaluate the distribution of HIV-1 subtypes using and compared next-generation sequencing (NGS) and Sanger-based sequencing (SBS) in a cohort of 44 antiretroviral treatment-naïve patients. METHODS All samples that were referred to the microbiology laboratory for HIV drug resistance analysis between December 2016 and February 2018 were included in the study. After exclusions, 44 treatment-naive adult patients with a viral load of >1000 copies/mL were analyzed. DNA sequencing for reverse transcriptase and protease regions was performed using both DeepChek ABL single round kit and Sanger-based ViroSeq HIV-1 Genotyping System. The mutations and HIV-1 subtypes were analyzed using the Stanford HIVdb version 8.6.1 Genotypic Resistance software, and TDRMs were assessed using the WHO surveillance drug-resistance mutation database. HIV-1 subtypes were confirmed by constructing a maximum-likelihood phylogenetic tree using Los Alamos IQ-Tree software. RESULTS NGS identified nucleos(t)ide reverse transcriptase inhibitor (NRTI)-TDRMs in 9.1% of the patients, non-nucleos(t)ide reverse transcriptase inhibitor (NNRTI)-TDRMs in 6.8% of the patients, and protease inhibitor (PI)-TDRMs in 18.2% of the patients at a detection threshold of ≥1%. Using SBS, 2.3% and 6.8% of the patients were found to have NRTI- and NNRTI-TDRMs, respectively, but no major PI mutations were detected. M41L, L74I, K65R, M184V, and M184I related to NRTI, K103N to NNRTI, and N83D, M46I, I84V, V82A, L24I, L90M, I54V to the PI sites were identified using NGS. Most mutations were found in low-abundance (frequency range: 1.0% - 4.7%) HIV-1 variants, except M41L and K103N. The subtypes of the isolates were found as follows; 61.4% subtype B, 18.2% subtype B/CRF02_AG recombinant, 13.6% subtype A, 4.5% CRF43_02G, and 2.3% CRF02_AG. All TDRMs, except K65R, were detected in HIV-1 subtype B isolates. CONCLUSION The high diversity of protease site TDRMs in the minority HIV-1 variants and prevalence of CRFs were remarkable in this study. All minority HIV-1 variants were missed by conventional sequencing. TDRM prevalence among minority variants appears to be decreasing over time at our center.
Collapse
Affiliation(s)
- Rabia Can Sarinoglu
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Medical Microbiology, Istanbul. Turkey
| | - Uluhan Sili
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Infectious Diseases and Clinical Microbiology, Istanbul. Turkey
| | - Ufuk Hasdemir
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Medical Microbiology, Istanbul. Turkey
| | - Burak Aksu
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Medical Microbiology, Istanbul. Turkey
| | - Guner Soyletir
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Medical Microbiology, Istanbul. Turkey
| | - Volkan Korten
- Marmara University School of Medicine, Pendik Training and Research Hospital, Department of Infectious Diseases and Clinical Microbiology, Istanbul. Turkey
| |
Collapse
|
10
|
Application of next generation sequencing in HIV drug resistance studies in Africa, 2005–2019: A systematic review. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Mbunkah HA, Bertagnolio S, Hamers RL, Hunt G, Inzaule S, Rinke De Wit TF, Paredes R, Parkin NT, Jordan MR, Metzner KJ. Low-Abundance Drug-Resistant HIV-1 Variants in Antiretroviral Drug-Naive Individuals: A Systematic Review of Detection Methods, Prevalence, and Clinical Impact. J Infect Dis 2021; 221:1584-1597. [PMID: 31809534 DOI: 10.1093/infdis/jiz650] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The presence of high-abundance drug-resistant HIV-1 jeopardizes success of antiretroviral therapy (ART). Despite numerous investigations, the clinical impact of low-abundance drug-resistant HIV-1 variants (LA-DRVs) at levels <15%-25% of the virus population in antiretroviral (ARV) drug-naive individuals remains controversial. METHODS We systematically reviewed 103 studies assessing prevalence, detection methods, technical and clinical detection cutoffs, and clinical significance of LA-DRVs in antiretroviral drug-naive adults. RESULTS In total, 14 919 ARV drug-naive individuals were included. Prevalence of LA-DRVs (ie, proportion of individuals harboring LA-DRVs) was 0%-100%. Technical detection cutoffs showed a 4 log range (0.001%-10%); 42/103 (40.8%) studies investigating the impact of LA-DRVs on ART; 25 studies included only individuals on first-line nonnucleoside reverse transcriptase inhibitor-based ART regimens. Eleven of those 25 studies (44.0%) reported a significantly association between preexisting LA-DRVs and risk of virological failure whereas 14/25 (56.0%) did not. CONCLUSIONS Comparability of the 103 studies is hampered by high heterogeneity of the studies' designs and use of different methods to detect LA-DRVs. Thus, evaluating clinical impact of LA-DRVs on first-line ART remains challenging. We, the WHO HIVResNet working group, defined central areas of future investigations to guide further efforts to implement ultrasensitive resistance testing in routine settings.
Collapse
Affiliation(s)
- Herbert A Mbunkah
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zürich, Switzerland.,Institute of Medical Virology, University of Zurich, Zürich, Switzerland.,Paul-Ehrlich-Institut, Langen, Germany
| | | | - Raph L Hamers
- Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Eijkman-Oxford Clinical Research Unit, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gillian Hunt
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Seth Inzaule
- Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tobias F Rinke De Wit
- Amsterdam Institute for Global Health and Development, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Roger Paredes
- Infectious Diseases Service and IrsiCaixa AIDS Research Institute for AIDS Research, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | | | - Michael R Jordan
- Division of Geographic Medicine and Infectious Disease, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zürich, Switzerland.,Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | | |
Collapse
|
12
|
Dinesh DC, Tamilarasan S, Rajaram K, Bouřa E. Antiviral Drug Targets of Single-Stranded RNA Viruses Causing Chronic Human Diseases. Curr Drug Targets 2021; 21:105-124. [PMID: 31538891 DOI: 10.2174/1389450119666190920153247] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid (RNA) viruses associated with chronic diseases in humans are major threats to public health causing high mortality globally. The high mutation rate of RNA viruses helps them to escape the immune response and also is responsible for the development of drug resistance. Chronic infections caused by human immunodeficiency virus (HIV) and hepatitis viruses (HBV and HCV) lead to acquired immunodeficiency syndrome (AIDS) and hepatocellular carcinoma respectively, which are one of the major causes of human deaths. Effective preventative measures to limit chronic and re-emerging viral infections are absolutely necessary. Each class of antiviral agents targets a specific stage in the viral life cycle and inhibits them from its development and proliferation. Most often, antiviral drugs target a specific viral protein, therefore only a few broad-spectrum drugs are available. This review will be focused on the selected viral target proteins of pathogenic viruses containing single-stranded (ss) RNA genome that causes chronic infections in humans (e.g. HIV, HCV, Flaviviruses). In the recent past, an exponential increase in the number of available three-dimensional protein structures (>150000 in Protein Data Bank), allowed us to better understand the molecular mechanism of action of protein targets and antivirals. Advancements in the in silico approaches paved the way to design and develop several novels, highly specific small-molecule inhibitors targeting the viral proteins.
Collapse
Affiliation(s)
| | - Selvaraj Tamilarasan
- Section of Microbial Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kaushik Rajaram
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Evžen Bouřa
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
13
|
Gachogo RW, Mwai DN, Onyambu FG. Cost analysis of implementing HIV drug resistance testing in Kenya: a case study of a service delivery site at a tertiary level hospital in Kenya. F1000Res 2020; 9:793. [PMID: 32983418 PMCID: PMC7495211 DOI: 10.12688/f1000research.23379.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 01/13/2023] Open
Abstract
Background: HIV drug resistance (HIVDR) threatens progress achieved in response to the HIV epidemic. Understanding the costs of implementing HIVDR testing programs for patient management and surveillance in resource-limited settings is critical in optimizing resource allocation. Here, we estimate the unit cost of HIVDR testing and identify major cost drivers while documenting challenges and lessons learnt in implementation of HIVDR testing at a tertiary level hospital in Kenya. Methods: We employed a mixed costing approach to estimate the costs associated with performing a HIVDR test from the provider's perspective. Data collection involved a time and motion study of laboratory procedures and interviewing laboratory personnel and the management personnel. Cost analysis was based on estimated 1000 HIVDR tests per year. Data entry and analysis were done using Microsoft Excel and costs converted to US dollars (2019). Results: The estimated unit cost for a HIVDR test was $271.78 per test. The main cost drivers included capital ($102.42, 37.68%) and reagents (101.50, 37.35%). Other costs included: personnel ($46.81, 17.22%), utilities ($14.69, 5.41%), equipment maintenance costs ($2.37, 0.87%) and quality assurance program ($4, 1.47%). Costs in relation to specific laboratory processes were as follows: sample collection ($2.41, 0.89%), RNA extraction ($22.79, 8.38%), amplification ($56.14, 20.66%), gel electrophoresis ($10.34, 3.80%), sequencing ($160.94, 59.22%), and sequence analysis ($19.16, 7.05%). A user-initiated modification of halving reagent volumes for some laboratory processes (amplification and sequencing) reduced the unit cost for a HIVDR test to $233.81 (13.97%) reduction. Conclusions: Capital expenditure and reagents remain the most expensive components of HIVDR testing. This cost is bound to change as the sequencing platform is utilized towards maximum capacity or leveraged for use with other tests. Cost saving in offering HIVDR testing services is also possible through reagent volume reduction without compromising on the quality of test results.
Collapse
Affiliation(s)
- Rachael W. Gachogo
- Molecular and Infectious Diseases Research Laboratory, University of Nairobi, Nairobi, Kenya
- School of Economics, University of Nairobi, Nairobi, Kenya
| | - Daniel N. Mwai
- School of Economics, University of Nairobi, Nairobi, Kenya
| | - Frank G. Onyambu
- Molecular and Infectious Diseases Research Laboratory, University of Nairobi, Nairobi, Kenya
- School of Health Sciences, Meru University of Science and Technology, Meru, Kenya
| |
Collapse
|
14
|
Pre-treatment drug resistance and HIV-1 genetic diversity in the rural and urban settings of Northwest-Cameroon. PLoS One 2020; 15:e0235958. [PMID: 32692778 PMCID: PMC7373288 DOI: 10.1371/journal.pone.0235958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/26/2020] [Indexed: 01/08/2023] Open
Abstract
Background With the scale-up of antiretroviral therapy (ART), pre-treatment drug resistance (PDR) appears ≥10% amongst ART-initiators in many developing countries, including Cameroon. Northwest region-Cameroon having the second epidemiological burden of HIV infection, generating data on PDR in these geographical settings, will enhance evidence-based decision-making. Objectives We sought to ascertain levels of PDR and HIV-1 clade dispersal in rural and urban settings, and their potential association with subtype distribution and CD4-staging. Methods A cross-sectional study was conducted from February to May 2017 among patients recently diagnosed with HIV-infection and initiating ART at the Bamenda regional Hospital (urban setting) and the Mbingo Baptist hospital (rural setting). Protease and reverse transcriptase sequencing was performed using an in-house protocol and pre-treatment drug resistance mutations were interpreted using Stanford HIVdb.v8.3. Phylogeny was performed for subtype assignation. Results A total of 61 patient sequences were generated from ART initiators (median age: 37 years old; 57.4% female; median CD4 cell count: 184 [IQR: 35–387] in urban vs. 161 [IQR: 96–322] cells/mm3 in rural). Overall, the level of PDR was 9.8% (6/61). Of note, burden of PDR was almost doubled in urban (12.9% [4/31]) compared to rural setting 6.7% (2/30), p = 0.352). Fifteen (15) PDR mutations were found among four patients the urban settings [6 resistance mutations to NRTIs:[M41L (2), E44D (1), K65R (1), K70E (1), M184V/I (2), K219R (1)] and 6 resistance mutations to NNRTIs: K103N (1), E138A/G (2), V179E (1), M230L (1), K238T (1), P225H (1)] against two (02) mutations found in two patients in the rural setting[2 resistant mutations to NNRTIs: E138A (1) and Y188H (1)]. The rural setting showed more genetic diversity (8 subtypes) than the urban setting (5 subtypes), with CRF02_AG being the most prevalent clade (72.1% [44/61]). Of note, level of PDR was similar between patients infected with CRF02_AG and non-CRF02_AG infected (9.1% [4/44]) vs. 11.8% [2/17]), p = 1.000). Moreover, PDR appeared higher in patients with CD4 cell count <200 cells/mm3 compared to those with CD4 cell count ≥200 cells/mm3 (14.7% [5/34]) vs. 3.7% [1/27]), p = 0.214). Conclusions PDR is at a moderate rate in the Northwest region of Cameroon, with higher burden within urban populations. CRF02_AG is the most predominant clade in both urban and rural settings. No effect of HIV molecular epidemiology and CD4-staging on the presence of PDR in patients living in these settings was found. Our findings suggest close monitoring, NNRTI-sparing regimens or sequencing for patients initiating ART, especially in urban settings.
Collapse
|