1
|
Mei M, Estrada I, Diggle SP, Goldberg JB. R-pyocins as targeted antimicrobials against Pseudomonas aeruginosa. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:17. [PMID: 40021925 PMCID: PMC11871291 DOI: 10.1038/s44259-025-00088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025]
Abstract
R-pyocins, bacteriocin-like proteins produced by Pseudomonas aeruginosa, present a promising alternative to phage therapy and/or adjunct to currently used antimicrobials in treating bacterial infections due to their targeted specificity, lack of replication, and stability. This review explores the structural, mechanistic, and therapeutic aspects of R-pyocins, including their potential for chronic infection management, and discusses recent advances in delivery methods, paving the way for novel antimicrobial applications in clinical settings.
Collapse
Affiliation(s)
- Madeline Mei
- Division of Pulmonary, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Isaac Estrada
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Stephen P Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joanna B Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Mori Y, Yamashita E, Nakagawa A, Matsuzawa T, Inagaki M, Aiba Y, Tanaka S, Hatori S, Ayami M, Takeda S. Determination of the three-dimensional structure of bacteriophage Mu(-) tail fiber and its characterization. Virology 2024; 593:110017. [PMID: 38382161 DOI: 10.1016/j.virol.2024.110017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/01/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Bacteriophage Mu is a temperate phage known to infect various species of Enterobacteria, playing a role in bacterial mutation induction and horizontal gene transfer. The phage possesses two types of tail fibers important for host recognition, which enable it to expand its range of hosts. The alternate tail fibers are formed through the action of genes 49-50 or 52-51, allowing the Mu phage to recognize different surfaces of host cells. In a previous study, we presented the X-ray crystal structure of the C-terminal lipopolysaccharide (LPS)-binding domain of gene product (gp) 49, one of the subunits comprising the Mu tail fiber. In this study, we have determined the structure of the alternative tail fiber subunit, gp52, and compared it with other tail fibers. The results revealed that Mu phage employs different structural motifs for two individual tail fibers for recognizing different hosts.
Collapse
Affiliation(s)
- Yukina Mori
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tomoki Matsuzawa
- Department of Life Science, Faculty of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie, 514-8507, Japan
| | - Minoru Inagaki
- Department of Life Science, Faculty of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie, 514-8507, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, School of Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Syu Tanaka
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Syunya Hatori
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Maeda Ayami
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
3
|
Buchholz HH, Bolaños LM, Bell AG, Michelsen ML, Allen MJ, Temperton B. Novel pelagiphage isolate Polarivirus skadi is a polar specialist that dominates SAR11-associated bacteriophage communities at high latitudes. THE ISME JOURNAL 2023; 17:1660-1670. [PMID: 37452097 PMCID: PMC10504331 DOI: 10.1038/s41396-023-01466-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
The SAR11 clade are the most abundant members of surface marine bacterioplankton and a critical component of global biogeochemical cycles. Similarly, pelagiphages that infect SAR11 are ubiquitous and highly abundant in the oceans. Pelagiphages are predicted to shape SAR11 community structures and increase carbon turnover throughout the oceans. Yet, ecological drivers of host and niche specificity of pelagiphage populations are poorly understood. Here we report the global distribution of a novel pelagiphage called "Polarivirus skadi", which is the sole representative of a novel genus. P. skadi was isolated from the Western English Channel using a cold-water ecotype of SAR11 as bait. P. skadi is closely related to the globally dominant pelagiphage HTVC010P. Along with other HTVC010P-type viruses, P. skadi belongs to a distinct viral family within the order Caudovirales, for which we propose the name Ubiqueviridae. Metagenomic read recruitment identified P. skadi as one of the most abundant pelagiphages on Earth. P. skadi is a polar specialist, replacing HTVC010P at high latitudes. Experimental evaluation of P. skadi host range against cold- and warm-water SAR11 ecotypes supported cold-water specialism. Relative abundance of P. skadi in marine metagenomes correlated negatively with temperature, and positively with nutrients, available oxygen, and chlorophyll concentrations. In contrast, relative abundance of HTVC010P correlated negatively with oxygen and positively with salinity, with no significant correlation to temperature. The majority of other pelagiphages were scarce in most marine provinces, with a few representatives constrained to discrete ecological niches. Our results suggest that pelagiphage populations persist within a global viral seed bank, with environmental parameters and host availability selecting for a few ecotypes that dominate ocean viromes.
Collapse
Affiliation(s)
| | | | - Ashley G Bell
- School of Biosciences, University of Exeter, Exeter, UK
| | | | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, UK.
| |
Collapse
|
4
|
Li F, Hou CFD, Lokareddy RK, Yang R, Forti F, Briani F, Cingolani G. High-resolution cryo-EM structure of the Pseudomonas bacteriophage E217. Nat Commun 2023; 14:4052. [PMID: 37422479 PMCID: PMC10329688 DOI: 10.1038/s41467-023-39756-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023] Open
Abstract
E217 is a Pseudomonas phage used in an experimental cocktail to eradicate cystic fibrosis-associated Pseudomonas aeruginosa. Here, we describe the structure of the whole E217 virion before and after DNA ejection at 3.1 Å and 4.5 Å resolution, respectively, determined using cryogenic electron microscopy (cryo-EM). We identify and build de novo structures for 19 unique E217 gene products, resolve the tail genome-ejection machine in both extended and contracted states, and decipher the complete architecture of the baseplate formed by 66 polypeptide chains. We also determine that E217 recognizes the host O-antigen as a receptor, and we resolve the N-terminal portion of the O-antigen-binding tail fiber. We propose that E217 design principles presented in this paper are conserved across PB1-like Myoviridae phages of the Pbunavirus genus that encode a ~1.4 MDa baseplate, dramatically smaller than the coliphage T4.
Collapse
Affiliation(s)
- Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Chun-Feng David Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
5
|
Sattar S, Bailie M, Yaqoob A, Khanum S, Fatima K, Altaf AURB, Ahmed I, Shah STA, Munawar J, Zehra QA, Daud S, Arshad A, Imdad K, Javed S, Tariq A, Bostan N, Altermann E. Characterization of two novel lytic bacteriophages having lysis potential against MDR avian pathogenic Escherichia coli strains of zoonotic potential. Sci Rep 2023; 13:10043. [PMID: 37340022 DOI: 10.1038/s41598-023-37176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023] Open
Abstract
Avian pathogenic E. coli (APEC) is associated with local and systemic infections in poultry, ducks, turkeys, and many other avian species, leading to heavy economical losses. These APEC strains are presumed to possess zoonotic potential due to common virulence markers that can cause urinary tract infections in humans. The prophylactic use of antibiotics in the poultry sector has led to the rapid emergence of Multiple Drug Resistant (MDR) APEC strains that act as reservoirs and put human populations at risk. This calls for consideration of alternative strategies to decrease the bacterial load. Here, we report isolation, preliminary characterization, and genome analysis of two novel lytic phage species (Escherichia phage SKA49 and Escherichia phage SKA64) against MDR strain of APEC, QZJM25. Both phages were able to keep QZJM25 growth significantly less than the untreated bacterial control for approximately 18 h. The host range was tested against Escherichia coli strains of poultry and human UTI infections. SKA49 had a broader host range in contrast to SKA64. Both phages were stable at 37 °C only. Their genome analysis indicated their safety as no recombination, integration and host virulence genes were identified. Both these phages can be good candidates for control of APEC strains based on their lysis potential.
Collapse
Affiliation(s)
- Sadia Sattar
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan.
| | - Marc Bailie
- AgResearch, Palmerston North, 4410, New Zealand
| | - Akasha Yaqoob
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | | | - Kaniz Fatima
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Anees Ur Rehman Bin Altaf
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, 45710, Pakistan
| | - Syed Tahir Abbas Shah
- Functional Genomics Lab, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Javeria Munawar
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Quaratul Ain Zehra
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Sajeela Daud
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Ayesha Arshad
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Kaleem Imdad
- Microbiology and Immunology Lab, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Sundus Javed
- Microbiology and Immunology Lab, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Amira Tariq
- Microbiology and Immunology Lab, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Nazish Bostan
- Molecular Virology Labs, Department of Biosciences, Comsats University Islamabad, Islamabad, 45550, Pakistan
| | - Eric Altermann
- School of Veterinary Science Massey University Centre for Bioparticle Applications, Massey University, Palmerston North, 4472, New Zealand
| |
Collapse
|
6
|
Alim NTB, Koppenhöfer S, Lang AS, Beatty JT. Extracellular Polysaccharide Receptor and Receptor-Binding Proteins of the Rhodobacter capsulatus Bacteriophage-like Gene Transfer Agent RcGTA. Genes (Basel) 2023; 14:genes14051124. [PMID: 37239483 DOI: 10.3390/genes14051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
A variety of prokaryotes produce a bacteriophage-like gene transfer agent (GTA), and the alphaproteobacterial Rhodobacter capsulatus RcGTA is a model GTA. Some environmental isolates of R. capsulatus lack the ability to acquire genes transferred by the RcGTA (recipient capability). In this work, we investigated the reason why R. capsulatus strain 37b4 lacks recipient capability. The RcGTA head spike fiber and tail fiber proteins have been proposed to bind extracellular oligosaccharide receptors, and strain 37b4 lacks a capsular polysaccharide (CPS). The reason why strain 37b4 lacks a CPS was unknown, as was whether the provision of a CPS to 37b4 would result in recipient capability. To address these questions, we sequenced and annotated the strain 37b4 genome and used BLAST interrogations of this genome sequence to search for homologs of genes known to be needed for R. capsulatus recipient capability. We also created a cosmid-borne genome library from a wild-type strain, mobilized the library into 37b4, and used the cosmid-complemented strain 37b4 to identify genes needed for a gain of function, allowing for the acquisition of RcGTA-borne genes. The relative presence of CPS around a wild-type strain, 37b4, and cosmid-complemented 37b4 cells was visualized using light microscopy of stained cells. Fluorescently tagged head spike fiber and tail fiber proteins of the RcGTA particle were created and used to measure the relative binding to wild-type and 37b4 cells. We found that strain 37b4 lacks recipient capability because of an inability to bind RcGTA; the reason it is incapable of binding is that it lacks CPS, and the absence of CPS is due to the absence of genes previously shown to be needed for CPS production in another strain. In addition to the head spike fiber, we found that the tail fiber protein also binds to the CPS.
Collapse
Affiliation(s)
- Nawshin T B Alim
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sonja Koppenhöfer
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - J Thomas Beatty
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
7
|
Miller JM, Knyazhanskaya ES, Buth SA, Prokhorov NS, Leiman PG. Function of the bacteriophage P2 baseplate central spike Apex domain in the infection process. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.529910. [PMID: 36865152 PMCID: PMC9980179 DOI: 10.1101/2023.02.25.529910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
The contractile tail of bacteriophage P2 functions to drive the tail tube across the outer membrane of its host bacterium, a prerequisite event for subsequent translocation of phage genomic DNA into the host cell. The tube is equipped with a spike-shaped protein (product of P2 gene V , gpV or Spike) that contains a membrane-attacking Apex domain carrying a centrally positioned Fe ion. The ion is enclosed in a histidine cage that is formed by three symmetry-related copies of a conserved HxH (histidine, any residue, histidine) sequence motif. Here, we used solution biophysics and X-ray crystallography to characterize the structure and properties of Spike mutants in which the Apex domain was either deleted or its histidine cage was either destroyed or replaced with a hydrophobic core. We found that the Apex domain is not required for the folding of full-length gpV or its middle intertwined β-helical domain. Furthermore, despite its high conservation, the Apex domain is dispensable for infection in laboratory conditions. Collectively, our results show that the diameter of the Spike but not the nature of its Apex domain determines the efficiency of infection, which further strengthens the earlier hypothesis of a drill bit-like function of the Spike in host envelope disruption.
Collapse
|
8
|
Weaver SL, Zhu L, Ravishankar S, Clark M, Baltrus DA. Interspecies killing activity of Pseudomonas syringae tailocins. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36342839 DOI: 10.1099/mic.0.001258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tailocins are ribosomally synthesized bacteriocins, encoded by bacterial genomes, but originally derived from bacteriophage tails. As with both bacteriocins and phage, tailocins are largely thought to be species-specific with killing activity often assumed to be directed against closely related strains. Previous investigations into interactions between tailocin host range and sensitivity across phylogenetically diverse isolates of the phytopathogen Pseudomonas syringae have demonstrated that many strains possess intraspecific tailocin activity and that this activity is highly precise and specific against subsets of strains. However, here we demonstrate that at least one strain of P. syringae, USA011R, defies both expectations and current overarching dogma because tailocins from this strain possess broad killing activity against other agriculturally significant phytopathogens such as Erwinia amylovora and Xanthomonas perforans as well as against the clinical human pathogen Salmonella enterica serovar Choleraesuis. Moreover, we show that the full spectrum of this interspecific killing activity is not conserved across closely related strains with data suggesting that even if tailocins can target different species, they do so with different efficiencies. Our results reported herein highlight the potential for and phenotypic divergence of interspecific killing activity of P. syringae tailocins and establish a platform for further investigations into the evolution of tailocin host range and strain specificity.
Collapse
Affiliation(s)
- Savannah L Weaver
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.,School of Plant Sciences, University of Arizona, Tucson AZ, USA
| | - Libin Zhu
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| | - Sadhana Ravishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| | - Meara Clark
- School of Plant Sciences, University of Arizona, Tucson AZ, USA
| | - David A Baltrus
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.,School of Plant Sciences, University of Arizona, Tucson AZ, USA.,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| |
Collapse
|
9
|
Bhattacharjee R, Nandi A, Sinha A, Kumar H, Mitra D, Mojumdar A, Patel P, Jha E, Mishra S, Rout PK, Panda PK, Suar M, Verma SK. Phage-tail-like bacteriocins as a biomedical platform to counter anti-microbial resistant pathogens. Biomed Pharmacother 2022; 155:113720. [PMID: 36162371 DOI: 10.1016/j.biopha.2022.113720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Phage Tail Like bacteriocins (PTLBs) has been an area of interest in the last couple of years owing to their varied application against multi-drug resistant (MDR), anti-microbial resistant (AMR) pathogens and their evolutionary link with the dsDNA virus and bacteriophages. PTLBs are defective phages derived from Myoviridae and Siphoviridae phages, PTLBs are distinguished into R-type (Rigid type) characterized by a non-flexible contractile nanotube resembling Myoviridae phage contractile tails, and F-type (Flexible type) with a flexible non-contractile rod-like structure similar to Siphoviridae phages. In this review, we have discussed the structural association, mechanism, and characterization of PTLBs. Moreover, we have elucidated the symbiotic biological function and application of PTLBs against MDR and XDR pathogens and highlighted the evolutionary role of PTLBs. The difficulties that must be overcome to implement PTLBs clinically are also discussed. It is imperative that these issues be addressed by academics in future studies before being implemented in clinical settings. This article is novel in its way as it will not only provide us with a gateway that acts as a novel strategy for scholars to mitigate and control the uprising issue of AMR pathogens but also promote the development of clinical studies for PTLBs.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Hrithik Kumar
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala 695551, India
| | - Disha Mitra
- University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Abhik Mojumdar
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Ochang Center, Cheongju, Chungcheongbuk 28119, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suman Mishra
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Prabhat Kumar Rout
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
10
|
Xu J, Ericson CF, Lien YW, Rutaganira FUN, Eisenstein F, Feldmüller M, King N, Pilhofer M. Identification and structure of an extracellular contractile injection system from the marine bacterium Algoriphagus machipongonensis. Nat Microbiol 2022; 7:397-410. [PMID: 35165385 PMCID: PMC8894135 DOI: 10.1038/s41564-022-01059-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
Contractile injection systems (CISs) are phage tail-like nanomachines, mediating bacterial cell–cell interactions as either type VI secretion systems (T6SSs) or extracellular CISs (eCISs). Bioinformatic studies uncovered a phylogenetic group of hundreds of putative CIS gene clusters that are highly diverse and widespread; however, only four systems have been characterized. Here we studied a putative CIS gene cluster in the marine bacterium Algoriphagus machipongonensis. Using an integrative approach, we show that the system is compatible with an eCIS mode of action. Our cryo-electron microscopy structure revealed several features that differ from those seen in other CISs: a ‘cap adaptor’ located at the distal end, a ‘plug’ exposed to the tube lumen, and a ‘cage’ formed by massive extensions of the baseplate. These elements are conserved in other CISs, and our genetic tools identified that they are required for assembly, cargo loading and function. Furthermore, our atomic model highlights specific evolutionary hotspots and will serve as a framework for understanding and re−engineering CISs. The characterization of an extracellular contractile injection system (eCIS) from the marine bacterium Algoriphagus machipongonensis (AlgoCIS) reveals structural features linked to the assembly and function of this nanomachine.
Collapse
|
11
|
Mohamed AA, Elshawadfy AM, Amin G, Askora A. Characterization of R-pyocin activity against Gram-positive pathogens for the first time with special focus on Staphylococcus aureus. J Appl Microbiol 2021; 131:2780-2792. [PMID: 33977611 DOI: 10.1111/jam.15134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/23/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
AIM This study is aimed at characterization of both antimicrobial and anti-biofilm activity of R-pyocin from clinical Pseudomonas aeruginosa against Gram-positive pathogens including Staphylococcus aureus. METHODS AND RESULTS Pyocinogenic P. aeruginosa was detected using reverse-side method, and pyocinogeny typing was confirmed using revised-spotting method. Transmission electron microscopy (TEM) was used for morphological characterization of R-pyocin and for detection of changes in membrane of R-pyocin-treated S. aureus. SDS-PAGE analysis was used for detection of the molecular weight of R-pyocin protein-subunits and Poisson-killing-distribution assay for burst-size calculation. Lipotechoic-acid (LTA) adsorption-assay was used to confirm whether LTA in Gram-positive bacteria served as R-pyocin receptor. Moreover, R-pyocin production at 10-60°C was assessed herein. Host-range of activity of R-pyocin was tested against antimicrobial resistant (AMR) pathogens. The anti-biofilm activity of R-pyocin was detected against sensitive bacterial strains. Chemical, enzymatic, pH and thermo-stability of R-pyocin were evaluated. TEM micrographs revealed a typical morphology of myotailocins indicating the production of R-pyocin designated as RPU15. TEM revealed pores formation in S. aureus membrane, and bacteriophage-like plaques were obvious on plates of R-pyocin-treated S. aureus. R-pyocin activity was neutralized by LTA of S. aureus and Listeria monocytogenes. Pseudomonas aeruginosa PU15 produced ~428 non-inducible R-pyocin particles. RPU15 sheath and tube protein-subunits exhibited a molecular weight of 38 and 23 kDa, respectively. RPU15 possessed activity against S. aureus, L. monocytogenes, Bacillus cereus and Candida albicans and reduced biofilm-biomasses of tested AMR strains. CONCLUSION Our results show the potential therapeutic use of R-pyocin due to its effectiveness on tested bacterial biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that investigates antimicrobial and anti-biofilm activity of R-pyocin activity against S. aureus. R-pyocin shows new phenomenon of bacteriophage-like plaques. Our findings represent a future therapeutic agent targeting both methicillin-resistant and vancomycin-resistant S. aureus.
Collapse
Affiliation(s)
- A A Mohamed
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - A M Elshawadfy
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - G Amin
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - A Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Heterogenous Susceptibility to R-Pyocins in Populations of Pseudomonas aeruginosa Sourced from Cystic Fibrosis Lungs. mBio 2021; 12:mBio.00458-21. [PMID: 33947755 PMCID: PMC8262887 DOI: 10.1128/mbio.00458-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bacteriocins are proteinaceous antimicrobials produced by bacteria that are active against other strains of the same species. R-type pyocins are phage tail-like bacteriocins produced by Pseudomonas aeruginosa Due to their antipseudomonal activity, R-pyocins have potential as therapeutics in infection. P. aeruginosa is a Gram-negative opportunistic pathogen and is particularly problematic for individuals with cystic fibrosis (CF). P. aeruginosa organisms from CF lung infections develop increasing resistance to antibiotics, making new treatment approaches essential. P. aeruginosa populations become phenotypically and genotypically diverse during infection; however, little is known of the efficacy of R-pyocins against heterogeneous populations. R-pyocins vary by subtype (R1 to R5), distinguished by binding to different residues on the lipopolysaccharide (LPS). Each type varies in killing spectrum, and each strain produces only one R-type. To evaluate the prevalence of different R-types, we screened P. aeruginosa strains from the International Pseudomonas Consortium Database (IPCD) and from our biobank of CF strains. We found that (i) R1-types were the most prevalent R-type among strains from respiratory sources, (ii) a large number of strains lack R-pyocin genes, and (iii) isolates collected from the same patient have the same R-type. We then assessed the impact of intrastrain diversity on R-pyocin susceptibility and found a heterogenous response to R-pyocins within populations, likely due to differences in the LPS core. Our work reveals that heterogeneous populations of microbes exhibit variable susceptibility to R-pyocins and highlights that there is likely heterogeneity in response to other types of LPS-binding antimicrobials, including phage.IMPORTANCE R-pyocins have potential as alternative therapeutics against Pseudomonas aeruginosa in chronic infection; however, little is known about the efficacy of R-pyocins in heterogeneous bacterial populations. P. aeruginosa is known to become resistant to multiple antibiotics and to evolve phenotypic and genotypic diversity over time; thus, it is particularly difficult to eradicate in chronic cystic fibrosis (CF) lung infections. In this study, we found that P. aeruginosa populations from CF lungs maintain the same R-pyocin genotype but exhibit heterogeneity in susceptibility to R-pyocins from other strains. Our findings suggest there is heterogeneity in response to other types of LPS-binding antimicrobials, such as phage, highlighting the necessity of further studying the potential of LPS-binding antimicrobial particles as alternative therapies in chronic infections.
Collapse
|
13
|
Pellizza L, López JL, Vázquez S, Sycz G, Guimarães BG, Rinaldi J, Goldbaum FA, Aran M, Mac Cormack WP, Klinke S. Structure of the putative long tail fiber receptor-binding tip of a novel temperate bacteriophage from the Antarctic bacterium Bizionia argentinensis JUB59. J Struct Biol 2020; 212:107595. [PMID: 32736071 DOI: 10.1016/j.jsb.2020.107595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/28/2022]
Abstract
Tailed bacteriophages are one of the most widespread biological entities on Earth. Their singular structures, such as spikes or fibers are of special interest given their potential use in a wide range of biotechnological applications. In particular, the long fibers present at the termini of the T4 phage tail have been studied in detail and are important for host recognition and adsorption. Although significant progress has been made in elucidating structural mechanisms of model phages, the high-resolution structural description of the vast population of marine phages is still unexplored. In this context, we present here the crystal structure of C24, a putative receptor-binding tip-like protein from Bizionia argentinensis JUB59, a psychrotolerant bacterium isolated from the marine surface waters of Potter Cove, Antarctica. The structure resembles the receptor-binding tip from the bacteriophage T4 long tail fiber yet showing marked differences in its domain organization, size, sequence identity and metal binding nature. We confirmed the viral origin of C24 by induction experiments using mitomycin C. Our results reveal the presence of a novel uncharacterized prophage in the genome of B. argentinensis JUB59, whose morphology is compatible with the order Caudovirales and that carries the nucleotide sequence of C24 in its genome. This work provides valuable information to expand our current knowledge on the viral machinery prevalent in the oceans.
Collapse
Affiliation(s)
- Leonardo Pellizza
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - José L López
- Instituto de Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAZ), Buenos Aires, Argentina
| | - Susana Vázquez
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956 (C1113AAZ), Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Beatriz G Guimarães
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48 (91192), Gif-sur-Yvette, France
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Martín Aran
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina.
| | - Walter P Mac Cormack
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956 (C1113AAZ), Buenos Aires, Argentina; Instituto Antártico Argentino, 25 de Mayo 1143 (B1650HMK), San Martín, Provincia de Buenos Aires, Argentina.
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Bárdy P, Füzik T, Hrebík D, Pantůček R, Thomas Beatty J, Plevka P. Structure and mechanism of DNA delivery of a gene transfer agent. Nat Commun 2020; 11:3034. [PMID: 32541663 PMCID: PMC7296036 DOI: 10.1038/s41467-020-16669-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/17/2020] [Indexed: 11/09/2022] Open
Abstract
Alphaproteobacteria, which are the most abundant microorganisms of temperate oceans, produce phage-like particles called gene transfer agents (GTAs) that mediate lateral gene exchange. However, the mechanism by which GTAs deliver DNA into cells is unknown. Here we present the structure of the GTA of Rhodobacter capsulatus (RcGTA) and describe the conformational changes required for its DNA ejection. The structure of RcGTA resembles that of a tailed phage, but it has an oblate head shortened in the direction of the tail axis, which limits its packaging capacity to less than 4,500 base pairs of linear double-stranded DNA. The tail channel of RcGTA contains a trimer of proteins that possess features of both tape measure proteins of long-tailed phages from the family Siphoviridae and tail needle proteins of short-tailed phages from the family Podoviridae. The opening of a constriction within the RcGTA baseplate enables the ejection of DNA into bacterial periplasm.
Collapse
Affiliation(s)
- Pavol Bárdy
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
15
|
Islam MZ, Fokine A, Mahalingam M, Zhang Z, Garcia-Doval C, van Raaij MJ, Rossmann MG, Rao VB. Molecular anatomy of the receptor binding module of a bacteriophage long tail fiber. PLoS Pathog 2019; 15:e1008193. [PMID: 31856258 PMCID: PMC6957217 DOI: 10.1371/journal.ppat.1008193] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/13/2020] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
Tailed bacteriophages (phages) are one of the most abundant life forms on Earth. They encode highly efficient molecular machines to infect bacteria, but the initial interactions between a phage and a bacterium that then lead to irreversible virus attachment and infection are poorly understood. This information is critically needed to engineer machines with novel host specificities in order to combat antibiotic resistance, a major threat to global health today. The tailed phage T4 encodes a specialized device for this purpose, the long tail fiber (LTF), which allows the virus to move on the bacterial surface and find a suitable site for infection. Consequently, the infection efficiency of phage T4 is one of the highest, reaching the theoretical value of 1. Although the atomic structure of the tip of the LTF has been determined, its functional architecture and how interactions with two structurally very different Escherichia coli receptor molecules, lipopolysaccharide (LPS) and outer membrane protein C (OmpC), contribute to virus movement remained unknown. Here, by developing direct receptor binding assays, extensive mutational and biochemical analyses, and structural modeling, we discovered that the ball-shaped tip of the LTF, a trimer of gene product 37, consists of three sets of symmetrically alternating binding sites for LPS and/or OmpC. Our studies implicate reversible and dynamic interactions between these sites and the receptors. We speculate that the LTF might function as a “molecular pivot” allowing the virus to “walk” on the bacterium by adjusting the angle or position of interaction of the six LTFs attached to the six-fold symmetric baseplate. Bacteriophage (phage) T4 belongs to myoviridae, a widely distributed family of viruses on Earth. They contain a head (capsid), a contractile tail, and a baseplate to which six long tail fibers (LTFs) are attached. During infection, the genome packed inside the capsid is injected into its host, Escherichia coli bacterium, to initiate virus replication. The first step of infection is recognition of receptor molecules, lipopolysaccharide (LPS) and/or outer membrane protein C (OmpC), present on bacterial surface by the tips of LTFs. This allows phage to attach to bacterium, move on the surface, and find a suitable site for infection. However, the interactions that govern this critical process are poorly understood. Here, we provide the first molecular description of a tail fiber tip. Extensive mutational, structural, and biochemical analyses show that the ball-shaped tip contains patches of binding sites that allow dynamic interactions with LPS and/or OmpC. We speculate that each LTF might act as a molecular pivot, able to change its position and angle and allow phage to move on the bacterium. Our studies uncover the basic architecture of a phage molecular device used for gaining entry into bacteria and provide insights into engineering novel phages to curtail multidrug-resistance bacteria.
Collapse
Affiliation(s)
- Mohammad Z. Islam
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Zhihong Zhang
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Carmela Garcia-Doval
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Mark J. van Raaij
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Venigalla B. Rao
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
16
|
The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens 2019; 9:pathogens9010006. [PMID: 31861540 PMCID: PMC7168646 DOI: 10.3390/pathogens9010006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
The major constituent of the outer membrane of Gram-negative bacteria is lipopolysaccharide (LPS), which is comprised of lipid A, core oligosaccharide, and O antigen, which is a long polysaccharide chain extending into the extracellular environment. Due to the localization of LPS, it is a key molecule on the bacterial cell wall that is recognized by the host to deploy an immune defence in order to neutralize invading pathogens. However, LPS also promotes bacterial survival in a host environment by protecting the bacteria from these threats. This review explores the relationship between the different LPS glycoforms of the opportunistic pathogen Pseudomonas aeruginosa and the ability of this organism to cause persistent infections, especially in the genetic disease cystic fibrosis. We also discuss the role of LPS in facilitating biofilm formation, antibiotic resistance, and how LPS may be targeted by new antimicrobial therapies.
Collapse
|