1
|
Pruitt HM, Zhu JC, Riley SP, Shi M. The Hidden Fortress: A Comprehensive Review of Fungal Biofilms with Emphasis on Cryptococcus neoformans. J Fungi (Basel) 2025; 11:236. [PMID: 40137272 PMCID: PMC11943451 DOI: 10.3390/jof11030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Biofilms are structurally organized communities of microorganisms that adhere to a variety of surfaces. These communities produce protective matrices consisting of polymeric polysaccharides, proteins, nucleic acids, and/or lipids that promote shared resistance to various environmental threats, including chemical, antibiotic, and immune insults. While algal and bacterial biofilms are more apparent in the scientific zeitgeist, many fungal pathogens also form biofilms. These surprisingly common biofilms are morphologically distinct from the multicellular molds and mushrooms normally associated with fungi and are instead an assemblage of single-celled organisms. As a collection of yeast and filamentous cells cloaked in an extracellular matrix, fungal biofilms are an extreme threat to public health, especially in conjunction with surgical implants. The encapsulated yeast, Cryptococcus neoformans, is an opportunistic pathogen that causes both pulmonary and disseminated infections, particularly in immunocompromised individuals. However, there is an emerging trend of cryptococcosis among otherwise healthy individuals. C. neoformans forms biofilms in diverse environments, including within human hosts. Notably, biofilm association correlates with increased expression of multiple virulence factors and increased resistance to both host defenses and antifungal treatments. Thus, it is crucial to develop novel strategies to combat fungal biofilms. In this review, we discuss the development and treatment of fungal biofilms, with a particular focus on C. neoformans.
Collapse
Affiliation(s)
| | | | - Sean P. Riley
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; (H.M.P.); (J.C.Z.)
| | - Meiqing Shi
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA; (H.M.P.); (J.C.Z.)
| |
Collapse
|
2
|
Choudhari S, Krithikadatta J, Vejendla I, S S, Doble M. Microbial Interactions in Oral Biofilm: Evaluating Therapeutic Interventions and the Emergence of Resistance: A Narrative Review. Cureus 2023; 15:e48021. [PMID: 38034252 PMCID: PMC10687662 DOI: 10.7759/cureus.48021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The oral cavity comprises numerous anatomical surfaces that are inhabited by a diverse array of bacteria, collectively forming a bacterial biofilm. Within this complex microbial community, certain bacterial species are etiologically linked to the development of common oral pathologies, such as dental caries and periodontitis, which stand as prominent instances of bacterial infections frequently encountered in clinical settings. Most biofilms are believed to be multispecies consortia. While single-species biofilms have been well-researched, mixed-species biofilms and their interactions amongst themselves have not drawn interest. The aim of the current review was to assess the various interactions of dual-species microorganisms in oral biofilm formation. Farnesol given exogenously for the treatment of biofilm can enhance or inhibit the growth of certain organisms, as seen in Candida albicans. In the age of antibiotic resistance, it is imperative to develop and uncover drugs capable of simultaneously targeting multiple species in order to mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Sahil Choudhari
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Jogikalmat Krithikadatta
- Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Ipsitha Vejendla
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Swathi S
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Mukesh Doble
- Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
3
|
Sadanandan B, Vijayalakshmi V, Ashrit P, Babu UV, Sharath Kumar LM, Sampath V, Shetty K, Joglekar AP, Awaknavar R. Aqueous spice extracts as alternative antimycotics to control highly drug resistant extensive biofilm forming clinical isolates of Candida albicans. PLoS One 2023; 18:e0281035. [PMID: 37315001 PMCID: PMC10266687 DOI: 10.1371/journal.pone.0281035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Candida albicans form biofilm by associating with biotic and abiotic surfaces. Biofilm formation by C. albicans is relevant and significant as the organisms residing within, gain resistance to conventional antimycotics and are therefore difficult to treat. This study targeted the potential of spice-based antimycotics to control C. albicans biofilms. Ten clinical isolates of C. albicans along with a standard culture MTCC-3017 (ATCC-90028) were screened for their biofilm-forming ability. C. albicans M-207 and C. albicans S-470 were identified as high biofilm formers by point inoculation on Trypticase Soy Agar (TSA) medium as they formed a lawn within 16 h and exhibited resistance to fluconazole and caspofungin at 25 mcg and 8 mcg respectively. Aqueous and organic spice extracts were screened for their antimycotic activity against C. albicans M-207 and S-470 by agar and disc diffusion and a Zone of Inhibition was observed. Minimal Inhibitory Concentration was determined based on growth absorbance and cell viability measurements. The whole aqueous extract of garlic inhibited biofilms of C. albicans M-207, whereas whole aqueous extracts of garlic, clove, and Indian gooseberry were effective in controlling C. albicans S-470 biofilm within 12 h of incubation. The presence of allicin, ellagic acid, and gallic acid as dominant compounds in the aqueous extracts of garlic, clove, and Indian gooseberry respectively was determined by High-Performance Thin Layer Chromatography and Liquid Chromatography-Mass Spectrometry. The morphology of C. albicans biofilm at different growth periods was also determined through bright field microscopy, phase contrast microscopy, and fluorescence microscopy. The results of this study indicated that the alternate approach in controlling high biofilm-forming, multi-drug resistant clinical isolates of C. albicans M-207 and S-470 using whole aqueous extracts of garlic, clove, and Indian gooseberry is a safe, potential, and cost-effective one that can benefit the health care needs with additional effective therapeutics to treat biofilm infections.
Collapse
Affiliation(s)
- Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | | | - Priya Ashrit
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Uddagiri Venkanna Babu
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | | | - Vasulingam Sampath
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | | | - Rashmi Awaknavar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
The Bovhyaluronidase Azoximer (Longidaza ®) Disrupts Candida albicans and Candida albicans-Bacterial Mixed Biofilms and Increases the Efficacy of Antifungals. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121710. [PMID: 36556912 PMCID: PMC9782602 DOI: 10.3390/medicina58121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Background and Objectives: Candida albicans causes various diseases ranging from superficial mycoses to life-threatening systemic infections often associated with biofilm formation, including mixed fungal−bacterial consortia. The biofilm matrix protects cells, making Candida extremely resistant to treatment. Here, we show that the bovhyaluronidase azoximer (Longidaza®) in vitro destroys the biofilm formed by either C. albicans alone or mixed with bacteria, this way decreasing the concentrations of antimicrobials required for the pathogen’s eradication. Materials and Methods: Bovhyaluronidase azoximer, Longidaza® was obtained from NPO Petrovax Pharm Ltd., Moscow, Russia as lyophilized powder. The antifungal activity was assessed by microdilution assay and CFUs counting. Antibiofilm activity was evaluated via biofilms staining and scanning electron microscopy. Results: Thus, treatment with Longidaza® reduced the biofilm biomass of nine C. albicans clinical isolates by 30−60%, while mixed biofilms of C. albicans with various bacteria were destroyed by 30−40%. Furthermore, the concentration of fluconazole required to achieve a similar reduction of the residual respiratory activity of detached cell clumps of four C. albicans isolates has been reduced four-fold when combined with Longidaza®. While in the biofilm, two of four isolates became significantly more susceptible to fluconazole in combination with Longidaza®. Conclusion: Taken together, our data indicate that Longidaza® is capable of suppression of tissues and artificial surfaces biofouling by C. albicans biofilms, as well as facilitating drug penetration into the cell clumps, this way decreasing the effective MIC of antifungals.
Collapse
|
5
|
Li X, Liu Y, Yang X, Li C, Song Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022; 13:895537. [PMID: 35572634 PMCID: PMC9100676 DOI: 10.3389/fmicb.2022.895537] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.
Collapse
Affiliation(s)
- Xinyi Li
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yanmei Liu
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xingyou Yang
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chengwen Li
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- *Correspondence: Chengwen Li,
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Zhangyong Song,
| |
Collapse
|
6
|
Peng Z, Tang J. Intestinal Infection of Candida albicans: Preventing the Formation of Biofilm by C. albicans and Protecting the Intestinal Epithelial Barrier. Front Microbiol 2022; 12:783010. [PMID: 35185813 PMCID: PMC8847744 DOI: 10.3389/fmicb.2021.783010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The large mortality and morbidity rate of C. albicans infections is a crucial problem in medical mycology. Because the generation of biofilms and drug resistance are growing concerns, the growth of novel antifungal agents and the looking for newer objectives are necessary. In this review, inhibitors of C. albicans biofilm generation and molecular mechanisms of intestinal epithelial barrier protection are elucidated. Recent studies on various transcription elements; quorum-sensing molecules; host responses to adherence; and changes in efflux pumps, enzymes, bud to hyphal transition, and lipid profiles have increased the knowledge of the intricate mechanisms underlying biofilm resistance. In addition, the growth of novel biomaterials with anti-adhesive nature, natural products, drugs, bioactive compounds, proteins, lipids, and carbohydrates are being researched. Recently, more and more attention has been given to various metal nanoparticles that have also appeared as antibiofilm agents in C. albicans. The intestinal epithelial obstacle exerts an crucial effect on keeping intestinal homeostasis and is increasingly associated with various disorders associated with the intestine such as inflammatory bowel disease (IBD), irritable bowel syndrome, metabolic syndrome, allergies, hepatic inflammation, septic shock, etc. However, whether their involvement in the prevention of other intestinal disorders like IBD are useful in C. albicans remains unknown. Further studies must be carried out in order to validate their inhibition functions in intestinal C. albicans. This provides innovates ideas for intestinal C. albicans treatment.
Collapse
Affiliation(s)
- Ziyao Peng
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Biofilms in Surgical Site Infections: Recent Advances and Novel Prevention and Eradication Strategies. Antibiotics (Basel) 2022; 11:antibiotics11010069. [PMID: 35052946 PMCID: PMC8773207 DOI: 10.3390/antibiotics11010069] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Surgical site infections (SSIs) are common postoperative occurrences due to contamination of the surgical wound or implanted medical devices with community or hospital-acquired microorganisms, as well as other endogenous opportunistic microbes. Despite numerous rules and guidelines applied to prevent these infections, SSI rates are considerably high, constituting a threat to the healthcare system in terms of morbidity, prolonged hospitalization, and death. Approximately 80% of human SSIs, including chronic wound infections, are related to biofilm-forming bacteria. Biofilm-associated SSIs are extremely difficult to treat with conventional antibiotics due to several tolerance mechanisms provided by the multidrug-resistant bacteria, usually arranged as polymicrobial communities. In this review, novel strategies to control, i.e., prevent and eradicate, biofilms in SSIs are presented and discussed, focusing mainly on two attractive approaches: the use of nanotechnology-based composites and natural plant-based products. An overview of new therapeutic agents and strategic approaches to control epidemic multidrug-resistant pathogenic microorganisms, particularly when biofilms are present, is provided alongside other combinatorial approaches as attempts to obtain synergistic effects with conventional antibiotics and restore their efficacy to treat biofilm-mediated SSIs. Some detection and real-time monitoring systems to improve biofilm control strategies and diagnosis of human infections are also discussed.
Collapse
|
8
|
Roudbary M, Vahedi-Shahandashti R, Santos ALSD, Roudbar Mohammadi S, Aslani P, Lass-Flörl C, Rodrigues CF. Biofilm formation in clinically relevant filamentous fungi: a therapeutic challenge. Crit Rev Microbiol 2021; 48:197-221. [PMID: 34358430 DOI: 10.1080/1040841x.2021.1950121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biofilms are highly-organized microbial communities attached to a biotic or an abiotic surface, surrounded by an extracellular matrix secreted by the biofilm-forming cells. The majority of fungal pathogens contribute to biofilm formation within tissues or biomedical devices, leading to serious and persistent infections. The clinical significance of biofilms relies on the increased resistance to conventional antifungal therapies and suppression of the host immune system, which leads to invasive and recurrent fungal infections. While different features of yeast biofilms are well-described in the literature, the structural and molecular basis of biofilm formation of clinically related filamentous fungi has not been fully addressed. This review aimed to address biofilm formation in clinically relevant filamentous fungi.
Collapse
Affiliation(s)
- Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - André Luis Souza Dos Santos
- Department of General Microbiology, Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Peyman Aslani
- Department of Parasitology and Mycology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Célia F Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Goel N, Fatima SW, Kumar S, Sinha R, Khare SK. Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00613. [PMID: 33996521 PMCID: PMC8105627 DOI: 10.1016/j.btre.2021.e00613] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance (AMR) is one of the serious global public health threats that require immediate action. With the emergence of new resistance mechanisms in infection-causing microorganisms such as bacteria, fungi, and viruses, AMR threatens the effective prevention and treatment of diseases caused by them. This has resulted in prolonged illness, disability, and death. It has been predicted that AMR will lead to over ten million deaths by 2050. The rapid spread of multidrug-resistant bacteria is also causing old antibiotics to become ineffective. Among the diverse factors contributing to AMR, intrinsic biofilm development has been highlighted as an essential contributing facet. Moreover, biofilm-derived antibiotic tolerance leads to serious recurrent chronic infections. Therefore, the discovery of novel bioactive molecules is a potential solution that can help combat AMR. To achieve this, sustained mining of novel antimicrobial leads from actinobacteria, particularly marine actinobacteria, can be a promising strategy. Given their vast diversity and different habitats, the extraordinary capacity of actinobacteria can be tapped to synthesize new antibiotics or bioactive molecules for biofilm inhibition. Advanced screening strategies and novel approaches in the field of modern biochemical and molecular biology can be used to detect such new compounds. In view of this, the present review focuses on understanding some of the recent strategies to inhibit biofilm formation and explores the potential role of marine actinobacteria as sources of novel antibiotics and biofilm inhibitor molecules.
Collapse
Affiliation(s)
- Nikky Goel
- Department of Chemistry, Indian Institute of Technology Delhi, India
| | | | - Sumit Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, India
| | | | - Sunil K. Khare
- Department of Chemistry, Indian Institute of Technology Delhi, India
| |
Collapse
|
10
|
Khan F, Bamunuarachchi NI, Pham DTN, Tabassum N, Khan MSA, Kim YM. Mixed biofilms of pathogenic Candida-bacteria: regulation mechanisms and treatment strategies. Crit Rev Microbiol 2021; 47:699-727. [PMID: 34003065 DOI: 10.1080/1040841x.2021.1921696] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mixed-species biofilm is one of the most frequently recorded clinical problems. Mixed biofilms develop as a result of interactions between microorganisms of a single or multiple species (e.g. bacteria and fungi). Candida spp., particularly Candida albicans, are known to associate with various bacterial species to form a multi-species biofilm. Mixed biofilms of Candida spp. have been previously detected in vivo and on the surfaces of many biomedical instruments. Treating infectious diseases caused by mixed biofilms of Candida and bacterial species has been challenging due to their increased resistance to antimicrobial drugs. Here, we review and discuss the clinical significance of mixed Candida-bacteria biofilms as well as the signalling mechanisms involved in Candida-bacteria interactions. We also describe possible approaches for combating infections associated with mixed biofilms, such as the use of natural or synthetic drugs and combination therapy. The review presented here is expected to contribute to the advances in the biomedical field on the understanding of underlying interaction mechanisms of pathogens in mixed biofilm, and alternative approaches to treating the related infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea.,Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Dung Thuy Nguyen Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
11
|
Schierz O, Müller H, Stingu CS, Hahnel S, Rauch A. Dental tray adhesives and their role as potential transmission medium for microorganisms. Clin Exp Dent Res 2021; 7:829-832. [PMID: 33955697 PMCID: PMC8543470 DOI: 10.1002/cre2.432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/23/2022] Open
Abstract
Objectives This study aimed to evaluate the possible ability of dental impression tray adhesives to serve as a transmission medium for bacteria and fungi when reusable adhesive applicators are utilized. Materials and methods Ten flasks with tray adhesive were monitored over a period of 12 weeks during clinical use for contamination with bacteria or fungi. Adhesive fluid samples were cultivated on eight different culture media. All grown colonies were identified by using mass spectrometry (MALDI‐TOF). Isolates without reliable identification were either identified by Rapid ID 32 API‐STREP V3.0 or by sequencing the 16S rRNA genes. Results After 4 weeks, bacterial growth was detected on chocolate blood agar plates in five different samples. The bacterial species were identified as Staphylococcus warnerii, Staphylococcus epidermidis, Staphylococcus pasteuri, Ralstonia insidiosa, and Alloiococcus otitidis. After 8 weeks Streptococcus oralis grew on a blood agar plate. In all samples, no fungi were identified. Conclusions The disinfectant component of the tested tray adhesive seems to be effective. However, some bacteria survived in the flask for a clinically relevant time, which might result in a potential transmission to a new host.
Collapse
Affiliation(s)
- Oliver Schierz
- Department of Prosthodontics and Materials Science, University of Leipzig, Leipzig, Germany
| | | | - Catalina Suzana Stingu
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Leipzig, Germany
| | - Sebastian Hahnel
- Department of Prosthodontics and Materials Science, University of Leipzig, Leipzig, Germany
| | - Angelika Rauch
- Department of Prosthodontics and Materials Science, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Van Dyck K, Pinto RM, Pully D, Van Dijck P. Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies. Microorganisms 2021; 9:412. [PMID: 33671126 PMCID: PMC7921918 DOI: 10.3390/microorganisms9020412] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal and bacterial species interact with each other within polymicrobial biofilm communities in various niches of the human body. Interactions between these species can greatly affect human health and disease. Diseases caused by polymicrobial biofilms pose a major challenge in clinical settings because of their enhanced virulence and increased drug tolerance. Therefore, different approaches are being explored to treat fungal-bacterial biofilm infections. This review focuses on the main mechanisms involved in polymicrobial drug tolerance and the implications of the polymicrobial nature for the therapeutic treatment by highlighting clinically relevant fungal-bacterial interactions. Furthermore, innovative treatment strategies which specifically target polymicrobial biofilms are discussed.
Collapse
Affiliation(s)
- Katrien Van Dyck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rita M. Pinto
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, 4050-313 Porto, Portugal
| | - Durgasruthi Pully
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Kranjec C, Morales Angeles D, Torrissen Mårli M, Fernández L, García P, Kjos M, Diep DB. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics (Basel) 2021; 10:131. [PMID: 33573022 PMCID: PMC7911828 DOI: 10.3390/antibiotics10020131] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococci, like Staphylococcus aureus and S. epidermidis, are common colonizers of the human microbiota. While being harmless in many cases, many virulence factors result in them being opportunistic pathogens and one of the major causes of hospital-acquired infections worldwide. One of these virulence factors is the ability to form biofilms-three-dimensional communities of microorganisms embedded in an extracellular polymeric matrix (EPS). The EPS is composed of polysaccharides, proteins and extracellular DNA, and is finely regulated in response to environmental conditions. This structured environment protects the embedded bacteria from the human immune system and decreases their susceptibility to antimicrobials, making infections caused by staphylococci particularly difficult to treat. With the rise of antibiotic-resistant staphylococci, together with difficulty in removing biofilms, there is a great need for new treatment strategies. The purpose of this review is to provide an overview of our current knowledge of the stages of biofilm development and what difficulties may arise when trying to eradicate staphylococcal biofilms. Furthermore, we look into promising targets and therapeutic methods, including bacteriocins and phage-derived antibiofilm approaches.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Lucía Fernández
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Pilar García
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| |
Collapse
|
14
|
Ceresa C, Rinaldi M, Tessarolo F, Maniglio D, Fedeli E, Tambone E, Caciagli P, Banat IM, Diaz De Rienzo MA, Fracchia L. Inhibitory Effects of Lipopeptides and Glycolipids on C. albicans-Staphylococcus spp. Dual-Species Biofilms. Front Microbiol 2021; 11:545654. [PMID: 33519721 PMCID: PMC7838448 DOI: 10.3389/fmicb.2020.545654] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Microbial biofilms strongly resist host immune responses and antimicrobial treatments and are frequently responsible for chronic infections in peri-implant tissues. Biosurfactants (BSs) have recently gained prominence as a new generation of anti-adhesive and antimicrobial agents with great biocompatibility and were recently suggested for coating implantable materials in order to improve their anti-biofilm properties. In this study, the anti-biofilm activity of lipopeptide AC7BS, rhamnolipid R89BS, and sophorolipid SL18 was evaluated against clinically relevant fungal/bacterial dual-species biofilms (Candida albicans, Staphylococcus aureus, Staphylococcus epidermidis) through quantitative and qualitative in vitro tests. C. albicans-S. aureus and C. albicans-S. epidermidis cultures were able to produce a dense biofilm on the surface of the polystyrene plates and on medical-grade silicone discs. All tested BSs demonstrated an effective inhibitory activity against dual-species biofilms formation in terms of total biomass, cell metabolic activity, microstructural architecture, and cell viability, up to 72 h on both these surfaces. In co-incubation conditions, in which BSs were tested in soluble form, rhamnolipid R89BS (0.05 mg/ml) was the most effective among the tested BSs against the formation of both dual-species biofilms, reducing on average 94 and 95% of biofilm biomass and metabolic activity at 72 h of incubation, respectively. Similarly, rhamnolipid R89BS silicone surface coating proved to be the most effective in inhibiting the formation of both dual-species biofilms, with average reductions of 93 and 90%, respectively. Scanning electron microscopy observations showed areas of treated surfaces that were free of microbial cells or in which thinner and less structured biofilms were present, compared to controls. The obtained results endorse the idea that coating of implant surfaces with BSs may be a promising strategy for the prevention of C. albicans-Staphylococcus spp. colonization on medical devices, and can potentially contribute to the reduction of the high economic efforts undertaken by healthcare systems for the treatment of these complex fungal-bacterial infections.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Maurizio Rinaldi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Francesco Tessarolo
- BIOtech Center for Biomedical Technologies, Department of Industrial Engineering, Università di Trento, Trento, Italy.,Healthcare Research and Innovation Program (IRCS-FBK-PAT), Bruno Kessler Foundation, Trento, Italy
| | - Devid Maniglio
- BIOtech Center for Biomedical Technologies, Department of Industrial Engineering, Università di Trento, Trento, Italy
| | - Emanuele Fedeli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Erica Tambone
- BIOtech Center for Biomedical Technologies, Department of Industrial Engineering, Università di Trento, Trento, Italy
| | - Patrizio Caciagli
- Section of Electron Microscopy, Department of Medicine Laboratory, Azienda Provinciale per i Servizi Sanitari di Trento, Trento, Italy
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, United Kingdom
| | - Mayri Alessandra Diaz De Rienzo
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
15
|
Garipov MR, Sabirova AE, Pavelyev RS, Shtyrlin NV, Lisovskaya SA, Bondar OV, Laikov AV, Romanova JG, Bogachev MI, Kayumov AR, Shtyrlin YG. Targeting pathogenic fungi, bacteria and fungal-bacterial biofilms by newly synthesized quaternary ammonium derivative of pyridoxine and terbinafine with dual action profile. Bioorg Chem 2020; 104:104306. [PMID: 33011535 DOI: 10.1016/j.bioorg.2020.104306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/29/2023]
Abstract
Many pathogenic bacteria and microscopic fungi form rigid polymicrobial biofilms this way enhancing their resistant to treatment. A series of novel pyridoxine-based quaternary ammonium derivatives of terbinafine characterized by both antifungal and antibacterial activities was designed. The leading compound named KFU-127 exhibits promising antifungal and antibacterial activities against various bacteria and micromycetes in both planktonic and biofilm-embedded forms demonstrating MIC values comparable with those of conventional antifungals and antimicrobials. Similar to other antiseptics like benzalkonium chloride and miramistin, KFU-127 is considerably toxic for eukaryotic cells that limits is application to topical treatment options. On the other hand, KFU-127 reduces the number of viable biofilm-embedded bacteria and C. albicans by 3 orders of magnitude at concentrations 2-4 times lower than those of reference drugs and successfully eradicates S. aureus-C. albicans mixed biofilms. The mechanism of antimicrobial action of KFU-127 is bimodal including both membrane integrity damage and pyridoxal-dependent enzymes targeting. We expect that this bilateral mechanism would result in lower rates of resistance development in both fungal and bacterial pathogens. Taken together, our data suggest KFU-127 as a new promising broad spectrum topical antimicrobial capable of one-shot targeting of bacterial and fungal-bacterial biofilms.
Collapse
Affiliation(s)
- Marsel R Garipov
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Alina E Sabirova
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Roman S Pavelyev
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Nikita V Shtyrlin
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Svetlana A Lisovskaya
- Kazan Scientific Research Institute of Epidemiology and Microbiology, 67 Bolshaya Krasnaya str, 420015 Kazan, Russian Federation; Kazan State Medical University
| | - Oksana V Bondar
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Aleksandr V Laikov
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Julia G Romanova
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation
| | - Mikhail I Bogachev
- St Petersburg Electrotechnical University, 5 Professor Popov str., 197376 St. Petersburg, Russian Federation
| | - Airat R Kayumov
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation.
| | - Yurii G Shtyrlin
- Kazan Federal University, 18 Kremlevskaya str, 420008 Kazan, Russian Federation.
| |
Collapse
|
16
|
Sikdar R, Elias M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert Rev Anti Infect Ther 2020; 18:1221-1233. [PMID: 32749905 DOI: 10.1080/14787210.2020.1794815] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Numerous bacterial behaviors are regulated by a cell-density dependent mechanism known as Quorum Sensing (QS). QS relies on communication between bacterial cells using diffusible signaling molecules known as autoinducers. QS regulates physiological processes such as metabolism, virulence, and biofilm formation. Quorum Quenching (QQ) is the inhibition of QS using chemical or enzymatic means to counteract behaviors regulated by QS. AREAS COVERED We examine the main, diverse QS mechanisms present in bacterial species, with a special emphasis on AHL-mediated QS. We also discuss key in vitro and in vivo systems in which interference in QS was investigated. Additionally, we highlight promising developments, such as the substrate preference of the used enzymatic quencher, in the application of interference in QS to counter bacterial virulence. EXPERT OPINION Enabled via the recent isolation of highly stable quorum quenching enzymes and/or molecular engineering efforts, the effects of the interference in QS were recently evaluated outside of the traditional model of single species culture. Signal disruption in complex microbial communities was shown to result in the disruption of complex microbial behaviors, and changes in population structures. These new findings, and future studies, may result in significant changes in the traditional views about QS.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Biochemistry, Molecular Biology & Biophysics Department and BioTechnology Institute, University of Minnesota , Saint Paul, Minnesota, USA
| | - Mikael Elias
- Biochemistry, Molecular Biology & Biophysics Department and BioTechnology Institute, University of Minnesota , Saint Paul, Minnesota, USA
| |
Collapse
|
17
|
Kovács R, Majoros L. Fungal Quorum-Sensing Molecules: A Review of Their Antifungal Effect against Candida Biofilms. J Fungi (Basel) 2020; 6:jof6030099. [PMID: 32630687 PMCID: PMC7559060 DOI: 10.3390/jof6030099] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
The number of effective therapeutic strategies against biofilms is limited; development of novel therapies is urgently needed to treat a variety of biofilm-associated infections. Quorum sensing is a special form of microbial cell-to-cell communication that is responsible for the release of numerous extracellular molecules, whose concentration is proportional with cell density. Candida-secreted quorum-sensing molecules (i.e., farnesol and tyrosol) have a pivotal role in morphogenesis, biofilm formation, and virulence. Farnesol can mediate the hyphae-to-yeast transition, while tyrosol has the opposite effect of inducing transition from the yeast to hyphal form. A number of questions regarding Candida quorum sensing remain to be addressed; nevertheless, the literature shows that farnesol and tyrosol possess remarkable antifungal and anti-biofilm effect at supraphysiological concentration. Furthermore, previous in vitro and in vivo data suggest that they may have a potent adjuvant effect in combination with certain traditional antifungal agents. This review discusses the most promising farnesol- and tyrosol-based in vitro and in vivo results, which may be a foundation for future development of novel therapeutic strategies to combat Candida biofilms.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +0036-52-255-425; Fax: +0036-52-255-424
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
18
|
Overview of Staphylococcus epidermidis cell wall-anchored proteins: potential targets to inhibit biofilm formation. Mol Biol Rep 2019; 47:771-784. [DOI: 10.1007/s11033-019-05139-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
|
19
|
Carolus H, Van Dyck K, Van Dijck P. Candida albicans and Staphylococcus Species: A Threatening Twosome. Front Microbiol 2019; 10:2162. [PMID: 31620113 PMCID: PMC6759544 DOI: 10.3389/fmicb.2019.02162] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
Candida albicans and Staphylococcus species are, respectively, the most common fungal and bacterial agents isolated from bloodstream infections, worldwide. Moreover, it has been shown that 20% of all C. albicans bloodstream infections are polymicrobial in nature, with Staphylococcus epidermidis and Staphylococcus aureus being the first and third most common co-isolated organisms, respectively. These species are part of the commensal microbial flora but can cause hospital-acquired infections with an extreme ability to inhabit diverse host niches, especially in immunocompromised patients. They are well known for their ability to form persistent biofilms in the host or on abiotic surfaces such as indwelling medical devices. Interactions within these biofilm communities can lead to increased virulence, drug tolerance, and immune evasion. This can ultimately impact morbidity and infection outcome, often leading to an increased mortality. Therefore, characterizing the interactions between these species could lead to the development of novel therapeutic approaches that target polymicrobial infections. In this mini review, we briefly highlight the current knowledge and most recent insights into the complex interspecies interactions of C. albicans with Staphylococcus bacteria.
Collapse
Affiliation(s)
- Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Katrien Van Dyck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|