1
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Suvilesh KN, Manjunath Y, Pantel K, Kaifi JT. Preclinical models to study patient-derived circulating tumor cells and metastasis. Trends Cancer 2023; 9:355-371. [PMID: 36759267 DOI: 10.1016/j.trecan.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Circulating tumor cells (CTCs) that are detached from the tumor can be precursors of metastasis. The majority of studies focus on enumeration of CTCs from patient blood to predict recurrence and therapy outcomes. Very few studies have managed to expand CTCs to investigate their functional dynamics with respect to genetic changes, tumorigenic potential, and response to drug treatment. A growing amount of evidence based on successful CTC expansion has revealed novel therapeutic targets that are associated with the process of metastasis. In this review, we summarize the successes, challenges, and limitations that collectively contribute to the better understanding of metastasis using patient-derived CTCs as blood-borne seeds of metastasis. The roadblocks and future avenues to move CTC-based scientific discoveries forward are also discussed.
Collapse
Affiliation(s)
- Kanve N Suvilesh
- Hugh E. Stephenson Jr., MD, Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA.
| | - Yariswamy Manjunath
- Hugh E. Stephenson Jr., MD, Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Klaus Pantel
- Institute for Tumor Biology, University of Hamburg, Hamburg, Germany
| | - Jussuf T Kaifi
- Hugh E. Stephenson Jr., MD, Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Siteman Cancer Center, St. Louis, MO, USA.
| |
Collapse
|
3
|
Khan T, Becker TM, Po JW, Chua W, Ma Y. Single-Circulating Tumor Cell Whole Genome Amplification to Unravel Cancer Heterogeneity and Actionable Biomarkers. Int J Mol Sci 2022; 23:ijms23158386. [PMID: 35955517 PMCID: PMC9369222 DOI: 10.3390/ijms23158386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
The field of single-cell analysis has advanced rapidly in the last decade and is providing new insights into the characterization of intercellular genetic heterogeneity and complexity, especially in human cancer. In this regard, analyzing single circulating tumor cells (CTCs) is becoming particularly attractive due to the easy access to CTCs from simple blood samples called “liquid biopsies”. Analysis of multiple single CTCs has the potential to allow the identification and characterization of cancer heterogeneity to guide best therapy and predict therapeutic response. However, single-CTC analysis is restricted by the low amounts of DNA in a single cell genome. Whole genome amplification (WGA) techniques have emerged as a key step, enabling single-cell downstream molecular analysis. Here, we provide an overview of recent advances in WGA and their applications in the genetic analysis of single CTCs, along with prospective views towards clinical applications. First, we focus on the technical challenges of isolating and recovering single CTCs and then explore different WGA methodologies and recent developments which have been utilized to amplify single cell genomes for further downstream analysis. Lastly, we list a portfolio of CTC studies which employ WGA and single-cell analysis for genetic heterogeneity and biomarker detection.
Collapse
Affiliation(s)
- Tanzila Khan
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.K.); (T.M.B.); (W.C.)
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia
- Centre of Circulating Tumor Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Therese M. Becker
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.K.); (T.M.B.); (W.C.)
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia
- Centre of Circulating Tumor Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia;
- South West Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Joseph W. Po
- Centre of Circulating Tumor Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia;
- Surgical Innovations Unit, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Wei Chua
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.K.); (T.M.B.); (W.C.)
- Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Yafeng Ma
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.K.); (T.M.B.); (W.C.)
- Medical Oncology, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia
- Centre of Circulating Tumor Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia;
- South West Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- Correspondence:
| |
Collapse
|
4
|
Liquid Biopsy and Dielectrophoretic Analysis—Complementary Methods in Skin Cancer Monitoring. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The incidence and prevalence of skin cancers is currently increasing worldwide, with early detection, adequate treatment, and prevention of recurrences being topics of great interest for researchers nowadays. Although tumor biopsy remains the gold standard of diagnosis, this technique cannot be performed in a significant proportion of cases, so that the use of alternative methods with high sensitivity and specificity is becoming increasingly desirable. In this context, liquid biopsy appears to be a feasible solution for the study of cellular and molecular markers relevant to different types of skin cancers. Circulating tumor cells are just one of the components of interest obtained from performing liquid biopsy, and their study by complementary methods, such as dielectrophoresis, could bring additional benefits in terms of characterizing skin tumors and subsequently applying personalized therapy. One purpose of this review is to demonstrate the utility of liquid biopsy primarily in monitoring the most common types of skin tumors: basal cell carcinoma, squamous cell carcinoma, and malign melanoma. In addition, the originality of the article is based on the detailed presentation of the dielectrophoretic analysis method of the most important elements obtained from liquid biopsy, with direct impact on the clinical and therapeutic approach of skin tumors.
Collapse
|
5
|
Xie H, Appelt JW, Jenkins RW. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers (Basel) 2021; 13:cancers13236052. [PMID: 34885161 PMCID: PMC8656483 DOI: 10.3390/cancers13236052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The clinical success of cancer immunotherapy targeting immune checkpoints (e.g., PD-1, CTLA-4) has ushered in a new era of cancer therapeutics aimed at promoting antitumor immunity in hopes of offering durable clinical responses for patients with advanced, metastatic cancer. This success has also reinvigorated interest in developing tumor model systems that recapitulate key features of antitumor immune responses to complement existing in vivo tumor models. Patient-derived tumor models have emerged in recent years to facilitate study of tumor–immune dynamics. Microfluidic technology has enabled development of microphysiologic systems (MPSs) for the evaluation of the tumor microenvironment, which have shown early promise in studying tumor–immune dynamics. Further development of microfluidic-based “tumor-on-a-chip” MPSs to study tumor–immune interactions may overcome several key challenges currently facing tumor immunology. Abstract Recent advances in cancer immunotherapy have led a paradigm shift in the treatment of multiple malignancies with renewed focus on the host immune system and tumor–immune dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and wider application. Investigations into the mechanisms of response and resistance to immunotherapy have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions with multiple cell types is necessary to understand the mechanisms of response and resistance to cancer therapies. The lack of model systems that faithfully recapitulate key features of the tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent advances in TME models focusing on the use of microfluidic technology to study and model the TME, including the application of microfluidic technologies to study tumor–immune dynamics and response to cancer therapeutics. We also discuss the limitations of current systems and suggest future directions to utilize this technology to its highest potential.
Collapse
Affiliation(s)
- Hongyan Xie
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Jackson W. Appelt
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: ; Tel.: +617-726-9372; Fax: +844-542-5959
| |
Collapse
|
6
|
Briones J, Espulgar W, Koyama S, Takamatsu H, Tamiya E, Saito M. The future of microfluidics in immune checkpoint blockade. Cancer Gene Ther 2021; 28:895-910. [PMID: 33110208 DOI: 10.1038/s41417-020-00248-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/30/2023]
Abstract
Recent advances in microfluidic techniques have enabled researchers to study sensitivities to immune checkpoint therapy, to determine patients' response to particular antibody treatment. Utilization of this technology is helpful in antibody discovery and in the design of personalized medicine. A variety of microfluidic approaches can provide several functions in processes such as immunologic, genomic, and/or transcriptomic analysis with the aim of improving the efficacy and coverage of immunotherapy, particularly immune checkpoint blockade (ICB). To achieve this requires researchers to overcome the challenges in the current state of the technology. This review looks into the advancements in microfluidic technologies applied to researches on immune checkpoint blockade treatment and its potential shift from proof-of-principle stage to clinical application.
Collapse
Affiliation(s)
- Jonathan Briones
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Wilfred Espulgar
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shohei Koyama
- Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hyota Takamatsu
- Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Eiichi Tamiya
- AIST PhotoBIO-OIL, Osaka University, Suita, Osaka, 565-0871, Japan.,The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Saito
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan. .,AIST PhotoBIO-OIL, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Rzhevskiy A, Kapitannikova A, Malinina P, Volovetsky A, Aboulkheyr Es H, Kulasinghe A, Thiery JP, Maslennikova A, Zvyagin AV, Ebrahimi Warkiani M. Emerging role of circulating tumor cells in immunotherapy. Theranostics 2021; 11:8057-8075. [PMID: 34335980 PMCID: PMC8315079 DOI: 10.7150/thno.59677] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Over the last few years, immunotherapy, in particular, immune checkpoint inhibitor therapy, has revolutionized the treatment of several types of cancer. At the same time, the uptake in clinical oncology has been slow owing to the high cost of treatment, associated toxicity profiles and variability of the response to treatment between patients. In response, personalized approaches based on predictive biomarkers have emerged as new tools for patient stratification to achieve effective immunotherapy. Recently, the enumeration and molecular analysis of circulating tumor cells (CTCs) have been highlighted as prognostic biomarkers for the management of cancer patients during chemotherapy and for targeted therapy in a personalized manner. The expression of immune checkpoints on CTCs has been reported in a number of solid tumor types and has provided new insight into cancer immunotherapy management. In this review, we discuss recent advances in the identification of immune checkpoints using CTCs and shed light on the potential applications of CTCs towards the identification of predictive biomarkers for immunotherapy.
Collapse
Affiliation(s)
- Alexey Rzhevskiy
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Alina Kapitannikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Polina Malinina
- Privolzhsky Research Medical University, 10/1, Minini Pozharsky Square, Nizhny Novgorod 603005, Russia
| | - Arthur Volovetsky
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia
| | | | - Arutha Kulasinghe
- Queensland University of Technology, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Woolloongabba, QLD 4102, Australia
- Translational Research Institute, Woolloongabba, QLD 4102 Australia
| | - Jean Paul Thiery
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Guangzhou Institutes of Biomedicine and Health, Guangzhou, People's Republic of China
| | - Anna Maslennikova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia
- The Chair of Cancer, Radiotherapy and Radiologic Diagnostics, Privolzhsky Research Medical University, Nizhniy Novgorod. Russia 603005
| | - Andrei V. Zvyagin
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- IBCh - Shemyakin Ovchinnikov Institute of BioOrganic Chemistry of the Russian Academy of Sciences, Miklukho Maklai Street, 16, Moscow, Russia
| | - Majid Ebrahimi Warkiani
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- School of Biomedical Engineering, University of Technology Sydney, 2007 Sydney, Australia
| |
Collapse
|
8
|
Polioudaki H, Mala A, Gkimprixi E, Papadaki MA, Chantziou A, Tzardi M, Mavroudis D, Agelaki S, Theodoropoulos PA. Epithelial/Mesenchymal Characteristics and PD-L1 Co-Expression in CTCs of Metastatic Breast Cancer Patients Treated with Eribulin: Correlation with Clinical Outcome. Cancers (Basel) 2020; 12:cancers12123735. [PMID: 33322610 PMCID: PMC7764288 DOI: 10.3390/cancers12123735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
We aimed to evaluate the co-expression of PD-L1 and epithelial-mesenchymal markers in CTCs from metastatic breast cancer (MBC) patients and to determine if there is any relationship with patients' outcome after eribulin treatment. Using cytospin preparations of peripheral blood mononuclear cells (PBMCs) from MBC patients treated with eribulin and a combination of immunocytochemistry and immunofluorescence, we quantified PD-L1, keratins and vimentin in single and cluster CTCs on days 1 and 8 of the first-treatment cycle. CTCs (n = 173) were found in 31 out of 38 patients. At baseline, the presence of cluster CTCs (p = 0.048), cluster mesenchymal CTCs (mCTCs) (p = 0.0003) or cluster PD-L1+mCTCs (p = 0.006) was associated with shorter overall survival (OS). In multivariate cox regression analysis, the detection of cluster mCTCs was the only parameter associated with increased risk of death (p = 0.024). On day 8 post-eribulin administration, PD-L1+mCTCs and especially single PD-L1+mCTCs decreased in 75% and 89% of patients, respectively. The detection of single PD-L1+mCTCs after eribulin treatment was correlated with shorter PFS (p = 0.047) and OS (p = 0.020). In conclusion, our study identified for the first time that cluster and single PD-L1+mCTCs subpopulations are of clinical significance in patients with MBC and highlighted the importance of CTC phenotyping during treatment with eribulin.
Collapse
Affiliation(s)
- Hara Polioudaki
- Laboratory of Biochemistry, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece; (H.P.); (E.G.); (A.C.)
| | - Anastasia Mala
- Department of Medical Oncology, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (A.M.); (D.M.); (S.A.)
| | - Eleni Gkimprixi
- Laboratory of Biochemistry, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece; (H.P.); (E.G.); (A.C.)
| | - Maria A. Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece;
| | - Amanda Chantziou
- Laboratory of Biochemistry, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece; (H.P.); (E.G.); (A.C.)
| | - Maria Tzardi
- Department of Pathology, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece;
| | - Dimitris Mavroudis
- Department of Medical Oncology, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (A.M.); (D.M.); (S.A.)
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece;
| | - Sofia Agelaki
- Department of Medical Oncology, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (A.M.); (D.M.); (S.A.)
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece;
| | - Panayiotis A. Theodoropoulos
- Laboratory of Biochemistry, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece; (H.P.); (E.G.); (A.C.)
- Correspondence:
| |
Collapse
|
9
|
Kang Y, Hadlock T, Lo T, Purcell E, Mutukuri A, Fouladdel S, Raguera MDS, Fairbairn H, Murlidhar V, Durham A, McLean SA, Nagrath S. Dual-Isolation and Profiling of Circulating Tumor Cells and Cancer Exosomes from Blood Samples with Melanoma Using Immunoaffinity-Based Microfluidic Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001581. [PMID: 33042766 PMCID: PMC7539202 DOI: 10.1002/advs.202001581] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/05/2020] [Indexed: 05/04/2023]
Abstract
Melanoma is among the most aggressive cancers, and its rate of incidence continues to grow. Early detection of melanoma has been hampered due to the lack of promising markers for testing. Recent advances in liquid biopsy have proposed noninvasive alternatives for cancer diagnosis and monitoring. Circulating tumor cells (CTCs) and cancer-exosomes are gaining influence as promising biomarkers because of their cancer-associated molecular markers and signatures. However, technologies that offer the dual-isolation of CTCs and exosomes using a single sample have not been thoroughly developed. The dual-utilization OncoBean (DUO) device is conjugated with melanoma specific antibodies, MCAM and MCSP, enabling simultaneous CTC and exosome isolations. Using blood samples from patients, CTCs and exosomes are specifically isolated from a single sample and then undergo molecular profiling for comprehensive study. Melanoma patients have 0-17CTCs mL-1 and 299 µg exosomal protein mL-1 while healthy donors display fewer than 2CTCs and 75.6 µg of exosomes mL-1, respectively. It is also demonstrated that both markers express melanoma-associated genes using multiplex qRT-PCR to test for expression pattern of a 96 gene panel. The dual isolation and molecular characterization will allow for further research into melanoma to identify viable markers for disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Yoon‐Tae Kang
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Thomas Hadlock
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Ting‐Wen Lo
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Emma Purcell
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Anusha Mutukuri
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Shamileh Fouladdel
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Monica De Silva Raguera
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Heather Fairbairn
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Vasudha Murlidhar
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Alison Durham
- University of Michigan‐Michigan Medicine1910 Taubman Center1500 E. Medical Center DriveAnn ArborMI48109USA
- Roger Cancer CenterUniversity of Michigan1500 E Medical CenterAnn Arbor48109USA
| | - Scott A. McLean
- Roger Cancer CenterUniversity of Michigan1500 E Medical CenterAnn Arbor48109USA
- Michigan Medicine Otolaryngology Clinic1910 Taubman Center1500 E. Medical Center DriveAnn ArborMI48109USA
| | - Sunitha Nagrath
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
- Roger Cancer CenterUniversity of Michigan1500 E Medical CenterAnn Arbor48109USA
| |
Collapse
|
10
|
Raimondi L, Raimondi FM, Di Benedetto L, Cimino G, Spinelli GP. PD-L1 Expression on Circulating Tumour Cells May Be Predictive of Response to Regorafenib in Patients Diagnosed with Chemorefractory Metastatic Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21186907. [PMID: 32962309 PMCID: PMC7555209 DOI: 10.3390/ijms21186907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
Regorafenib, targeting a broad range of receptor tyrosine kinases (RTKs), is an oral multikinase inhibitor which improves the progression-free survival (PFS) and overall survival (OS) of patients diagnosed with chemorefractory metastatic colorectal cancer (mCRC), making an immunosuppressive tumour microenvironment. The correlation between PD-1/PD-L1 expression and RTKs inhibition has been studied in several tumour types but has not been analyzed extensively in mCRC in the era of regorafenib. In this study, using liquid biopsy, we evaluated the opportunity to reveal if PD-L1 expression on circulating tumour cells (CTCs) could serve as a predictive biomarker of response and clinical benefit in patients treated with regorafenib as the third line of treatment. We analyzed a cohort of forty chemorefractory metastatic colorectal cancer patients, of whom twenty-six KRAS mutated, treated with regorafenib, all as the third line of treatment. Blood samples were collected from patients prior to treatment and longitudinally four and eight weeks after initiation of therapy. CTCs were identified using multiparametric flow cytometry; therefore, PD-L1 expression was evaluated. Objective responses were defined following the RECIST criteria v.1.1. Moreover, focusing on peripheral blood biomarkers, we found that high platelet-to-lymphocyte ratio (PLR) was an independent prognostic indicator of poor OS. For the first time, our study showed the usefulness of sequential assessments of CTCs as a non-invasive real-time biopsy to evaluate PD-L1 expression in patients diagnosed with mCRC and treated with regorafenib. Our analysis suggests that by assessing PD-L1 expression on CTCs, we could predict who will benefit from regorafenib, offering highly individualized treatment plans.
Collapse
Affiliation(s)
- Lucrezia Raimondi
- UOC Territorial Oncology of Aprilia, AUSL Latina, University of Rome Sapienza, 04011 Aprilia, Italy; (L.R.); (G.C.)
| | | | | | - Giuseppe Cimino
- UOC Territorial Oncology of Aprilia, AUSL Latina, University of Rome Sapienza, 04011 Aprilia, Italy; (L.R.); (G.C.)
| | - Gian Paolo Spinelli
- UOC Territorial Oncology of Aprilia, AUSL Latina, University of Rome Sapienza, 04011 Aprilia, Italy; (L.R.); (G.C.)
- Correspondence: ; Tel.: +39-06-9286-34377
| |
Collapse
|
11
|
Schneegans S, Lück L, Besler K, Bluhm L, Stadler JC, Staub J, Greinert R, Volkmer B, Kubista M, Gebhardt C, Sartori A, Irwin D, Serkkola E, Af Hällström T, Lianidou E, Sprenger-Haussels M, Hussong M, Mohr P, Schneider SW, Shaffer J, Pantel K, Wikman H. Pre-analytical factors affecting the establishment of a single tube assay for multiparameter liquid biopsy detection in melanoma patients. Mol Oncol 2020; 14:1001-1015. [PMID: 32246814 PMCID: PMC7191195 DOI: 10.1002/1878-0261.12669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
The combination of liquid biomarkers from a single blood tube can provide more comprehensive information on tumor development and progression in cancer patients compared to single analysis. Here, we evaluated whether a combined analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and circulating cell-free microRNA (miRNA) in total plasma and extracellular vesicles (EV) from the same blood sample is feasible and how the results are influenced by the choice of different blood tubes. Peripheral blood from 20 stage IV melanoma patients and five healthy donors (HD) was collected in EDTA, Streck, and Transfix tubes. Peripheral blood mononuclear cell fraction was used for CTC analysis, whereas plasma and EV fractions were used for ctDNA mutation and miRNA analysis. Mutations in cell-free circulating DNA were detected in 67% of patients, with no significant difference between the tubes. CTC was detected in only EDTA blood and only in 15% of patients. miRNA NGS (next-generation sequencing) results were highly influenced by the collection tubes and could only be performed from EDTA and Streck tubes due to hemolysis in Transfix tubes. No overlap of significantly differentially expressed miRNA (patients versus HD) could be found between the tubes in total plasma, whereas eight miRNA were commonly differentially regulated in the EV fraction. In summary, high-quality CTCs, ctDNA, and miRNA data from a single blood tube can be obtained. However, the choice of blood collection tubes is a critical pre-analytical variable.
Collapse
Affiliation(s)
- Svenja Schneegans
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Lelia Lück
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Katharina Besler
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Leonie Bluhm
- Centre of Dermatology, Elbe Clinics, Buxtehude, Germany
| | - Julia-Christina Stadler
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany.,Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | - Janina Staub
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Beate Volkmer
- Centre of Dermatology, Elbe Clinics, Buxtehude, Germany
| | - Mikael Kubista
- TATAA Biocenter AB, Gothenburg, Sweden.,Department of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | | | | | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| | | | - Melanie Hussong
- QIAGEN Inc/GmbH, Frederick, MD, USA.,QIAGEN Inc/GmbH, Hilden, Germany
| | - Peter Mohr
- Centre of Dermatology, Elbe Clinics, Buxtehude, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jonathan Shaffer
- QIAGEN Inc/GmbH, Frederick, MD, USA.,QIAGEN Inc/GmbH, Hilden, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
12
|
Jin KT, Chen XY, Lan HR, Wang SB, Ying XJ, Abdi SM, Wang W, Hu ZM, Mou XZ. Current progress in the clinical use of circulating tumor cells as prognostic biomarkers. Cancer Cytopathol 2019; 127:739-749. [PMID: 31589381 DOI: 10.1002/cncy.22189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
The process of metastasis is characterized by the shedding of tumor cells into the bloodstream, where they are transported to other parts of the body to seed new tumors. These cells, known as circulating tumor cells (CTCs), have the potential to reveal much about an individual cancer case, and theoretically can aid in the prediction of outcomes and design of precision treatments. Recent advances in technology now allow for the robust and reproducible characterization of CTCs from a simple blood draw. Both the number of circulating cells and important molecular characteristics correlated with clinical phenotypes such as drug resistance can be obtained and used for real-time prognostic analysis. Molecular characterization can provide a snapshot of the activity of the main tumor (serving as a "liquid biopsy") and early warnings concerning changes such as the development of resistance, and aid in predicting the efficacy of different therapeutic approaches for treatment optimization. Herein, the authors review the current clinical use of CTCs as prognostic biomarkers for several different cancers. The quantification of CTCs can lead to more accurate staging and decision making regarding options such as adjuvant chemotherapy.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiao-Jiang Ying
- Department of Colorectal Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Siyad Mohamed Abdi
- Department of Colorectal Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Wei Wang
- Department of Colorectal Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Zhi-Ming Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiao-Zhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
13
|
Determination of PD-L1 Expression in Circulating Tumor Cells of NSCLC Patients and Correlation with Response to PD-1/PD-L1 Inhibitors. Cancers (Basel) 2019; 11:cancers11060835. [PMID: 31212989 PMCID: PMC6627043 DOI: 10.3390/cancers11060835] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) hold great potential to answer key questions of how non-small cell lung cancer (NSCLC) evolves and develops resistance upon anti-PD-1/PD-L1 treatment. Currently, their clinical utility in NSCLC is compromised by a low detection rate with the established, Food and Drug Administration (FDA)-approved, EpCAM-based CellSearch® System. We tested an epitope-independent method (ParsortixTM system) and utilized it to assess PD-L1 expression of CTCs from NSCLC patients. We prospectively collected 127 samples, 97 of which were analyzed with the epitope-independent system in comparison to the CellSearch system. CTCs were determined by immunocytochemistry as intact, nucleated, CD45-, pankeratins (K)+ cells. PD-L1 status of CTCs was evaluated from 89 samples. With the epitope-independent system, ≥1 CTC per blood sample was detected in 59 samples (61%) compared to 31 samples (32%) with the EpCAM-based system. Upon PD-L1 staining, 47% of patients harbored only PD-L1+CTCs, 47% had PD-L1+ and PD-L1-CTCs, and only 7% displayed exclusively PD-L1-CTCs. The percentage of PD-L1+CTCs did not correlate with the percentage of PD-L1+ in biopsies determined by immunohistochemistry (p = 0.179). Upon disease progression, all patients showed an increase in PD-L1+CTCs, while no change or a decrease in PD-L1+CTCs was observed in responding patients (n = 11; p = 0.001). Our data show a considerable heterogeneity in the PD-L1 status of CTCs from NSCLC patients. An increase of PD-L1+CTCs holds potential to predict resistance to PD-1/PD-L1 inhibitors.
Collapse
|