1
|
An Y, Xu M, Yan M, Zhang H, Li C, Wang L, Liu C, Dong H, Chen L, Zhang L, Chen Y, Han X, Li Y, Wang D, Gao C. Erythrophagocytosis-induced ferroptosis contributes to pulmonary microvascular thrombosis and thrombotic vascular remodeling in pulmonary arterial hypertension. J Thromb Haemost 2025; 23:158-170. [PMID: 39357568 DOI: 10.1016/j.jtha.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Whether primary or just as a complication from the progression of pulmonary arterial hypertension (PAH), thrombosis seems to be an important player in this condition. The crosstalk between red blood cells (RBCs) and pulmonary microvascular endothelial cells (PMVECs) and their role in PAH remain undefined. OBJECTIVES The goals of this study were to assess the role of RBC-PMVEC interaction in microvascular thrombosis and thrombotic vascular remodeling under hypoxic conditions. METHODS We established an in vitro hypoxic coincubation model of RBC and PMVEC as well as a hypoxic mouse model. We investigated erythrophagocytosis (EP), ferroptosis, thrombosis tendency, and pulmonary hemodynamics in experimental PAH. RESULTS Increased EP in PMVEC triggered ferroptosis, enhanced procoagulant activity, and exacerbated vessel remodeling under hypoxic conditions. In the PAH mouse model induced by chronic hypoxia, EP-induced ferroptosis followed by upregulated TMEM16F led to a high tendency of thrombus formation and thrombotic vascular remodeling. Inhibition of ferroptosis or silencing of TMEM16F could alleviate hypercoagulable phenotype, reverse right ventricular systolic pressure, right ventricular hypertrophy index, and remodeling of pulmonary vessels. CONCLUSION These results illustrate the pathogenic RBC-PMVEC interactions in PAH. Inhibition EP, ferroptosis, or TMEM16F could be a novel therapeutic target to prevent PAH development and thrombotic complications.
Collapse
Affiliation(s)
- Yao An
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Minghui Xu
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Meishan Yan
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Hongyu Zhang
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Caixia Li
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Lifeng Wang
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Caixu Liu
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Haoran Dong
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Li Chen
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Lixin Zhang
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Yingli Chen
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Xu Han
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Yun Li
- Hematology Department, Daqing Oil Field General Hospital, Daqing, China
| | - Dongsheng Wang
- Department of Emergency, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Chunyan Gao
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China.
| |
Collapse
|
2
|
Liu D, Yang Y, Chen Z, Fan Y, Liu J, Xu Y, Ahmed Z, Zhang J, Li F, Qi X, Song W, Zhu K, Gongque J, Li G, Huang B, Lei C. Temperature adaptation patterns in Chinese cattle revealed by TRPM2 gene mutation analysis. Anim Biotechnol 2024; 35:2299944. [PMID: 38164963 DOI: 10.1080/10495398.2023.2299944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cattle are sensitive to temperature fluctuations but adapt well to inclement weather conditions. When environmental temperatures exceed specific thresholds, heat stress becomes a critical concern for cattle. The TRPM2 gene, which resides on cattle chromosome 1 encodes a TRP channel protein, holding a unique capacity to sense temperature changes and facilitate rapid response to avoid heat stress. Here, we utilized the Bovine Genome Variation Database (BGVD) (http://animal.omics.pro/code/index.php/BosVar), and identified a missense mutation site, c.805A > G: p. Met269Val (rs527146862), within the TRPM2 gene. To elucidate the functional assessment of this mutation in temperature adaptation attributes of Chinese cattle, we genotyped 407 samples from 20 distinct breeds representing diverse climatic zones across China. The association analysis incorporates three temperature parameters and revealed compelling insights in terms of allele frequency. Interestingly, the prevalence of the wild-type allele A was notably higher among northern cattle breeds and this trend diminished gradually as observed in southern cattle populations. Conversely, the mutant-type allele G demonstrated a contrasting trend. Moreover, southern cattle exhibited markedly higher frequencies of GG and GA genotypes (P < 0.01). The presence of heterozygous and homozygous mutations appears to confer an enhanced capacity for adaptation to elevated temperatures. These results provide unequivocal correlation evidence between TRPM2 genotypes (AA, GA, GG) and environmental temperature parameters and comprehend the genetic mechanisms governing temperature adaptation in cattle. This provides valuable insights for strategic breed selection across diverse climatic regions, thereby aiding livestock production amid evolving climate challenges.
Collapse
Affiliation(s)
- Dekai Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Yifan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Zhefu Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Yijie Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Yibing Xu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Fuqiang Li
- Hunan Tianhua Industrial Corporation Ltd, Lianyuan, China
| | - Xingshan Qi
- Biyang Xianan Cattle Technology and Development Company Ltd, Biyang, China
| | - Weiru Song
- Animal Disease Prevention and Control Center of Yushu Tibetan Autonomous Prefecture, Yushu, China
| | - Kaixia Zhu
- Animal Disease Prevention and Control Center of Yushu Tibetan Autonomous Prefecture, Yushu, China
| | - Jiangcai Gongque
- Animal Disease Prevention and Control Center of Yushu Tibetan Autonomous Prefecture, Yushu, China
| | - Guomei Li
- Forestry and Grassland Comprehensive Service Center of Yushu Prefecture, Qinghai, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| |
Collapse
|
3
|
Wertheim BM, Wang RS, Guillermier C, Hütter CV, Oldham WM, Menche J, Steinhauser ML, Maron BA. Proline and glucose metabolic reprogramming supports vascular endothelial and medial biomass in pulmonary arterial hypertension. JCI Insight 2023; 8:163932. [PMID: 36626231 PMCID: PMC9977503 DOI: 10.1172/jci.insight.163932] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
In pulmonary arterial hypertension (PAH), inflammation promotes a fibroproliferative pulmonary vasculopathy. Reductionist studies emphasizing single biochemical reactions suggest a shift toward glycolytic metabolism in PAH; however, key questions remain regarding the metabolic profile of specific cell types within PAH vascular lesions in vivo. We used RNA-Seq to profile the transcriptome of pulmonary artery endothelial cells (PAECs) freshly isolated from an inflammatory vascular injury model of PAH ex vivo, and these data were integrated with information from human gene ontology pathways. Network medicine was then used to map all aa and glucose pathways to the consolidated human interactome, which includes data on 233,957 physical protein-protein interactions. Glucose and proline pathways were significantly close to the human PAH disease module, suggesting that these pathways are functionally relevant to PAH pathobiology. To test this observation in vivo, we used multi-isotope imaging mass spectrometry to map and quantify utilization of glucose and proline in the PAH pulmonary vasculature at subcellular resolution. Our findings suggest that elevated glucose and proline avidity underlie increased biomass in PAECs and the media of fibrosed PAH pulmonary arterioles. Overall, these data show that anabolic utilization of glucose and proline are fundamental to the vascular pathology of PAH.
Collapse
Affiliation(s)
| | - Rui-Sheng Wang
- Division of Cardiovascular Medicine, Department of Medicine.,Channing Division of Network Medicine, Department of Medicine; and
| | - Christelle Guillermier
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Center for NanoImaging, Cambridge, Massachusetts, USA
| | - Christiane Vr Hütter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - William M Oldham
- Division of Pulmonary and Critical Medicine, Department of Medicine
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria.,Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Matthew L Steinhauser
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Center for NanoImaging, Cambridge, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
4
|
Zhou Y, Chen C, Li Q, Sheng H, Guo X, Mao E. NORAD modulates miR-30c-5p-LDHA to protect lung endothelial cells damage. Open Med (Wars) 2022; 17:676-688. [PMID: 35480402 PMCID: PMC8989156 DOI: 10.1515/med-2022-0446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022] Open
Abstract
Acute lung injury (ALI) is a devastating human malignancy characterized by excessively uncontrolled inflammation and lung endothelial dysfunction. Non-coding RNAs play essential roles in endothelial protections during the pathological processes of ALI. The precise functions and molecular mechanisms of the lncRNA-NORAD-mediated endothelial protection remain obscure. This study reports NORAD was significantly induced in human pulmonary microvascular endothelial cells (HPMECs) under lipopolysaccharide (LPS) treatment. Silencing NORAD effectively protected HPMECs against the LPS-induced cell dysfunction. In addition, RNA pull-down and luciferase assay validated that NORAD sponged miR-30c-5p, which showed reverse functions of NORAD in the LPS-induced cell injury of HPMECs. Furthermore, the glucose metabolism of HPMECs was significantly elevated under LPS stimulation which promoted the glucose consumption and extracellular acidification rate (ECAR) of HPMECs. Inhibiting NORAD or overexpressing miR-30c-5p suppressed glucose metabolism in HPMECs, leading to protective effects on HPMECs under LPS stimulation. The glycolysis key enzyme, lactate dehydrogenase-A (LDHA), was subsequently identified as a direct target of miR-30c-5p. Finally, recovery of miR-30c-5p in NORAD-overexpressing HPMECs effectively overrode the NORAD-promoted glycolysis and impaired endothelial dysfunction under LPS stimulation by targeting LDHA. Summarily, we demonstrated a NORAD-miR-30c-5p-LDHA-glycolysis axis in the LPS-induced HPMECs dysfunction in vitro and in vivo, contributing to the development of anti-ALI therapeutic approaches.
Collapse
Affiliation(s)
- Yuhua Zhou
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunyan Chen
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Chinese Center for Tropical Disease Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huiqiu Sheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaokui Guo
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Chinese Center for Tropical Disease Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
5
|
Kanwar MK. Biomarkers in pulmonary arterial hypertension: Moving closer toward precision medicine? J Heart Lung Transplant 2020; 39:287-288. [PMID: 32199588 DOI: 10.1016/j.healun.2020.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/16/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Manreet Kaur Kanwar
- Cardiovascular Institute at Allegheny Health Network, Pittsburgh, Pennsylvania.
| |
Collapse
|
6
|
Liu T, Sun F, Cui J, Zheng S, Li Z, Guo D, Tian X, Zhu Z, Zheng W, Wang Y, Wang W. Morroniside enhances angiogenesis and improves cardiac function following acute myocardial infarction in rats. Eur J Pharmacol 2020; 872:172954. [PMID: 31991140 DOI: 10.1016/j.ejphar.2020.172954] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is critical for re-establishing blood supply to the ischemic myocardium after acute myocardial infarction (AMI). This study aimed to investigate the effects of morroniside on angiogenesis after AMI and explored associated proangiogenic mechanisms. A rat model of AMI was established by ligation of the left anterior descending coronary artery followed by administration of three doses of morroniside. Immunofluorescence staining was performed to identify newly generated endothelial cells and arterioles. The protein expression levels associated with angiogenesis were examined by western blots. Echocardiography was used to examine cardiac function. Our data revealed that morroniside promoted angiogenesis and improved cardiac function in rats with AMI. The proangiogenic effect of morroniside might be mediated by the VEGFA/VEGF receptor 2 signaling pathway.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Fangling Sun
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Jiamin Cui
- Department of Pharmacy, Zunyi Medical University, Guizhou, 563000, PR China
| | - Songyang Zheng
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Zijie Li
- Department of Pharmacy, Zunyi Medical University, Guizhou, 563000, PR China
| | - Deyu Guo
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Xin Tian
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Zixin Zhu
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Wenrong Zheng
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Yufeng Wang
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China
| | - Wen Wang
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, PR China; Beijing Institute for Brain Disorders, Beijing, 100069, PR China.
| |
Collapse
|
7
|
Samokhin AO, Hsu S, Yu PB, Waxman AB, Alba GA, Wertheim BM, Hopkins CD, Bowman F, Channick RN, Nikolic I, Faria-Urbina M, Hassoun PM, Leopold JA, Tedford RJ, Ventetuolo CE, Leary PJ, Maron BA. Circulating NEDD9 is increased in pulmonary arterial hypertension: A multicenter, retrospective analysis. J Heart Lung Transplant 2019; 39:289-299. [PMID: 31952977 DOI: 10.1016/j.healun.2019.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/11/2019] [Accepted: 12/26/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a highly morbid disease characterized by elevated pulmonary vascular resistance (PVR) and pathogenic right ventricular remodeling. Endothelial expression of the prometastatic protein NEDD9 is increased in fibrotic PAH arterioles, and NEDD9 inhibition decreases PVR in experimental PAH. We hypothesized that circulating NEDD9 is increased in PAH and informs the clinical profile of patients. METHODS Clinical data and plasma samples were analyzed retrospectively for 242 patients from 5 referral centers (2010-2017): PAH (n = 139; female 82%, 58 [48-67] years), non-PAH pulmonary hypertension (PH) (n = 54; female 56%, 63.4 ± 12.2 years), and dyspnea non-PH controls (n = 36; female 75%, 54.2 ± 14.0 years). RESULTS Compared with controls, NEDD9 was increased in PAH by 1.82-fold (p < 0.0001). Elevated NEDD9 correlated with PVR in idiopathic PAH (ρ = 0.42, p < 0.0001, n = 54), connective tissue disease (CTD)-PAH (ρ = 0.53, p < 0.0001, n = 53), and congenital heart disease-PAH (ρ = 0.68, p < 0.0001, n = 10). In CTD-PAH, NEDD9 correlated with 6-minute walk distance (ρ = -0.35, p = 0.028, n = 39). In contrast to the PAH biomarker N-terminal pro-brain natriuretic peptide (n = 38), NEDD9 correlated inversely with exercise pulmonary artery wedge pressure and more strongly with right ventricular ejection fraction (ρ = -0.41, p = 0.006, n = 45) in a mixed population. The adjusted hazard ratio for lung transplant-free survival was 1.12 (95% confidence interval [CI], 1.02-1.22, p = 0.01) and 1.75 (95% CI, 1.12-2.73, p = 0.01) per 1 ng/ml and 5 ng/ml increase in plasma NEDD9, respectively, by Cox proportional hazard model. CONCLUSIONS In PAH, plasma NEDD9 is increased and associates with key prognostic variables. Prospective studies that include hard end points are warranted to validate NEDD9 as a novel PAH biomarker.
Collapse
Affiliation(s)
- Andriy O Samokhin
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven Hsu
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Paul B Yu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Aaron B Waxman
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Bradley M Wertheim
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - C Danielle Hopkins
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Frederick Bowman
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Ivana Nikolic
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mariana Faria-Urbina
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jane A Leopold
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ryan J Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care & Sleep Medicine, Departments of Medicine and Health Services, Policy and Practice, Brown University, Providence, Rhode Island
| | - Peter J Leary
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Washington, Seattle, Washington
| | - Bradley A Maron
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
8
|
Su X, Huang L, Qu Y, Xiao D, Mu D. Pericytes in Cerebrovascular Diseases: An Emerging Therapeutic Target. Front Cell Neurosci 2019; 13:519. [PMID: 31824267 PMCID: PMC6882740 DOI: 10.3389/fncel.2019.00519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Pericytes are functional components of the neurovascular unit (NVU) that are located around the blood vessels, and their roles in the regulation of cerebral health and diseases has been reported. Currently, the potential properties of pericytes as emerging therapeutic targets for cerebrovascular diseases have attracted considerable attention. Nonetheless, few reviews have comprehensively discussed pericytes and their roles in cerebrovascular diseases. Therefore, in this review, we not only summarized and described the basic characteristics of pericytes but also focused on clarifying the new understanding about the roles of pericytes in the pathogenesis of cerebrovascular diseases, including white matter injury (WMI), hypoxic-ischemic brain damage, depression, neovascular insufficiency disease, and Alzheimer's disease (AD). Furthermore, we summarized the current therapeutic strategies targeting pericytes for cerebrovascular diseases. Collectively, this review is aimed at providing a comprehensive understanding of pericytes and new insights about the use of pericytes as novel therapeutic targets for cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lingyi Huang
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dongqiong Xiao
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|