1
|
Romanelli MA, Guerrero TN, Brito E, Albernaz L, Brand ALM, Gomes DS, Muzi-Filho H. Plant-derived secondary metabolites against Bothrops envenomation: A review. Toxicon 2025; 258:108340. [PMID: 40185249 DOI: 10.1016/j.toxicon.2025.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Snakebites from the Bothrops genus are a public health issue in Brazil, particularly in the most affected rural areas. Traditional medicinal plants offer potential complementary therapies for mitigating the damages caused by Bothrops envenomation. This review summarizes current research on the antiophidic potential in medicinal plants and its secondary metabolites to neutralize Bothrops venom effects. A comprehensive literature search was conducted to identify studies detailing the biochemical mechanisms and pharmacological effects of plant-based secondary metabolites, including polyphenols, saponins, quinones, sulfated polysaccharides, steroids, coumarins, alkaloids, and coumestans, on venom-induced pathologies. Polyphenols, particularly flavonoids, exhibit significant inhibitory activity against the proteolytic, hemorrhagic, and myotoxic effects of Bothrops venom by binding to active sites of metalloproteinases and phospholipase A2 (PLA2) Saponins and quinones demonstrated anti-inflammatory and anti-myotoxic effects through protein precipitation and ion chelation. Sulfated polysaccharides from marine algae showed anticoagulant and anti-edematous properties. Additionally, plant-derived steroids and coumarins inhibited venom-induced coagulation and tissue necrosis. Alkaloids and coumestans, such as wedelolactone, effectively reduced hemorrhagic and neurotoxic damage. Medicinal plants and their secondary metabolites have substantial potential to neutralize the biological responses of bothropic venom. Further research and clinical validation are needed to establish safety, efficacy, and standardized use in snakebite management protocols.
Collapse
Affiliation(s)
- Mayara A Romanelli
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa N Guerrero
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ellen Brito
- Institute of Biodiversity and Sustainability-NUPEM, Federal University of Rio de Janeiro, Macaé, Brazil
| | - Lucas Albernaz
- Institute of Biodiversity and Sustainability-NUPEM, Federal University of Rio de Janeiro, Macaé, Brazil
| | - Ana Laura M Brand
- Institute of Chemistry, Center for Mathematical and Natural Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dayene S Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Zhang Z, Bai L, Lu C, Li X, Wu Y, Zhang X, Shen Y. Lapachol inhibits the growth of lung cancer by reversing M2-like macrophage polarization via activating NF-κB signaling pathway. Cell Signal 2023; 112:110902. [PMID: 37751828 DOI: 10.1016/j.cellsig.2023.110902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Resetting tumor-associated macrophages (TAMs) is a promising strategy to ameliorate the immunosuppressive tumor microenvironment (TME) and improve innate and adaptive antitumor immunity. Lapachol, a naturally occurring 1,4-naphthoquinone, exhibits various pharmacological activities including antitumor, anti-leishmanial, antimalarial and antiseptic. In this study, we investigated the relevance of macrophage polarization and the antitumor effect of lapachol in Lewis lung cancer (LLC) both in vitro and in vivo. This study demonstrated that lapachol significantly reversed the polarization of M2-like macrophages thus that were endowed with the ability to kill LLC cells by activating NF-κB signaling pathway. Furthermore, lapachol effectively suppressed tumor growth in C57BL/6 mice bearing lung tumors by reducing the proportion of M2-like macrophages. Overall, our findings clearly illustrated that lapachol could reverse the polarization of M2-like macrophages to improve the immunosuppressive tumor microenvironment, and had the potential to be developed as an immunomodulatory antitumor agent.
Collapse
Affiliation(s)
- Zhengzheng Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Luyao Bai
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Xintong Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yang Wu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaochun Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
3
|
Martins DDL, do Amaral E Silva NA, Ferreira VF, Rangel LDS, Dos Santos JAA, Faria RX. Molluskicidal activity of 3-aryl-2-hydroxy-1,4-naphthoquinones against Biomphalaria glabrata. Acta Trop 2022; 231:106414. [PMID: 35346667 DOI: 10.1016/j.actatropica.2022.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/27/2022]
Abstract
Schistosomiasis is the second most prevalent parasitic infectious disease after malaria, which affects millions of people worldwide and causes health and socioeconomic problems. The snail Biomphalaria glabrata is an intermediate host for the helminth, which is the causative agent of schistosomiasis: Schistosoma mansoni. One crucial strategy for controlling the disease is the eradication of the snail host. Niclosamide is the unique molluskicide applied in large-scale control programs, but its selectivity to other species is not adequate. Therefore, there is an urgent need to develop new molluskicides that are inexpensive, safe, and selective. Quinones are ubiquitous, playing important biological roles in fungi, plants, and others. Many synthetic molecules with relevant biological activities that contain the quinone nucleus in their structure are on the market in the therapy of cancer, malaria, or toxoplasmosis, for example. Derivatives of quinones are tools in the development of new molluskicides for Abbott laboratories. In the present work, 3-aryl-2‑hydroxy-1,4-naphthoquinones (ANs) were tested for molluskicide activity against Biomphalaria glabrata. The lethal concentration was determined for 48 h of continuous exposure. The naphthoquinones were found to have molluskicide properties. AN-15 was recorded as the highest mortality. Additionally, this analog exhibited in silico reduced ambient toxicity when compared to niclosamide. The findings of this study demonstrate that 3-aryl-2‑hydroxy-1,4-naphthoquinones are effective for the management of Biomphalaria glabrata under laboratory conditions.
Collapse
Affiliation(s)
- Daniela de Luna Martins
- Instituto de Química, Laboratório de Catálise e Síntese (LabCSI), Laboratório 413, Campus do Valonguinho, Centro, Outeiro de São João Batista s/n, Universidade Federal Fluminense, Niterói, RJ 24020-141, Brazil.
| | - Nayane Abreu do Amaral E Silva
- Instituto de Química, Laboratório de Catálise e Síntese (LabCSI), Laboratório 413, Campus do Valonguinho, Centro, Outeiro de São João Batista s/n, Universidade Federal Fluminense, Niterói, RJ 24020-141, Brazil
| | - Vitor F Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, R. Dr. Mario Vianna, 523 - Santa Rosa, Niterói, RJ 24241-002, Brazil
| | - Leonardo da Silva Rangel
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil; Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - José Augusto Albuquerque Dos Santos
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Robson Xavier Faria
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil; Postgraduate Program in Sciences and Biotechnology, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
4
|
de Souza JF, Santana MVDS, da Silva ACR, Donza MRH, Ferreira VF, Ferreira SB, Sanchez EF, Castro HC, Fuly AL. Study on the synthesis and structure-activity relationship of 1,2,3-triazoles against toxic activities of Bothrops jararaca venom. Z NATURFORSCH C 2022; 77:459-471. [PMID: 35767726 DOI: 10.1515/znc-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
Snakebite envenoming is a health concern and has been a neglected tropical disease since 2017, according to the World Health Organization. In this study, we evaluated the ability of ten 1,2,3-triazole derivatives AM001 to AM010 to inhibit pertinent in vitro (coagulant, hemolytic, and proteolytic) and in vivo (hemorrhagic, edematogenic, and lethal) activities of Bothrops jararaca venom. The derivatives were synthesized, and had their molecular structures fully characterized by CHN element analysis, Fourier-transform infrared spectroscopy and Nuclear magnetic resonance. The derivatives were incubated with the B. jararaca venom (incubation protocol) or administered before (prevention protocol) or after (treatment protocol) the injection of B. jararaca venom into the animals. Briefly, the derivatives were able to inhibit the main toxic effects triggered by B. jararaca venom, though with varying efficacies, and they were devoid of toxicity through in vivo, in silico or in vitro analyses. However, it seemed that the derivatives AM006 or AM010 inhibited more efficiently hemorrhage or lethality, respectively. The derivatives were nontoxic. Therefore, the 1,2,3-triazole derivatives may be useful as an adjuvant to more efficiently treat the local toxic effects caused by B. jararaca envenoming.
Collapse
Affiliation(s)
- Jenifer Frouche de Souza
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil
| | | | - Ana Cláudia Rodrigues da Silva
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil
| | | | - Vitor Francisco Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Federal Fluminense University, Niterói, RJ, Brazil
| | - Sabrina Baptista Ferreira
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, RJ, RJ, Brazil
| | - Eladio Flores Sanchez
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Helena Carla Castro
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Post-Graduate Program in Pathology, University Hospital Antônio Pedro, Federal Fluminense University, Niterói, RJ, Brazil
| | - André Lopes Fuly
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil
| |
Collapse
|
5
|
Krishna AV, Ramachary DB. The seven-step, one-pot regioselective synthesis of biologically important 3-aryllawsones: scope and applications. Org Biomol Chem 2022; 20:3948-3954. [PMID: 35348169 DOI: 10.1039/d2ob00438k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
3-Aryllawsones are well known for their wide range of applications in medicinal chemistry, but their synthesis has always remained challenging as no comprehensive protocol has been outlined to date. Owing to their structural importance, we synthesized various 3-aryllawsones with high regioselectivity from simple lawsone and aldehydes in a seven-step double-cascade one-pot reaction through the combination of organocatalytic Ramachary reductive coupling and Hooker oxidation reactions. The commercial availability of the starting materials, diverse substrate scope, possibility of a one- or two-pot approach, regioselectivity of alkyl transfer (with mechanistic proof provided via X-ray crystal structure analysis), and numerous medicinal applications of 3-aryllawsones are the key attractions of this work.
Collapse
Affiliation(s)
- Anugam V Krishna
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | | |
Collapse
|
6
|
Adrião AAX, dos Santos AO, de Lima EJSP, Maciel JB, Paz WHP, da Silva FMA, Pucca MB, Moura-da-Silva AM, Monteiro WM, Sartim MA, Koolen HHF. Plant-Derived Toxin Inhibitors as Potential Candidates to Complement Antivenom Treatment in Snakebite Envenomations. Front Immunol 2022; 13:842576. [PMID: 35615352 PMCID: PMC9126284 DOI: 10.3389/fimmu.2022.842576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Snakebite envenomations (SBEs) are a neglected medical condition of global importance that mainly affect the tropical and subtropical regions. Clinical manifestations include pain, edema, hemorrhage, tissue necrosis, and neurotoxic signs, and may evolve to functional loss of the affected limb, acute renal and/or respiratory failure, and even death. The standard treatment for snake envenomations is antivenom, which is produced from the hyperimmunization of animals with snake toxins. The inhibition of the effects of SBEs using natural or synthetic compounds has been suggested as a complementary treatment particularly before admission to hospital for antivenom treatment, since these alternative molecules are also able to inhibit toxins. Biodiversity-derived molecules, namely those extracted from medicinal plants, are promising sources of toxin inhibitors that can minimize the deleterious consequences of SBEs. In this review, we systematically synthesize the literature on plant metabolites that can be used as toxin-inhibiting agents, as well as present the potential mechanisms of action of molecules derived from natural sources. These findings aim to further our understanding of the potential of natural products and provide new lead compounds as auxiliary therapies for SBEs.
Collapse
Affiliation(s)
- Asenate A. X. Adrião
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Aline O. dos Santos
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Emilly J. S. P. de Lima
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Jéssica B. Maciel
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Weider H. P. Paz
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| | - Felipe M. A. da Silva
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
- Multidisciplinary Support Center, Federal University of Amazonas, Manaus, Brazil
| | - Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Ana M. Moura-da-Silva
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Laboratory of Immunopathology, Institute Butantan, São Paulo, Brazil
| | - Wuelton M. Monteiro
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Marco A. Sartim
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- University Nilton Lins, Manaus, Brazil
| | - Hector H. F. Koolen
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| |
Collapse
|
7
|
Amorim NDM, Pereira Junior LCS, Sanchez EF, Aquino GAD, Ferreira VF, Ferreira SB, Fuly AL, Oliveira ECD. Synthesis, characterization and utilization of a new series of 1,2,3-triazole derivatives to neutralize some toxic activities of Bothrops jararaca snake venom. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-9790202x000x2e201143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
8
|
Vieira SAPB, Dos Santos BM, Santos Júnior CD, de Paula VF, Gomes MSR, Ferreira GM, Gonçalves RL, Hirata MH, da Silva RA, Brandeburgo MIH, Mendes MM. Isohemigossypolone: Antiophidic properties of a naphthoquinone isolated from Pachira aquatica Aubl. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109028. [PMID: 33676005 DOI: 10.1016/j.cbpc.2021.109028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/17/2023]
Abstract
We investigated the antiophidic properties of isohemigossypolone (ISO), a naphthoquinone isolated from the outer bark of the Pachira aquatic Aubl. The inhibition of phospholipase A2, coagulant, fibrinogenolytic, hemorrhagic and myotoxic activities induced by Bothrops pauloensis venom (Pb) was investigated. For this, we use samples resulting from the incubation of Pb with ISO in different concentrations (1:1, 1:5 and 1:10 w/w), we also evaluated the condition of treatment using ISO after 15 min of venom inoculation. The activities of phospholipase A2, coagulant, fibrinogenolytic, hemorrhagic and myotoxic induced by the B. pauloensis venom were significantly inhibited when the ISO was pre-incubated with the crude venom. For in vivo neutralization tests, the results were observed even when the ISO was applied after 15 min of inoculation of the venom or metalloprotease (BthMP). Also, to identify the inhibition mechanism, we performed in silico assays, across simulations of molecular coupling and molecular dynamics, it was possible to identify the modes of interaction between ISO and bothropic toxins BmooMPα-I, Jararacussin-I and BNSP-7. The present study shows that naphthoquinone isohemigossypolone isolated from the P. aquatica plant inhibited part of the local and systemic damage caused by venom proteins, demonstrating the pharmacological potential of this compound in neutralizing the harmful effects caused by snakebites.
Collapse
Affiliation(s)
| | - Benedito Matheus Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Célio Dias Santos Júnior
- Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Vanderlúcia Fonseca de Paula
- Laboratory of Natural Products, Department of Sciences and Technology, State University of Bahia Southwest (UESB), Jequié, BA, Brazil
| | - Mario Sergio Rocha Gomes
- Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Mirian Machado Mendes
- Special Academic Unit of Biosciences, Federal University of Goiás (UFG), Jataí, GO, Brazil.
| |
Collapse
|
9
|
Dorooshi G, Javid ZN, Meamar R, Farjzadegan Z, Nasri M, Eizadi-Mood N. Evaluation of The effects of Anti-Inflammatory Drugs on Local and Systemic manifestations of snakebite: A cross-sectional study. JOURNAL OF VENOM RESEARCH 2021; 11:21-25. [PMID: 34123361 PMCID: PMC8169030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/03/2022]
Abstract
Although the predominant treatment for snakebite is the antivenom, other treatments are also considered. We studied the effects of single or multiple-doses of anti-inflammatory drugs on local, systemic and laboratory findings of the snakebite victims. In this cross-sectional study, 101 patients (90 male: 89.1%) with snakebite envenomation who were admitted to the Medical Toxicology Center of Khorshid Hospital, Isfahan, Iran, were investigated. One group (35 patients: 34.7%) received a single-dose of anti-inflammatory drugs containing chlorpheniramine (10mg intramuscular injection) with cimetidine (200mg intravenous injection) or ranitidine (50mg intravenous injection) plus hydrocortisone (100mg intravenous injection). The other 55 patients (54.5%) received multiple doses of the same drug combination every 8hr until the symptoms resolved. Local, systemic symptoms and laboratory findings on admission, and during 24hr and 48hr of admission, were recorded. The frequency of the localized signs of inflammation (p=0.03), swelling (p<0.001) and bruising (p<0.001) showed a significant difference between the two treated groups. In addition, the recovery time in the patients who received multiple doses was faster (p<0.001). There was no significant difference in any of the systemic signs, laboratory findings or the outcome between the patients in the various groups during hospitalization. Our data indicate that the administration of multiple doses of anti-inflammatory drugs had a greater effect on reducing local symptoms of snakebite including inflammatory manifestations.
Collapse
Affiliation(s)
- Gholamali Dorooshi
- 1Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Nabi Javid
- 1Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rokhsareh Meamar
- 1Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,*Correspondence to: Rokhsareh Meamar,
| | - Ziba Farjzadegan
- 2Department of Community Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nastaran Eizadi-Mood
- 1Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Nascimento LS, Nogueira-Souza PD, Rocha-Junior JRS, Monteiro-Machado M, Strauch MA, Prado SAL, Melo PA, Veiga-Junior VF. Phytochemical composition, antisnake venom and antibacterial activities of ethanolic extract of Aegiphila integrifolia (Jacq) Moldenke leaves. Toxicon 2021; 198:121-131. [PMID: 33984369 DOI: 10.1016/j.toxicon.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Snakebites are considered a major neglected tropical disease, resulting in around 100,000 deaths per year. The recommended treatment by the WHO is serotherapy, which has limited effectiveness against the toxins involved in local tissue damage. In some countries, patients use plants from folk medicines as antivenoms. Aegiphila species are common plants from the Brazilian Amazon and are used to treat snakebites. In this study, leaves from Aegiphila integrifolia (Jacq) Moldenke were collected from Roraima state, Brazil and its ethanolic extract was evaluated through in vitro and in vivo experiments to verify their antiophidic activity against Bothrops atrox crude venom. The isolated compounds from A. integrifolia were analyzed and the chemical structures were elucidated on the basis of infrared, ultraviolet, mass, 1H and 1³C NMR spectrometry data. Among the described compounds, lupeol (7), betulinic acid (1), β-sitosterol (6), stigmasterol (5), mannitol (4), and the flavonoids, pectolinarigenin (2) and hispidulin (3), were identified. The ethanolic extract and flavonoids (2 and 3) partially inhibited the proteolytic, phospholipase A2 and hyaluronidase activities of B. atrox venom, and the skin hemorrhage induced by this venom in mice. Antimicrobial activity against different bacteria was evaluated and the extract partially inhibited bacterial growth. Thus, taken together, A. integrifolia ethanolic extract has promising use as an antiophidic and antimicrobial.
Collapse
Affiliation(s)
- Leandro S Nascimento
- Chemical Engineering Section, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Pâmella D Nogueira-Souza
- Federal University of Rio de Janeiro, Pharmacology and Medicinal Chemistry Program, Rio de Janeiro, RJ, Brazil
| | - José R S Rocha-Junior
- Federal University of Rio de Janeiro, Pharmacology and Medicinal Chemistry Program, Rio de Janeiro, RJ, Brazil
| | - Marcos Monteiro-Machado
- Federal University of Rio de Janeiro, Pharmacology and Medicinal Chemistry Program, Rio de Janeiro, RJ, Brazil
| | | | - Simone A L Prado
- Federal University of Roraima, Department of Chemistry, Boa Vista, RR, Brazil
| | - Paulo A Melo
- Federal University of Rio de Janeiro, Pharmacology and Medicinal Chemistry Program, Rio de Janeiro, RJ, Brazil
| | - Valdir F Veiga-Junior
- Chemical Engineering Section, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Liposomes containing 3-arylamino-nor-β-lapachone derivative: Development, characterization, and in vitro evaluation of the cytotoxic activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Liu CC, Wu CJ, Hsiao YC, Yang YH, Liu KL, Huang GJ, Hsieh CH, Chen CK, Liaw GW. Snake venom proteome of Protobothrops mucrosquamatus in Taiwan: Delaying venom-induced lethality in a rodent model by inhibition of phospholipase A 2 activity with varespladib. J Proteomics 2020; 234:104084. [PMID: 33359941 DOI: 10.1016/j.jprot.2020.104084] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/01/2020] [Accepted: 12/20/2020] [Indexed: 12/26/2022]
Abstract
Protobothrops mucrosquamatus, also known as the brown spotted pit viper or Taiwanese habu, is a medically significant venomous snake in Taiwan, especially in the northern area. To more fully understand the proteome profile of P. mucrosquamatus, we characterized its venom composition using a bottom-up proteomic approach. Whole venom components were fractionated by RP-HPLC and then analyzed by SDS-PAGE. Each protein band in gels was excised and subjected to protein identification by LC-MS/MS. A subsequent proteomic analysis revealed the presence of 61 distinct proteins belonging to 19 families in P. mucrosquamatus venom. Snake venom metalloproteinase (SVMP; 29.4%), C-type lectin (CLEC; 21.1%), snake venom serine protease (SVSP; 17.6%) and phospholipase A2 (PLA2; 15.9%) were the most abundant protein families, whereas several low-abundance proteins, categorized into eight protein families, were demonstrated in P. mucrosquamatus venom for the first time. Because PLA2 is known to make a major contribution to venom lethality, we evaluated whether the known PLA2 inhibitor, varespladib, was capable of preventing the toxic effects of P. mucrosquamatus venom. This small-molecule drug demonstrated the ability to inhibit PLA2 activity in vitro (IC50 = 101.3 nM). It also blunted lethality in vivo, prolonging survival following venom injection in a mouse model, but it showed limited potency against venom-induced local hemorrhage in this model. Our findings provide essential biological and pathophysiological insights into the composition of P. mucrosquamatus venom and suggest PLA2 inhibition as an adjunctive or alternative therapeutic strategy in the clinical management of P. mucrosquamatus envenoming in emergency medicine. SIGNIFICANCE: P. mucrosquamatus envenomation is a significant medical concern in Taiwan, especially in the northern region. Although antivenom is commonly used for rescuing P. mucrosquamatus envenoming, severe clinical events still occur, with more than 20% of cases requiring surgical intervention. Small-molecule therapy offers several advantages as a potential adjunctive, or even alternative, to antivenom treatment, such as heat stability, low antigenicity and ease of administration, among others. A deeper understanding of the venom proteome of P. mucrosquamatus would aid in the discovery of small-molecule drugs that could be repurposed to target specific venom proteins. Here, we applied a bottom-up proteomic approach to characterize the protein profile of P. mucrosquamatus venom. Varespladib, a small-molecule drug used to treat inflammatory disease, was repurposed to inhibit the toxicity of P. mucrosquamatus venom, and was shown to reduce the lethal effects of P. mucrosquamatus envenomation in a rodent model. Varespladib might be used as a first-aid therapeutic against P. mucrosquamatus envenoming in the pre-referral period and/or as an adjunctive agent administered together with anti-P. mucrosquamatus antivenom.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Cho-Ju Wu
- Department of Emergency Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ya-Han Yang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuei-Lin Liu
- Faculty of Biotechnology and Laboratory Science in Medicine, School of Medical Technology and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Guo-Jen Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Kuei Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Geng-Wang Liaw
- Department of Emergency Medicine, Yeezen General Hospital, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Martínez-Cabrera MA, Macías MA, Ferreira F, Pandolfi E, Barúa J, Suescun L. Crystal structure and Hirshfeld surface analysis of lapachol acetate 80 years after its first synthesis. Acta Crystallogr E Crystallogr Commun 2019; 75:1362-1366. [PMID: 31523467 PMCID: PMC6727062 DOI: 10.1107/s2056989019011393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 11/23/2022]
Abstract
Lapachol acetate [systematic name: 3-(3-methyl-but-2-en-yl)-1,4-dioxonaph-thalen-2-yl acetate], C17H16O4, was prepared using a modified high-yield procedure and its crystal structure is reported for the first time 80 years after its first synthesis. The full spectroscopic characterization of the mol-ecule is reported. The mol-ecular conformation shows little difference with other lapachol derivatives and lapachol itself. The packing is directed by inter-molecular π-π and C-H⋯O inter-actions, as described by Hirshfeld surface analysis. The former inter-actions make the largest contributions to the total packing energy in a ratio of 2:1 with respect to the latter.
Collapse
Affiliation(s)
- Miguel A. Martínez-Cabrera
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Área Química Orgánica de los Productos Naturales-LAREV, San Lorenzo Campus-UNA, Paraguay
| | - Mario A. Macías
- Department of Chemistry, Universidad de los Andes, Cra 1 N° 18A-12, 111711, Bogotá, Colombia
| | - Francisco Ferreira
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, Laboratorio de Análisis Instrumental, Departamento de Química, San Lorenzo Campus-UNA, Paraguay
| | - Enrique Pandolfi
- Laboratorio de Síntesis Orgánica, DQO, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| | - Javier Barúa
- Universidad Nacional de Asunción, Facultad de Ciencias Químicas, San Lorenzo Campus-UNA, Paraguay
| | - Leopoldo Suescun
- Cryssmat-Lab/DETEMA, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, Montevideo 11800, Uruguay
| |
Collapse
|