1
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
2
|
Marques RF, Moreno DA, da Silva L, Leal LF, de Paula FE, Santana I, Teixeira G, Saggioro F, Neder L, Junior CA, Mançano B, Reis RM. Digital expression profile of immune checkpoint genes in medulloblastomas identifies CD24 and CD276 as putative immunotherapy targets. Front Immunol 2023; 14:1062856. [PMID: 36825029 PMCID: PMC9941636 DOI: 10.3389/fimmu.2023.1062856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Medulloblastoma is the most common and lethal pediatric malignant brain tumor. It comprises four main molecular subgroups: WNT-activated, SHH-activated, Group 3, and Group 4. Medulloblastoma treatment is surgical resection, craniospinal radiation, and chemotherapy. However, many patients do not respond to therapy, and most suffer severe side effects. Cancer immunotherapy targeting immune checkpoints (IC) (PD-1, PD-L1, and CTLA4) has been getting disappointing outcomes in brain tumors. Nevertheless, other less explored immune checkpoints may be promising candidates for medulloblastoma therapy. Objectives In the present study, we aimed to characterize the expression profile of 19 immune checkpoints in medulloblastoma. Methods We analyzed 88 formalin-fixed paraffin-embedded medulloblastomas previously classified for each molecular subgroup and three non-tumoral brain tissue. mRNA levels of 19 immune checkpoint-related genes were quantified using the nCounter (PanCancer Immune Profiling Panel) assay. Further in silico analysis was performed in two larger public microarray datasets, one of which enabled comparisons between tumoral and non-tumoral tissues. Immunohistochemistry of PD-L1 was performed in a subset of cases. Microsatellite instability was also molecularly analyzed. Results We observed an absence of expression of the canonic ICs, namely PDCD1 (PD-1), CD274 (PD-L1), and CTLA4, as well as CD80, CD86, BTLA, IDO1, CD48, TNFSF14, CD160, CEACAM1, and CD244. PD-L1 protein expression was also practically absent. We found higher mRNA levels of CD24, CD47, CD276 (B7-H3), and PVR, and lower mRNA levels of HAVCR2, LAG3, and TIGIT genes, with significant differences across the four molecular subgroups. Compared to the non-tumor tissues, the expression levels of CD276 in all subgroups and CD24 in SHH, Group 3, and Group 4 subgroups are significantly higher. The in silico analysis confirmed the expression profile found in the Brazilian cohort, including the lower/absent expression of the canonic ICs. Moreover, it confirmed the overexpression of CD24 and CD276 in medulloblastomas compared with the non-tumor tissue. Additionally, CD276 and CD24 high levels were associated with worse survival. Conclusion These results highlight the low or absence of mRNA levels of the canonic targetable ICs in medulloblastomas. Importantly, the analysis revealed overexpression of CD24 and CD276, which can constitute prognostic biomarkers and attractive immunotherapy targets for medulloblastomas.
Collapse
Affiliation(s)
- Rui Ferreira Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | | | - Luciane da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Leticia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Faculty of Health Sciences of Barretos Dr. Paulo Prata (FACISB), School of Medicine, Barretos, Brazil
| | | | - Iara Santana
- Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil
| | - Gustavo Teixeira
- Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil
| | - Fabiano Saggioro
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luciano Neder
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Bruna Mançano
- Barretos Children's Cancer Hospital, Barretos, Brazil
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga, Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Laboratory of Molecular Diagnostic, Barretos Cancer Hospital, Barretos, Brazil
| |
Collapse
|
3
|
Ni YH, Zhao X, Wang W. CD24, A Review of its Role in Tumor Diagnosis, Progression and Therapy. Curr Gene Ther 2021; 20:109-126. [PMID: 32576128 DOI: 10.2174/1566523220666200623170738] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
CD24, is a mucin-like GPI-anchored molecules. By immunohistochemistry, it is widely detected in many solid tumors, such as breast cancers, genital system cancers, digestive system cancers, neural system cancers and so on. The functional roles of CD24 are either fulfilled by combination with ligands or participate in signal transduction, which mediate the initiation and progression of neoplasms. However, the character of CD24 remains to be intriguing because there are still opposite voices about the impact of CD24 on tumors. In preclinical studies, CD24 target therapies, including monoclonal antibodies, target silencing by RNA interference and immunotherapy, have shown us brighten futures on the anti-tumor application. Nevertheless, evidences based on clinical studies are urgently needed. Here, with expectancy to spark new ideas, we summarize the relevant studies about CD24 from a tumor perspective.
Collapse
Affiliation(s)
- Yang-Hong Ni
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041, Sichuan, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041, Sichuan, China
| |
Collapse
|
4
|
Paul MR, Zage PE. Overview and recent advances in the targeting of medulloblastoma cancer stem cells. Expert Rev Anticancer Ther 2021; 21:957-974. [PMID: 34047251 DOI: 10.1080/14737140.2021.1932472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Medulloblastoma, an embryonal small round blue cell tumor primarily arising in the posterior fossa, is the most common malignancy of the central nervous system in children and requires intensive multi-modality therapy for cure. Overall 5-year survival is approximately 75% in children with primary disease, but outcomes for relapsed disease are very poor. Recent advances have identified molecular subgroups with excellent prognosis, with 5-year overall survival rates >90%, and subgroups with very poor prognosis with overall survival rates <50%. Molecular subtyping has allowed for more sophisticated risk stratification of patients, but new treatments for the highest risk patients have not yet improved outcomes. Targeting cancer stem cells may improve outcomes, and several candidate targets and novel drugs are under investigation.Areas covered: We discuss medulloblastoma epidemiology, biology, treatment modalities, risk stratification, and molecular subgroup analysis, links between subgroup and developmental biology, cancer stem cell biology in medulloblastoma including previously described cancer stem cell markers and proposed targeted treatments in the current literature.Expert opinion: The understanding of cancer stem cells in medulloblastoma will advance therapies targeting the most treatment-resistant cells within the tumor and therefore reduce the incidence of treatment refractory and relapsed disease.
Collapse
Affiliation(s)
- Megan Rose Paul
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA (M.R.P., P.E.Z.); Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA (M.R.P., P.E.Z.); Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| |
Collapse
|
5
|
An immunohistochemical study of HER2 expression in primary brain tumors. Biomedicine (Taipei) 2020; 10:21-27. [PMID: 33854909 PMCID: PMC7608844 DOI: 10.37796/2211-8039.1001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background Primary brain tumors (PBTs) include any tumor in the brain whose prognosis is weak because of their histological characteristics. Aim Herein, this study aimed to assess the HER2 tumor marker frequency in PBTs. Materials and methods This study was done on the samples of primary brain tumor diagnosis from 2008 to 2015. Results Out of 107 patients of brain tumor that had a mean age of 40.4 years (61.7% men), the most common location of the tumor was in the supratentorial region (63.85% cases). The prevalence of high-grade astrocytoma (HGA) and low-grade astrocytoma (LGA) at diagnosis was 43.9% and 37.4%, respectively. With regard to HER2 score, HER2-positive (scores 2 & 3) was in 42.1% of patients. On the other hand, HER2-negative (−) was in 57.9%, 2+ in 33.6%, and 3+ in 8.4% of patients. The patients of LGA had significantly younger ages, lower HER2 positivity, and lower HER2 percent compared with the HGA patients. Conclusions The type of brain tumors can impact on HER2 expression that high HER2 expression in HGA may be helpful for therapeutic aims. Further studies are required to support these results with a higher volume of patients in the world.
Collapse
|