1
|
Giese W, Albrecht JP, Oppenheim O, Akmeriç EB, Kraxner J, Schmidt D, Harrington K, Gerhardt H. Polarity-JaM: an image analysis toolbox for cell polarity, junction and morphology quantification. Nat Commun 2025; 16:1474. [PMID: 39922822 PMCID: PMC11807127 DOI: 10.1038/s41467-025-56643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025] Open
Abstract
Cell polarity involves the asymmetric distribution of cellular components such as signalling molecules and organelles within a cell, alterations in cell morphology and cell-cell contacts. Advances in fluorescence microscopy and deep learning algorithms open up a wealth of unprecedented opportunities to characterise various aspects of cell polarity, but also create new challenges for comprehensible and interpretable image data analysis workflows to fully exploit these new opportunities. Here we present Polarity-JaM, an open source package for reproducible exploratory image analysis that provides versatile methods for single cell segmentation, feature extraction and statistical analysis. We demonstrate our analysis using fluorescence image data of endothelial cells and their collective behaviour, which has been shown to be essential for vascular development and disease. The general architecture of the software allows its application to other cell types and imaging modalities, as well as seamless integration into common image analysis workflows, see https://polarityjam.readthedocs.io . We also provide a web application for circular statistics and data visualisation, available at www.polarityjam.com , and a Napari plug-in, each with a graphical user interface to facilitate exploratory analysis. We propose a holistic image analysis workflow that is accessible to the end user in bench science, enabling comprehensive analysis of image data.
Collapse
Affiliation(s)
- Wolfgang Giese
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Berlin, Germany.
| | - Jan Philipp Albrecht
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- HELMHOLTZ IMAGING, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Faculty of Mathematics and Natural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olya Oppenheim
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emir Bora Akmeriç
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Kraxner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Deborah Schmidt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- HELMHOLTZ IMAGING, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kyle Harrington
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Chan Zuckerberg Institute for Advanced Biological Imaging, Redwood City, CA, USA
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
2
|
Ying J, Yang Y, Zhang X, Dong Z, Chen B. Stearoylation cycle regulates the cell surface distribution of the PCP protein Vangl2. Proc Natl Acad Sci U S A 2024; 121:e2400569121. [PMID: 38985771 PMCID: PMC11260150 DOI: 10.1073/pnas.2400569121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Defects in planar cell polarity (PCP) have been implicated in diverse human pathologies. Vangl2 is one of the core PCP components crucial for PCP signaling. Dysregulation of Vangl2 has been associated with severe neural tube defects and cancers. However, how Vangl2 protein is regulated at the posttranslational level has not been well understood. Using chemical reporters of fatty acylation and biochemical validation, here we present that Vangl2 subcellular localization is regulated by a reversible S-stearoylation cycle. The dynamic process is mainly regulated by acyltransferase ZDHHC9 and deacylase acyl-protein thioesterase 1 (APT1). The stearoylation-deficient mutant of Vangl2 shows decreased plasma membrane localization, resulting in disruption of PCP establishment during cell migration. Genetically or pharmacologically inhibiting ZDHHC9 phenocopies the effects of the stearoylation loss of Vangl2. In addition, loss of Vangl2 stearoylation enhances the activation of oncogenic Yes-associated protein 1 (YAP), serine-threonine kinase AKT, and extracellular signal-regulated protein kinase (ERK) signaling and promotes breast cancer cell growth and HRas G12V mutant (HRasV12)-induced oncogenic transformation. Our results reveal a regulation mechanism of Vangl2, and provide mechanistic insight into how fatty acid metabolism and protein fatty acylation regulate PCP signaling and tumorigenesis by core PCP protein lipidation.
Collapse
Affiliation(s)
- Jiafu Ying
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang321000, China
| | - Yinghong Yang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang321000, China
| | - Xuanpu Zhang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang321000, China
| | - Ze Dong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Baoen Chen
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang321000, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang311215, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang310000, China
| |
Collapse
|
3
|
Oguntade E, Wigham C, Owuor L, Aryal U, O'Grady K, Acierto A, Zha RH, Henderson JH. Dry and wet wrinkling of a silk fibroin biopolymer by a shape-memory material with insight into mechanical effects on secondary structures in the silk network. J Mater Chem B 2024; 12:6351-6370. [PMID: 38864220 DOI: 10.1039/d4tb00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Surface wrinkling provides an approach to modify the surfaces of biomedical devices to better mimic features of the extracellular matrix and guide cell attachment, proliferation, and differentiation. Biopolymer wrinkling on active materials holds promise but is poorly explored. Here we report a mechanically actuated assembly process to generate uniaxial micro-and nanosized silk fibroin (SF) wrinkles on a thermo-responsive shape-memory polymer (SMP) substrate, with wrinkling demonstrated under both dry and hydrated (cell compatible) conditions. By systematically investigating the influence of SMP programmed strain magnitude, film thickness, and aqueous media on wrinkle stability and morphology, we reveal how to control the wrinkle sizes on the micron and sub-micron length scale. Furthermore, as a parameter fundamental to SMPs, we demonstrate that the temperature during the recovery process can also affect the wrinkle characteristics and the secondary structures in the silk network. We find that with increasing SMP programmed strain magnitude, silk wrinkled topographies with increasing wavelengths and amplitudes are achieved. Furthermore, silk wrinkling is found to increase β-sheet content, with spectroscopic analysis suggesting that the effect may be due primarily to tensile (e.g., Poisson effect and high-curvature wrinkle) loading modes in the SF, despite the compressive bulk deformation (uniaxial contraction) used to produce wrinkles. Silk wrinkles fabricated from sufficiently thick films (roughly 250 nm) persist after 24 h in cell culture medium. Using a fibroblast cell line, analysis of cellular response to the wrinkled topographies reveals high viability and attachment. These findings demonstrate use of wrinkled SF films under physiologically relevant conditions and suggest the potential for biopolymer wrinkles on biomaterials surfaces to find application in cell mechanobiology, wound healing, and tissue engineering.
Collapse
Affiliation(s)
- Elizabeth Oguntade
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Caleb Wigham
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Luiza Owuor
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Ujjwal Aryal
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Kerrin O'Grady
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Anthony Acierto
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - R Helen Zha
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - James H Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
4
|
Oguntade E, Fougnier D, Meyer S, O’Grady K, Kudlack A, Henderson JH. Tuning the Topography of Dynamic 3D Scaffolds through Functional Protein Wrinkled Coatings. Polymers (Basel) 2024; 16:609. [PMID: 38475293 PMCID: PMC10934732 DOI: 10.3390/polym16050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Surface wrinkling provides an approach to fabricate micron and sub-micron-level biomaterial topographies that can mimic features of the dynamic, in vivo cell environment and guide cell adhesion, alignment, and differentiation. Most wrinkling research to date has used planar, two-dimensional (2D) substrates, and wrinkling work on three-dimensional (3D) structures has been limited. To enable wrinkle formation on architecturally complex, biomimetic 3D structures, here, we report a simple, low-cost experimental wrinkling approach that combines natural silk fibroin films with a recently developed advanced manufacturing technique for programming strain in complex 3D shape-memory polymer (SMP) scaffolds. By systematically investigating the influence of SMP programmed strain magnitude, silk film thickness, and aqueous media on wrinkle morphology and stability, we reveal how to generate and tune silk wrinkles on the micron and sub-micron scale. We find that increasing SMP programmed strain magnitude increases wavelength and decreases amplitudes of silk wrinkled topographies, while increasing silk film thickness increases wavelength and amplitude. Silk wrinkles persist after 24 h in cell culture medium. Wrinkled topographies demonstrate high cell viability and attachment. These findings suggest the potential for fabricating biomimetic cellular microenvironments that can advance understanding and control of cell-material interactions in engineering tissue constructs.
Collapse
Affiliation(s)
- Elizabeth Oguntade
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (E.O.); (D.F.); (S.M.); (K.O.)
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Daniel Fougnier
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (E.O.); (D.F.); (S.M.); (K.O.)
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Sadie Meyer
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (E.O.); (D.F.); (S.M.); (K.O.)
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Kerrin O’Grady
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (E.O.); (D.F.); (S.M.); (K.O.)
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Autumn Kudlack
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (E.O.); (D.F.); (S.M.); (K.O.)
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - James H. Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA; (E.O.); (D.F.); (S.M.); (K.O.)
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
Chen J, Sun S, Macios MM, Oguntade E, Narkar AR, Mather PT, Henderson JH. Thermally and Photothermally Triggered Cytocompatible Triple-Shape-Memory Polymer Based on a Graphene Oxide-Containing Poly(ε-caprolactone) and Acrylate Composite. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50962-50972. [PMID: 37902447 PMCID: PMC10636728 DOI: 10.1021/acsami.3c13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023]
Abstract
Triple-shape-memory polymers (triple-SMPs) are a class of polymers capable of fixing two temporary shapes and recovering sequentially from the first temporary shape to the second temporary shape and, last, to the permanent shape. To accomplish a sequential shape change, a triple-SMP must have two separate shape-fixing mechanisms triggerable by distinct stimuli. Despite the biomedical potential of triple-SMPs, a triple-SMP that with cells present can undergo two different shape changes via two distinct cytocompatible triggers has not previously been demonstrated. Here, we report the design and characterization of a cytocompatible triple-SMP material that responds separately to thermal and light triggers to undergo two distinct shape changes under cytocompatible conditions. Tandem triggering was achieved via a photothermally triggered component, comprising poly(ε-caprolactone) (PCL) fibers with graphene oxide (GO) particles physically attached, embedded in a thermally triggered component, comprising a tert-butyl acrylate-butyl acrylate (tBA-BA) matrix. The material was characterized in terms of thermal properties, surface morphology, shape-memory performance, and cytocompatibility during shape change. Collectively, the results demonstrate cytocompatible triple-shape behavior with a relatively larger thermal shape change (an average of 20.4 ± 4.2% strain recovered for all PCL-containing groups) followed by a smaller photothermal shape change (an average of 3.5 ± 0.8% strain recovered for all PCL-GO-containing groups; samples without GO showed no recovery) with greater than 95% cell viability on the triple-SMP materials, establishing the feasibility of triple-shape memory to be incorporated into biomedical devices and strategies.
Collapse
Affiliation(s)
- Junjiang Chen
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shiyang Sun
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Mark M. Macios
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Elizabeth Oguntade
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Ameya R. Narkar
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Patrick T. Mather
- Department
of Chemical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - James H. Henderson
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
6
|
Agyapong JN, Van Durme B, Van Vlierberghe S, Henderson JH. Surface Functionalization of 4D Printed Substrates Using Polymeric and Metallic Wrinkles. Polymers (Basel) 2023; 15:polym15092117. [PMID: 37177262 PMCID: PMC10181229 DOI: 10.3390/polym15092117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Wrinkle topographies have been studied as simple, versatile, and in some cases biomimetic surface functionalization strategies. To fabricate surface wrinkles, one material phenomenon employed is the mechanical-instability-driven wrinkling of thin films, which occurs when a deforming substrate produces sufficient compressive strain to buckle a surface thin film. Although thin-film wrinkling has been studied on shape-changing functional materials, including shape-memory polymers (SMPs), work to date has been primarily limited to simple geometries, such as flat, uniaxially-contracting substrates. Thus, there is a need for a strategy that would allow deformation of complex substrates or 3D parts to generate wrinkles on surfaces throughout that complex substrate or part. Here, 4D printing of SMPs is combined with polymeric and metallic thin films to develop and study an approach for fiber-level topographic functionalization suitable for use in printing of arbitrarily complex shape-changing substrates or parts. The effect of nozzle temperature, substrate architecture, and film thickness on wrinkles has been characterized, as well as wrinkle topography on nuclear alignment using scanning electron microscopy, atomic force microscopy, and fluorescent imaging. As nozzle temperature increased, wrinkle wavelength increased while strain trapping and nuclear alignment decreased. Moreover, with increasing film thickness, the wavelength increased as well.
Collapse
Affiliation(s)
- Johnson N Agyapong
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Bo Van Durme
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - James H Henderson
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
7
|
Pieri K, Felix BM, Zhang T, Soman P, Henderson JH. Printing Parameters of Fused Filament Fabrication Affect Key Properties of Four-Dimensional Printed Shape-Memory Polymers. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:279-288. [PMID: 37123528 PMCID: PMC10133972 DOI: 10.1089/3dp.2021.0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extrusion-based (fused filament fabrication) three-dimensional (3D) printing of shape-memory polymers (SMPs) has the potential to rapidly produce highly customized smart-material parts. Yet, the effects of printing parameters on the shape-memory properties of printed SMPs remain poorly understood. To study the extent to which the 3D printing process affects the shape-memory properties of a printed SMP part, here temperature, extrusion rate multiplier, and fiber orientation were systematically varied, and their effect on shape-memory fixing and recovery ratios was evaluated. Fiber orientation, as determined by print path relative to the direction(s) of loading during shape-memory programming, was found to significantly impact the fixing ratio and the recovery ratio. Temperature and multiplier had little effect on either fixing ratio or recovery ratio. To facilitate the use of printed SMP parts in biomedical applications, a cell viability assay was performed on 3D-printed samples prepared using varied temperature and multiplier. Reduction in multiplier was found to increase cell viability. The results indicate that fiber orientation can critically impact the shape-memory functionality of 3D-printed SMP parts, and that multiplier can affect cytocompatibility of those parts. Thus, researchers and manufacturers employing SMPs in 3D-printed parts and devices could achieve improved part functionality if print paths are designed to align fiber direction with the axis(es) in which strain will be programmed and recovered and if the multiplier is optimized in biomedical applications in which a part will contact cells.
Collapse
Affiliation(s)
- Katy Pieri
- Syracuse Biomaterials Innovation Facility, Syracuse University, Syracuse, New York, USA
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
- Department of Biomedical and Chemical Engineering, and Syracuse University, Syracuse, New York, USA
| | - Bailey M. Felix
- Syracuse Biomaterials Innovation Facility, Syracuse University, Syracuse, New York, USA
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
- Department of Biomedical and Chemical Engineering, and Syracuse University, Syracuse, New York, USA
| | - Teng Zhang
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
- Department of Biomedical and Chemical Engineering, and Syracuse University, Syracuse, New York, USA
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York, USA
| | - Pranav Soman
- Syracuse Biomaterials Innovation Facility, Syracuse University, Syracuse, New York, USA
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
- Department of Biomedical and Chemical Engineering, and Syracuse University, Syracuse, New York, USA
| | - James H. Henderson
- Syracuse Biomaterials Innovation Facility, Syracuse University, Syracuse, New York, USA
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
- Department of Biomedical and Chemical Engineering, and Syracuse University, Syracuse, New York, USA
| |
Collapse
|
8
|
Image-based cell subpopulation identification through automated cell tracking, principal component analysis, and partitioning around medoids clustering. Med Biol Eng Comput 2021; 59:1851-1864. [PMID: 34331635 DOI: 10.1007/s11517-021-02418-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 07/14/2021] [Indexed: 01/23/2023]
Abstract
In vitro cell culture model systems often employ monocultures, despite the fact that cells generally exist in a diverse, heterogeneous microenvironment in vivo. In response, heterogeneous cultures are increasingly being used to study how cell phenotypes interact. However, the ability to accurately identify and characterize distinct phenotypic subpopulations within heterogeneous systems remains a major challenge. Here, we present the use of a computational, image analysis-based approach-comprising automated contour-based cell tracking for feature identification, principal component analysis for feature reduction, and partitioning around medoids for subpopulation characterization-to non-destructively and non-invasively identify functionally distinct cell phenotypic subpopulations from live-cell microscopy image data. Using a heterogeneous model system of endothelial and smooth muscle cells, we demonstrate that this approach can be applied to both mono and co-culture nuclear morphometric and motility data to discern cell phenotypic subpopulations. Morphometric clustering identified minimal difference in mono- versus co-culture, while motility clustering revealed that a portion of endothelial cells and smooth muscle cells adopt increased motility rates in co-culture that are not observed in monoculture. We anticipate that this approach using non-destructive and non-invasive imaging can be applied broadly to heterogeneous cell culture model systems to advance understanding of how heterogeneity alters cell phenotype. This work presents a computational, image-analysis-based approach-comprising automated contour-based cell tracking for feature identification, principle component analysis for feature reduction, and partitioning around medoids for subpopulation characterization-to non-destructively and non-invasively identify functionally distinct cell phenotypic subpopulations from live-cell microscopy image data.
Collapse
|
9
|
On the influence of cell shape on dynamic reaction-diffusion polarization patterns. PLoS One 2021; 16:e0248293. [PMID: 33735291 PMCID: PMC7971540 DOI: 10.1371/journal.pone.0248293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
The distribution of signaling molecules following mechanical or chemical stimulation of a cell defines cell polarization, with regions of high active Cdc42 at the front and low active Cdc42 at the rear. As reaction-diffusion phenomena between signaling molecules, such as Rho GTPases, define the gradient dynamics, we hypothesize that the cell shape influences the maintenance of the “front-to-back” cell polarization patterns. We investigated the influence of cell shape on the Cdc42 patterns using an established computational polarization model. Our simulation results showed that not only cell shape but also Cdc42 and Rho-related (in)activation parameter values affected the distribution of active Cdc42. Despite an initial Cdc42 gradient, the in silico results showed that the maximal Cdc42 concentration shifts in the opposite direction, a phenomenon we propose to call “reverse polarization”. Additional in silico analyses indicated that “reverse polarization” only occurred in a particular parameter value space that resulted in a balance between inactivation and activation of Rho GTPases. Future work should focus on a mathematical description of the underpinnings of reverse polarization, in combination with experimental validation using, for example, dedicated FRET-probes to spatiotemporally track Rho GTPase patterns in migrating cells. In summary, the findings of this study enhance our understanding of the role of cell shape in intracellular signaling.
Collapse
|
10
|
Pinto DEP, Erdemci-Tandogan G, Manning ML, Araújo NAM. The Cell Adaptation Time Sets a Minimum Length Scale for Patterned Substrates. Biophys J 2020; 119:2299-2306. [PMID: 33130122 DOI: 10.1016/j.bpj.2020.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/11/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The structure and dynamics of tissue cultures depend strongly on the physical and chemical properties of the underlying substrate. Inspired by previous advances in the context of inorganic materials, the use of patterned culture surfaces has been proposed as an effective way to induce space-dependent properties in cell tissues. However, cells move and diffuse, and the transduction of external stimuli to biological signals is not instantaneous. Here, we show that the fidelity of patterns to demix tissue cells depends on the relation between the diffusion (τD) and adaptation (τ) times. Numerical results for the self-propelled Voronoi model reveal that the fidelity decreases with τ/τD, a result that is reproduced by a continuum reaction-diffusion model. Based on recent experimental results for single cells, we derive a minimal length scale for the patterns in the substrate that depends on τ/τD and can be much larger than the cell size.
Collapse
Affiliation(s)
- Diogo E P Pinto
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Centro de Física Teórica e Computacional, Lisboa, Portugal
| | - Gonca Erdemci-Tandogan
- Department of Physics, Syracuse University, Syracuse, New York; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - M Lisa Manning
- Department of Physics, Syracuse University, Syracuse, New York
| | - Nuno A M Araújo
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Centro de Física Teórica e Computacional, Lisboa, Portugal.
| |
Collapse
|
11
|
Sun S, Shi H, Moore S, Wang C, Ash-Shakoor A, Mather PT, Henderson JH, Ma Z. Progressive Myofibril Reorganization of Human Cardiomyocytes on a Dynamic Nanotopographic Substrate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21450-21462. [PMID: 32326701 DOI: 10.1021/acsami.0c03464] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cardiomyocyte (CM) alignment with striated myofibril organization is developed during early cardiac organogenesis. Previous work has successfully achieved in vitro CM alignment using a variety of biomaterial scaffolds and substrates with static topographic features. However, the cellular processes that occur during the response of CMs to dynamic surface topographic changes, which may provide a model of in vivo developmental progress of CM alignment within embryonic myocardium, remains poorly understood. To gain insights into these cellular processes involved in the response of CMs to dynamic topographic changes, we developed a dynamic topographic substrate that employs a shape memory polymer coated with polyelectrolyte multilayers to produce a flat-to-wrinkle surface transition when triggered by a change in incubation temperature. Using this system, we investigated cellular morphological alignment and intracellular myofibril reorganization in response to the dynamic wrinkle formation. Hence, we identified the progressive cellular processes of human-induced pluripotent stem cell-CMs in a time-dependent manner, which could provide a foundation for a mechanistic model of cardiac myofibril reorganization in response to extracellular microenvironment changes.
Collapse
Affiliation(s)
- Shiyang Sun
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Huaiyu Shi
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Sarah Moore
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Chenyan Wang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Ariel Ash-Shakoor
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Patrick T Mather
- Department of Chemical Engineering, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - James H Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
12
|
Su P, Yin C, Li D, Yang C, Wang X, Pei J, Tian Y, Qian A. MACF1 promotes preosteoblast migration by mediating focal adhesion turnover through EB1. Biol Open 2020; 9:bio048173. [PMID: 32139394 PMCID: PMC7104863 DOI: 10.1242/bio.048173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/20/2020] [Indexed: 12/25/2022] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1) is a widely expressed cytoskeletal linker and plays an essential role in various cells' functions by mediating cytoskeleton organization and dynamics. However, the role of MACF1 on preosteoblast migration is not clear. Here, by using MACF1 knockdown and overexpressed MC3T3-E1 cells, we found MACF1 positively regulated preosteoblast migration induced by cell polarization. Furthermore, immunofluorescent staining showed that MACF1 increased end-binding protein (EB1) distribution on microtubule (MT), and decreased EB1 distribution on focal adhesion (FA) complex. Moreover, upregulation of MACF1 activated Src level and enhanced the colocalization of EB1 with activated Src. In addition, MACF1 diminished colocalization of EB1 with adenomatous polyposis coli (APC), which induced EB1 release from FA and promoted FA turnover. These results indicated an important role and mechanism of MACF1 in regulating preosteoblast migration through promoting FA turnover by mediating EB1 colocalization with Src and APC, which inferred that MACF1 might be a potential target for preventing and treating bone disorders.
Collapse
Affiliation(s)
- Peihong Su
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chaofei Yang
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue Wang
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiawei Pei
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ye Tian
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
13
|
Ravichandran Y, Goud B, Manneville JB. The Golgi apparatus and cell polarity: Roles of the cytoskeleton, the Golgi matrix, and Golgi membranes. Curr Opin Cell Biol 2019; 62:104-113. [PMID: 31751898 DOI: 10.1016/j.ceb.2019.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
Membrane trafficking plays a crucial role in cell polarity by directing lipids and proteins to specific subcellular locations in the cell and sustaining a polarized state. The Golgi apparatus, the master organizer of membrane trafficking, can be subdivided into three layers that play different mechanical roles: a cytoskeletal layer, the so-called Golgi matrix, and the Golgi membranes. First, the outer regions of the Golgi apparatus interact with cytoskeletal elements, mainly actin and microtubules, which shape, position, and orient the organelle. Closer to the Golgi membranes, a matrix of long coiled-coiled proteins not only selectively captures transport intermediates but also participates in signaling events during polarization of membrane trafficking. Finally, the Golgi membranes themselves serve as active signaling platforms during cell polarity events. We review here the recent findings that link the Golgi apparatus to cell polarity, focusing on the roles of the cytoskeleton, the Golgi matrix, and the Golgi membranes.
Collapse
Affiliation(s)
- Yamini Ravichandran
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Institut Pasteur, CNRS, UMR 3691, 25 rue du Docteur Roux F-75014, Paris, France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France.
| |
Collapse
|
14
|
Govindarajan T, Shandas R. Microgrooves Encourage Endothelial Cell Adhesion and Organization on Shape-Memory Polymer Surfaces. ACS APPLIED BIO MATERIALS 2019; 2:1897-1906. [PMID: 35030679 DOI: 10.1021/acsabm.8b00833] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cardiovascular stents have become the mainstay for treating coronary and other vascular diseases; however, the need for long-term anti-platelet therapies continues to drive research on novel materials and strategies to promote in situ endothelialization of these devices, which should decrease local thrombotic response. Shape-memory polymers (SMPs) have shown promise as polymer stents due to their self-deployment capabilities and vascular biocompatibility. We previously demonstrated isotropic endothelial cell adhesion on the unmodified surfaces of a family of SMPs previously developed by our group. Here, we evaluate whether endothelial cells align preferentially along microgrooved versus unpatterned surfaces of these SMPs. Results show that micropatterning SMP surfaces enhances natural surface hydrophobicity, which helps promote endothelial cell attachment and alignment along the grooves. With the addition of microgrooves to the SMP surface, this class of SMPs may provide an improved surface and material for next-generation blood-contacting devices.
Collapse
|