1
|
Yuan M, Li F, Xue F, Wang Y, Li B, Tang R, Wang Y, Bi GQ, Pei W. Transparent, flexible graphene-ITO-based neural microelectrodes for simultaneous electrophysiology recording and calcium imaging of intracortical neural activity in freely moving mice. MICROSYSTEMS & NANOENGINEERING 2025; 11:32. [PMID: 39994180 PMCID: PMC11850855 DOI: 10.1038/s41378-025-00873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/24/2024] [Accepted: 01/11/2025] [Indexed: 02/26/2025]
Abstract
To understand the complex dynamics of neural activity in the brain across various temporal and spatial scales, it is crucial to record intracortical multimodal neural activity by combining electrophysiological recording and calcium imaging techniques. This poses significant constraints on the geometrical, mechanical, and optical properties of the electrodes. Here, transparent flexible graphene-ITO-based neural microelectrodes with small feature sizes are developed and validated for simultaneous electrophysiology recording and calcium imaging in the hippocampus of freely moving mice. A micro-etching technique and an oxygen plasma pre-treating method are introduced to facilitate large-area graphene transfer and establish stable low-impedance contacts between graphene and metals, leading to the batch production of high-quality microelectrodes with interconnect widths of 10 μm and recording sites diameters of 20 μm. These electrodes exhibit appropriate impedance and sufficient transparency in the field of view, enabling simultaneous recording of intracortical local field potentials and even action potentials along with calcium imaging in freely moving mice. Both types of electrophysiological signals are found to correlate with calcium activity. This proof-of-concept work demonstrates that transparent flexible graphene-ITO-based neural microelectrodes are promising tools for multimodal neuroscience research.
Collapse
Affiliation(s)
- Miao Yuan
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Fei Li
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China
| | - Feng Xue
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Wang
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Baoqiang Li
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rongyu Tang
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yijun Wang
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Qiang Bi
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518055, China.
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Weihua Pei
- Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- Institute of Semiconductors, University of Chinese Academy of Sciences, Beijing, 10049, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Zhang C, Wang Q, Zhong C, Yang Y, Liang X, Chen P, Zhou L. A simple photoelectrochemical aptasensor based on MoS 2/rGO for aflatoxin B1 detection in grain crops. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1330-1340. [PMID: 38328893 DOI: 10.1039/d3ay01455j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Designing a simple and sensitive photoelectrochemical (PEC) sensor is crucial to addressing the limitations of routine analytical methods. The sensitivity of the PEC sensor, however, relies on the photoelectric material used. In this manuscript, composites of MoS2/rGO (MG) with a large area and layered structure are prepared by simple steps. This material exhibits sensitivity to visible light and demonstrates outstanding photoelectric conversion performance. The constructed PEC aptasensor using this material to detect aflatoxin B1 (AFB1) shows significantly higher sensitivity and stability compared to similar sensors. This may be attributed to the presence of surface defects in MoS2, which provide more active sites for photocatalysis. Additionally, graphene oxide (GO) is reduced to rGO by thiourea and forms a heterojunction with MoS2, enhancing charge carrier separation and interfacial electron transfer. Our research has revealed that the photocurrent intensity of the aptamer electrode decreases with an increase in AFB1 concentration, resulting in a "signal-off" PEC aptasensor. The detection limit of this aptasensor is 2.18 pg mL-1, with a linear range of 0.001 to 100 ng mL-1. This result will also provide a reference for the study of other mycotoxins in food.
Collapse
Affiliation(s)
- Cuizhong Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, School of Chemistry and Bioengineering, Guangxi Normal University for Nationalities, Chongzuo 532200, China
- Guangxi Key Laboratory for High-Value Utilization of Manganese Resources, Chongzuo 532200, China
- Chongzuo Key Laboratory of Comprehensive Utilization Technology of Manganese Resources, Chongzuo 532200, China
| | - Qiang Wang
- Guangxi Key Laboratory for High-Value Utilization of Manganese Resources, Chongzuo 532200, China
- Chongzuo Key Laboratory of Comprehensive Utilization Technology of Manganese Resources, Chongzuo 532200, China
| | - Chuanze Zhong
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Ye Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Xuexue Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Peican Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Chaudhari V, Vairagade V, Thakkar A, Shende H, Vora A. Nanotechnology-based fungal detection and treatment: current status and future perspective. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:77-97. [PMID: 37597093 DOI: 10.1007/s00210-023-02662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Fungal infections impose a significant impact on global health and encompass major expenditures in medical treatments. Human mycoses, a fungal co-infection associated with SARS-CoV-2, is caused by opportunistic fungal pathogens and is often overlooked or misdiagnosed. Recently, there is increasing threat about spread of antimicrobial resistance in fungus, mostly in hospitals and other healthcare facilities. The diagnosis and treatment of fungal infections are associated with several issues, including tedious and non-selective detection methods, the growth of drug-resistant bacteria, severe side effects, and ineffective drug delivery. Thus, a rapid and sensitive diagnostic method and a high-efficacy and low-toxicity therapeutic approach are needed. Nanomedicine has emerged as a viable option for overcoming these limitations. Due to the unique physicochemical and optical properties of nanomaterials and newer biosensing techniques, nanodiagnostics play an important role in the accurate and prompt differentiation and detection of fungal diseases. Additionally, nano-based drug delivery techniques can increase drug permeability, reduce adverse effects, and extend systemic circulation time and drug half-life. This review paper is aimed at highlighting recent, promising, and unique trends in nanotechnology to design and develop diagnostics and treatment methods for fungal diseases.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Vaishnavi Vairagade
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Himani Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
4
|
Al-Ahmed ZA, Hameed A, Alharbi A, Pashameah RA, Habeebullah TM, El-Metwaly NM. Novel azapropazone voltammetric sensors based on zinc oxide nanostructure. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2022.2163583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Zehbah A. Al-Ahmed
- Depertment of Chemistry, College of Sciences and Art, Dhahran Aljounb, King Khalid University, Dhahran Aljounb, Saudi Arabia
| | - Ahmed Hameed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed Alharbi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rami A. Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Turki M. Habeebullah
- Department of Environment and Health Research, The Custodian of Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al Qura University, Makkah, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
5
|
Al-nami S, Alorabi AQ, Al-Ahmed ZA, Mogharbel AT, Abumelha HM, Hussein MA, El-Metwaly NM. Superficial and Inkjet Scalable Printed Sensors Integrated with Iron Oxide and Reduced Graphene Oxide for Sensitive Voltammetric Determination of Lurasidone. ACS OMEGA 2023; 8:10449-10458. [PMID: 36969426 PMCID: PMC10034779 DOI: 10.1021/acsomega.3c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The present work demonstrated the fabrication and the electrochemical characterization of novel printed electrochemical sensors integrated with an innovative nanosensing platform based on the synergic electrocatalytic effect of iron oxide nanoparticles (FeONPs) and reduced graphene oxide (rGO) for precise voltammetric determination of the antipsychotic drug lurasidone hydrochloride (LUH). The features of the electrode surface fabricated using the ordinary inkjet printer were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Among different ink formulations, integration of the printing ink with the ratio 15 mg FeONPs and 20 mg rGO was found to be the most appropriate for sensitive quantification of LUH in biological fluids and pharmaceutical formulations in the presence of LUH degradation products. Under the optimized experimental and electroanalytical parameters, the recorded square-wave voltammograms were correlated to LUH within the linear concentration ranging from 50 to 2150 ng mL-1 with detection limit and limit of quantification values of 15.64 and 47.39 ng mL-1, respectively. Based on the cyclic voltammograms recorded for LUH at different scan rates, the electrode reaction was assumed to be a diffusion reaction mechanism accompanied by the transfer of two electrons/protons through the oxidation of the five-membered ring nitrogen atom as assumed by the molecular orbital calculations carried out on the LUH molecule. The C max of LUH and the efficiency of the fabricated sensors enabled their clinical application for monitoring LUH in human biological fluids and pharmaceutical formulations in the presence of degradants for diverse quality control applications and green chemistry analysis.
Collapse
Affiliation(s)
- Samar
Y. Al-nami
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61421, Saudi Arabia
| | - Ali Q. Alorabi
- Department
of Chemistry, Faculty of Sciences, Albaha
University, P.O. Box 1988, Albaha 65799, Saudi Arbia
| | - Zehbah A. Al-Ahmed
- Depertment
of Chemistry, College of Sciences and Art, Dhahran Aljounb, King Khalid University, Abha 61421, Saudi
Arabia
| | - Amal T. Mogharbel
- Department
of Chemistry, Faculty of Science, University
of Tabuk, Tabuk 71474, Saudi Arabia
| | - Hana M. Abumelha
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed A. Hussein
- Biochemistry
Department, Faculty of Applied Medical Sciences, October 6 University, 6th of October
City, Giza 28125, Egypt
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Al-bonayan AM, Hameed A, Alorabi AQ, Alessa H, Aljuhani E, El-Metwaly NM. Novel Copper Oxide Nanostructure Propafenone Voltammetric Sensor. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-07685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Al-bonayan A, Althakafy JT, Alorabi AQ, Alamrani NA, Aljuhani EH, Alaysuy O, Al-Qahtani SD, El-Metwaly NM. Novel Copper Oxide-Integrated Carbon Paste Tirofiban Voltammetric Sensor. ACS OMEGA 2023; 8:5042-5049. [PMID: 36777607 PMCID: PMC9909784 DOI: 10.1021/acsomega.2c07790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The present study introduced the construction and electroanalytical characterization of novel tirofiban (TIR) carbon paste voltammetric sensors integrated with copper oxide nanoparticles. The copper oxide nanostructure remarkably enhanced the oxidation of TIR molecules on the electrode surface with an irreversible anodic oxidation peak at about 1.18 V. The peak current values of the recorded differential pulse voltammograms were correlated to the TIR concentrations within a defined linear range from 0.060 to 7.41 μg mL-1 with an LOD value of 20.7 ng mL-1. Based on the electrochemical behavior of TIR at different scan rates and with the aid of the molecular orbital calculations performed on the TIR molecule, the electro-oxidation reaction was postulated to undergo through the oxidation of the five-membered-ring nitrogen atom with the transfer of one electron and one proton. Based on the reported selectivity and sensitivity of the proposed method, TIR was successfully determined in Aggrastat intravenous infusion and biological samples with mean average recoveries agreeable with the UV spectrophotometric method.
Collapse
Affiliation(s)
- Ameena
M. Al-bonayan
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah21961, Saudi Arabia
| | - Jalal T. Althakafy
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah21961, Saudi Arabia
| | - Ali Q. Alorabi
- Department
of Chemistry, Faculty of Sciences, Albaha
University, P.O. Box 1988, Albaha65799, Saudi Arbia
| | - Nasser A. Alamrani
- Department
of Chemistry, Faculty of Science, University
of Tabuk, Tabuk71474, Saudi Arabia
| | - Enas H. Aljuhani
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah21961, Saudi Arabia
| | - Omaymah Alaysuy
- Department
of Chemistry, Faculty of Science, University
of Tabuk, Tabuk71474, Saudi Arabia
| | - Salhah D. Al-Qahtani
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh11671, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street, Mansoura35516, Egypt
| |
Collapse
|
8
|
El-Said WA, Alsulmi A, Alshitari W. Hydrothermal synthesis of Mn3O4 nanorods modified indium tin oxide electrode as an efficient nanocatalyst towards direct urea electrooxidation. PLoS One 2022; 17:e0272586. [PMID: 35925927 PMCID: PMC9352088 DOI: 10.1371/journal.pone.0272586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
Control fabrication of metal-oxide nanocatalysts for electrochemical reactions has received considerable research attention. Here, manganese oxide (Mn3O4) nanorods modified indium tin oxide (ITO) electrodes were prepared based on the in-situ one-step hydrothermal methods. The nanorods were well characterized using field emission scanning electron microscopy, Fourier transform infrared, and X-ray diffraction spectroscopy. The results showed the formation of pure crystalline Mn3O4 nanorods with a length of approximately 1.4 μm and a thickness of approximately 100 ± 30 nm. The Mn3O4 nanorod-modified ITO electrodes were used for accelerating urea electrochemical oxidation at room temperature using cyclic and square wave voltammetry techniques. The results indicated that the modified electrode demonstrated excellent electrocatalytic performance toward urea electrooxidation in an alkaline medium over concentrations ranging from 0.2 to 4 mol/L. The modified electrode showed high durability, attaining more than 88% of its baseline performance after 150 cycles; furthermore, the chronoamperometry technique demonstrated high stability. Thus, the Mn3O4 nanorod-modified ITO electrode is a promising anode for direct urea fuel cell applications.
Collapse
Affiliation(s)
- Waleed A. El-Said
- Department of Chemistry, University of Jeddah, College of Science, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
- * E-mail:
| | - Ahmad Alsulmi
- Department of Chemistry, University of Jeddah, College of Science, Jeddah, Saudi Arabia
| | - Wael Alshitari
- Department of Chemistry, University of Jeddah, College of Science, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Alnahdi HS, Mousa RMA, El‐Said WA. Development of Organochlorine Pesticide Electrochemical Sensor Based on Fe
3
O
4
Nanoparticles@indium Tin Oxide Electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hanan S. Alnahdi
- University of Jeddah, College of Science, Department of Biochemistry P.O. 80327 Jeddah 21589 Saudi Arabia
| | - Rasha Mousa Ahmed Mousa
- University of Jeddah, College of Science, Department of Biochemistry P.O. 80327 Jeddah 21589 Saudi Arabia
| | - Waleed A. El‐Said
- University of Jeddah, College of Science, Department of Chemistry P.O. 80327 Jeddah 21589 Saudi Arabia
- Department of Chemistry Faculty of Science Assiut University Assiut 71516 Egypt
| |
Collapse
|
10
|
|
11
|
Singh AK, Dhiman TK, Lakshmi GBVS, Raj R, Jha SK, Solanki PR. Rapid and label-free detection of Aflatoxin-B1 viamicrofluidic electrochemical biosensor based on manganese (III) oxide (Mn 3O 4) synthesized by co-precipitation route at room temperature. NANOTECHNOLOGY 2022; 33:285501. [PMID: 35299158 DOI: 10.1088/1361-6528/ac5ee2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin, naturally occurring in food items, and it causes several types of lethal diseases. Therefore, a rapid and convenient detection method for AFB1 is the first step toward overcoming the effect of AFB1. The current work presents the development of an efficient microfluidic electrochemical-based biosensor using tri-manganese tetroxide nanoparticles (Mn3O4nps) for AFB1 detection. The Mn3O4nps were synthesized at room temperature through the co-precipitation route. Its phase purity, structural and morphological studies have been characterized through x-ray diffraction, Raman spectroscopy, energy-dispersive x-ray, Fourier transform infrared spectroscopy and transmission electron microscopy. The mask-less UV-lithography was carried out to fabricate the three-electrode chip and microfluidic channel of the microfluidic electrochemical biosensing system. The designed microfluidic immunosensor (BSA/Ab-AFB1/Mn3O4/ITO) was fabricated using the three-electrode chip, microfluidic channel in poly-dimethyl siloxane. The fabricated sensor exhibited the 3.4μA ml ng-1cm-2sensitivity and had the lowest lower detection limit of 0.295 pg ml-1with the detection range of 1 pg ml-1to 300 ng ml-1. Additionally, the spiked study was also performed with this immunoelectrode and a recovery rate was obtained of 108.2%.
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi-110067, India
- School of Physical Sciences, JNU, New Delhi-110067, India
| | - Tarun Kumar Dhiman
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi-110067, India
| | - G B V S Lakshmi
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi-110067, India
| | - Rishi Raj
- Indian Institute of Technology, New Delhi-110067, India
| | | | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University (JNU), New Delhi-110067, India
| |
Collapse
|
12
|
Nb
4
C
3
T
x
(MXene)/Au/DNA Aptasensor for the Ultraselective Electrochemical Detection of Lead in Water Samples. ELECTROANAL 2022. [DOI: 10.1002/elan.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Pérez-Fernández B, Muñiz ADLE. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Anal Chim Acta 2022; 1212:339658. [DOI: 10.1016/j.aca.2022.339658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
|
14
|
El-Said WA, Al-Bogami AS, Alshitari W. Synthesis of gold nanoparticles@reduced porous graphene-modified ITO electrode for spectroelectrochemical detection of SARS-CoV-2 spike protein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120237. [PMID: 34352502 PMCID: PMC8327772 DOI: 10.1016/j.saa.2021.120237] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 05/05/2023]
Abstract
Here, we reported the synthesis of reduced porous graphene oxide (rPGO) decorated with gold nanoparticles (Au NPs) to modify the ITO electrode. Then we used this highly uniform Au NPs@rPGO modified ITO electrode as a surface-enhanced Raman spectroscopy-active surface and a working electrode. The uses of the Au nanoparticles and porous graphene enhance the Raman signals and the electrochemical conductivity. COVID-19 protein-based biosensor was developed based on immobilization of anti-COVID-19 antibodies onto the modified electrode and its uses as a probe for capturing the COVID-19 protein. The developed biosensor showed the capability of monitoring the COVID-19 protein within a concentration range from 100 nmol/L to 1 pmol/L with a limit of detection (LOD) of 75 fmol/L. Furthermore, COVID-19 protein was detected based on electrochemical techniques within a concentration range from 100 nmol/L to 500 fmol/L that showed a LOD of 39.5 fmol/L. Finally, three concentrations of COVID-19 protein spiked in human serum were investigated. Thus, the present sensor showed high efficiency towards the detection of COVID-19.
Collapse
Affiliation(s)
- Waleed A El-Said
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
| | - Abdullah S Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Wael Alshitari
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Bhardwaj H, Rajesh, Sumana G. Recent advances in nanomaterials integrated immunosensors for food toxin detection. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:12-33. [PMID: 35068548 PMCID: PMC8758883 DOI: 10.1007/s13197-021-04999-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/03/2023]
Abstract
For the management and prevention of many chronic and acute diseases, the rapid quantification of toxicity in food and feed products have become a significant concern. Technology advancements in the area of biosensors, bioelectronics, miniaturization techniques, and microfluidics have shown a significant impact than conventional methods which have given a boost to improve the sensing performance towards food analyte detection. In this article, recent literature of Aflatoxin B1 (AFB1), worldwide permissible limits, major outbreaks and severe impact on healthy life have been discussed. An improvement achieved in detection range, limit of detection, shelf-life of the biosensor by integrated dimensional nanomaterials such as zero-dimension, one-dimension and two-dimension for AFB1 detection using electrical and optical transduction mechanism has been summarized. A critical overview of the latest trends using paper-based and micro-spotted array integrated with the anisotropic shape of nanomaterials, portable microfluidic devices have also been described together with future perspectives for further advancements.
Collapse
Affiliation(s)
- Hema Bhardwaj
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rajesh
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
| | - Gajjala Sumana
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
16
|
Carbon-Based Nanocomposite Smart Sensors for the Rapid Detection of Mycotoxins. NANOMATERIALS 2021; 11:nano11112851. [PMID: 34835617 PMCID: PMC8621137 DOI: 10.3390/nano11112851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023]
Abstract
Carbon-based nanomaterials have become the subject of intensive interest because their intriguing physical and chemical properties are different from those of their bulk counterparts, leading to novel applications in smart sensors. Mycotoxins are secondary metabolites with different structures and toxic effects produced by fungi. Mycotoxins have low molecular weights and highly diverse molecular structures, which can induce a spectrum of biological effects in humans and animals even at low concentrations. A tremendous amount of biosensor platforms based on various carbon nanocomposites have been developed for the determination of mycotoxins. Therefore, the contents of this review are based on a balanced combination of our own studies and selected research studies performed by academic groups worldwide. We first address the vital preparation methods of biorecognition unit (antibodies, aptamers, molecularly imprinted polymers)-functionalized carbon-based nanomaterials for sensing mycotoxins. Then, we summarize various types of smart sensors for the detection of mycotoxins. We expect future research on smart sensors to show a significant impact on the detection of mycotoxins in food products.
Collapse
|
17
|
Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021; 9:7878-7908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases caused by bacteria, viruses, and fungi and their global spread pose a great threat to human health. The 2019 World Health Organization report predicted that infection-related mortality will be similar to cancer mortality by 2050. Particularly, the global cumulative numbers of the recent outbreak of coronavirus disease (COVID-19) have reached 110.7 million cases and over 2.4 million deaths as of February 23, 2021. Moreover, the crisis of these infectious diseases exposes the many problems of traditional diagnosis, treatment, and prevention, such as time-consuming and unselective detection methods, the emergence of drug-resistant bacteria, serious side effects, and poor drug delivery. There is an urgent need for rapid and sensitive diagnosis as well as high efficacy and low toxicity treatments. The emergence of nanomedicine has provided a promising strategy to greatly enhance detection methods and drug treatment efficacy. Owing to their unique optical, magnetic, and electrical properties, nanoparticles (NPs) have great potential for the fast and selective detection of bacteria, viruses, and fungi. NPs exhibit remarkable antibacterial activity by releasing reactive oxygen species and metal ions, exerting photothermal effects, and causing destruction of the cell membrane. Nano-based delivery systems can further improve drug permeability, reduce the side effects of drugs, and prolong systemic circulation time and drug half-life. Moreover, effective drugs against COVID-19 are still lacking. Recently, nanomedicine has shown great potential to accelerate the development of safe and novel anti-COVID-19 drugs. This article reviews the fundamental mechanisms and the latest developments in the treatment and diagnosis of bacteria, viruses, and fungi and discusses the challenges and perspectives in the application of nanomedicine.
Collapse
Affiliation(s)
- Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. .,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
Silah H, Erkmen C, Demir E, Uslu B. Modified indium tin oxide electrodes: Electrochemical applications in pharmaceutical, biological, environmental and food analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Gao J, He S, Nag A, Wong JWC. A Review of the Use of Carbon Nanotubes and Graphene-Based Sensors for the Detection of Aflatoxin M1 Compounds in Milk. SENSORS (BASEL, SWITZERLAND) 2021; 21:3602. [PMID: 34064254 PMCID: PMC8196808 DOI: 10.3390/s21113602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
This paper presents a comprehensive review of the detection of aflatoxin compounds using carbon allotrope-based sensors. Although aflatoxin M1 and its derivative aflatoxin B1 compounds have been primarily found in milk and other food products, their presence above a threshold concentration causes disastrous health-related anomalies in human beings, such as growth impairment, underweight and even carcinogenic and immunosuppressive effects. Among the many sensors developed to detect the presence of these compounds, the employment of certain carbon allotropes, such as carbon nanotubes (CNTs) and graphene, has been highly preferred due to their enhanced electromechanical properties. These conductive nanomaterials have shown excellent quantitative performance in terms of sensitivity and selectivity for the chosen aflatoxin compounds. This paper elucidates some of the significant examples of the CNTs and graphene-based sensors measuring Aflatoxin M1 (ATM1) and Aflatoxin B1 (AFB1) compounds at low concentrations. The fabrication technique and performance of each of the sensors are shown here, as well as some of the challenges existing with the current sensors.
Collapse
Affiliation(s)
- Jingrong Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Shan He
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park 5042, Australia
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Anindya Nag
- School of Information Science and Engineering, Shandong University, Jinan 251600, China
| | - Jonathan Woon Chung Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong 999077, Hong Kong, China;
| |
Collapse
|
20
|
Abstract
Mycotoxins are toxic secondary metabolites naturally produced by fungi. They can cause various kinds of acute and chronic diseases in both humans and animals since food usually contains trace amounts of mycotoxins. Thus, it is important to develop a rapid and sensitive technique for mycotoxin detection. Except for the original and classical enzyme-linked immunosorbent assays (ELISA), a series of biosensors has been developed to analyze mycotoxins in food in the last decade with the advantages of rapid analysis, simplicity, portability, reproducibility, stability, accuracy, and low cost. Nanomaterials have been incorporated into biosensors for the purpose of achieving better analytical performance in terms of limit of detection, linear range, analytical stability, low production cost, etc. Gold nanoparticles (AuNPs) are one of the most extensively studied and commonly used nanomaterials, which can be employed as an immobilization carrier, signal amplifier, mediator and mimic enzyme label. This paper aims to present an extensive overview of the recent progress in AuNPs in mycotoxin detection through ELISA and biosensors. The details of the detection methods and their application principles are described, and current challenges and future prospects are discussed as well.
Collapse
Affiliation(s)
- Linxia Wu
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian Dist., Beijing, 100097, China.
| | | | | |
Collapse
|
21
|
AuPeroxidase nanozymes: Promises and applications in biosensing. Biosens Bioelectron 2021; 175:112882. [DOI: 10.1016/j.bios.2020.112882] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
|
22
|
Althagafi II, Ahmed SA, El-Said WA. Colorimetric aflatoxins immunoassay by using silica nanoparticles decorated with gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118999. [PMID: 33038860 DOI: 10.1016/j.saa.2020.118999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Nanomaterials-based colorimetric immunoassays showed increasing attention for monitoring different biomarkers because of their unique optical and electrical features. Here, a highly sensitive and selective optical sensor was described for the determination of different aflatoxins (AFs). Mesoporous silica nanoparticles (m-SNPs) with an average particle size of 40 nm were prepared by the sol-gel method and then decorated with gold nanoparticles (AuNPs). The Au NPs@m-SiNPs nanocomposite with an average particle size of 66 nm was modified with AFs antibodies. The assay includes the following steps: the Au NPs@m-SiNPs nanocomposite was immersed with AFs antibodies, and then the AFs-Ab/Au NPs@m-SiNPs was used as a probe for AFs detection. The interaction between the AFs-Ab/Au NPs@m-SiNPs and the AFs has resulted in a change in its color from pink to violet. Measurements are performed by absorptiometry at a wavelength of 425 nm. The immunoassay works in the concentration range from 1 ng·mL-1 to 75 ng·mL-1 AFB1 and has a limit of detection 0.16 ng·mL-1 (at S/N = 3). The assay was applied to the determination of AFs in different food samples spiked with AFS. Finally, the assay was used to detect AFs in a real sample, and the LC-MS technique was used to verify the results.
Collapse
Affiliation(s)
- Ismail I Althagafi
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Saleh A Ahmed
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia; Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| | - Waleed A El-Said
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
23
|
Huang Y, Zhu F, Guan J, Wei W, Zou L. Label-Free Amperometric Immunosensor Based on Versatile Carbon Nanofibers Network Coupled with Au Nanoparticles for Aflatoxin B 1 Detection. BIOSENSORS-BASEL 2020; 11:bios11010005. [PMID: 33374220 PMCID: PMC7823963 DOI: 10.3390/bios11010005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/04/2023]
Abstract
Facile detection methods for mycotoxins with high sensitivity are of great significance to prevent potential harm to humans. Herein, a label-free amperometric immunosensor based on a 3-D interconnected carbon nanofibers (CNFs) network coupled with well-dispersed Au nanoparticles (AuNPs) is proposed for the quantitative determination of aflatoxin B1 (AFB1) in wheat samples. In comparison to common carbon nanotubes (CNTs), the CNFs network derived from bacterial cellulose biomass possesses a unique hierarchically porous structure for fast electrolyte diffusion and a larger electrochemical active area, which increases the peak current of differential pulse voltammetry curves for an immunosensor. Combined with AuNPs that are incorporated into CNFs by using linear polyethyleneimine (PEI) as a soft template, the developed Au@PEI@CNFs-based immunosensor showed a good linear response to AFB1 concentrations in a wide range from 0.05 to 25 ng mL-1. The limit of detection was 0.027 ng mL-1 (S/N = 3), more than three-fold lower than that of an Au@PEI@CNTs-based sensor. The reproducibility, storage stability and selectivity of the immunosensor were proved to be satisfactory. The developed immunosensor with appropriate sensitivity and reliable accuracy can be used for the analysis of wheat samples.
Collapse
Affiliation(s)
- Yunhong Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (F.Z.); (J.G.)
| | - Fei Zhu
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (F.Z.); (J.G.)
| | - Jinhua Guan
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (F.Z.); (J.G.)
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Correspondence: (W.W.); (L.Z.)
| | - Long Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (F.Z.); (J.G.)
- Correspondence: (W.W.); (L.Z.)
| |
Collapse
|
24
|
Non-enzymatic electrochemical sensor to detect γ-aminobutyric acid with ligand-based on graphene oxide modified gold electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Yan C, Wang Q, Yang Q, Wu W. Recent Advances in Aflatoxins Detection Based on Nanomaterials. NANOMATERIALS 2020; 10:nano10091626. [PMID: 32825088 PMCID: PMC7558307 DOI: 10.3390/nano10091626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/31/2022]
Abstract
Aflatoxins are the secondary metabolites of Aspergillus flavus and Aspergillus parasiticus and are highly toxic and carcinogenic, teratogenic and mutagenic. Ingestion of crops and food contaminated by aflatoxins causes extremely serious harm to human and animal health. Therefore, there is an urgent need for a selective, sensitive and simple method for the determination of aflatoxins. Due to their high performance and multipurpose characteristics, nanomaterials have been developed and applied to the monitoring of various targets, overcoming the limitations of traditional methods, which include process complexity, time-consuming and laborious methodologies and the need for expensive instruments. At the same time, nanomaterials provide general promise for the detection of aflatoxins with high sensitivity, selectivity and simplicity. This review provides an overview of recent developments in nanomaterials employed for the detection of aflatoxins. The basic aspects of aflatoxin toxicity and the significance of aflatoxin detection are also reviewed. In addition, the development of different biosensors and nanomaterials for aflatoxin detection is introduced. The current capabilities and limitations and future challenges in aflatoxin detection and analysis are also addressed.
Collapse
Affiliation(s)
- Chunlei Yan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (C.Y.); (Q.W.)
| | - Qi Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (C.Y.); (Q.W.)
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (C.Y.); (Q.W.)
- Correspondence: (Q.Y.); (W.W.)
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (C.Y.); (Q.W.)
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- Correspondence: (Q.Y.); (W.W.)
| |
Collapse
|
26
|
Hu J, Zhou R, Lin H, Wei Q, Hu F, Yang X. Novel plant flavonoid electrochemical sensor based on in-situ and controllable double-layered membranes modified electrode. PLoS One 2020; 15:e0237583. [PMID: 32804936 PMCID: PMC7431104 DOI: 10.1371/journal.pone.0237583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022] Open
Abstract
Identification and quantification of plant flavonoids are critical to pharmacokinetic study and pharmaceutical quality control due to their distinct pharmacological functions. Here we report on a novel plant flavonoid electrochemical sensor for sensitive and selective detection of dihydromyricetin (DMY) based on double- layered membranes consisting of gold nanoparticles (Au) anchored on reduced graphene oxide (rGO) and molecularly imprinted polymers (MIPs) modified glassy carbon electrode (GCE). Both rGO-Au and MIPs membranes were directly formed on GCE via in-situ electrochemical reduction and polymerization processes step by step. The compositions, morphologies, and electrochemical properties of membranes were investigated with X-ray powder diffractometry (XRD), Fourier transform infrared spectrum (FTIR), Field emission scanning electron microscopy (FESEM) combined with various electrochemical methods. The fabricated electrochemical sensor labeled as GCE│rGO-Au/MIPs exhibited excellent performance in determining of DMY under optimal experimental conditions. A wide linear detection range (LDR) ranges from 2.0×10−8 to 1.0×10−4 M together with a low limit of detection (LOD) of 1.2×10−8 M (S/N = 3) were achieved. Moreover, the electrochemical sensor was employed to determine DMY in real samples with satisfactory results.
Collapse
Affiliation(s)
- Jing Hu
- Huaihua Key Laboratory for Preparation of Ceramics Materials and Devices, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, PR China
| | - Renjie Zhou
- Huaihua Key Laboratory for Preparation of Ceramics Materials and Devices, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, PR China
| | - Hongwei Lin
- Huaihua Key Laboratory for Preparation of Ceramics Materials and Devices, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, PR China
| | - Qiuyuan Wei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, PR China
| | - Feilong Hu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, PR China
- * E-mail: (FH); (XY)
| | - Xin Yang
- Huaihua Key Laboratory for Preparation of Ceramics Materials and Devices, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, PR China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, Huaihua, PR China
- * E-mail: (FH); (XY)
| |
Collapse
|
27
|
Novel nanohybrid of blackberry-like gold structures deposited graphene as a free-standing sensor for effective hydrogen peroxide detection. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Li Z, Li X, Jian M, Geleta GS, Wang Z. Two-Dimensional Layered Nanomaterial-Based Electrochemical Biosensors for Detecting Microbial Toxins. Toxins (Basel) 2019; 12:E20. [PMID: 31906152 PMCID: PMC7020412 DOI: 10.3390/toxins12010020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023] Open
Abstract
Toxin detection is an important issue in numerous fields, such as agriculture/food safety, environmental monitoring, and homeland security. During the past two decades, nanotechnology has been extensively used to develop various biosensors for achieving fast, sensitive, selective and on-site analysis of toxins. In particular, the two dimensional layered (2D) nanomaterials (such as graphene and transition metal dichalcogenides (TMDs)) and their nanocomposites have been employed as label and/or biosensing transducers to construct electrochemical biosensors for cost-effective detection of toxins with high sensitivity and specificity. This is because the 2D nanomaterials have good electrical conductivity and a large surface area with plenty of active groups for conjugating 2D nanomaterials with the antibodies and/or aptamers of the targeted toxins. Herein, we summarize recent developments in the application of 2D nanomaterial-based electrochemical biosensors for detecting toxins with a particular focus on microbial toxins including bacterial toxins, fungal toxins and algal toxins. The integration of 2D nanomaterials with some existing antibody/aptamer technologies into electrochemical biosensors has led to an unprecedented impact on improving the assaying performance of microbial toxins, and has shown great promise in public health and environmental protection.
Collapse
Affiliation(s)
- Zhuheng Li
- Jilin Provincial Institute of Education, Changchun 130022, China;
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| | - Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| | - Girma Selale Geleta
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma 378, Ethiopia
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| |
Collapse
|