1
|
Pu Q, Gao H, Xiao D, Wang M, Yang Z, He Q, Liu M, Zhu X, Pan T, Ma Z, Wang J, Liu Y. Tetramethylpyrazine: A Fermented Alcohol Product that Mitigates Alcoholic Liver Disease in Mice. Free Radic Biol Med 2025:S0891-5849(25)00698-7. [PMID: 40412569 DOI: 10.1016/j.freeradbiomed.2025.05.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/16/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Alcoholic liver disease (ALD) is a leading cause of premature death globally yet remains under-controlled. In this study, we investigated the protective effects of tetramethylpyrazine (TMP), an aromatic compound found in fermented alcohol, against ALD in a National Institute on Alcohol Abuse and Alcoholism (NIAAA) mice model. Our results demonstrated that TMP significantly reduced alcohol-induced liver injury, steatosis, oxidative stress, and mitochondrial damage, while restoring NAD+ levels and the NAD+/NADH ratio, increasing ATP production, regulating energy metabolism disorders, and restoring metabolic balance (P < 0.05). Liver transcriptomic analysis identified 906 ALD-associated genes enriched in energy and lipid metabolism pathways, with a molecular signature of NAD-dependent oxidoreductase activity. Protein interaction analysis predicted Nicotinamide Phosphoribosyltransferase (NAMPT) as a key rate-limiting enzyme in NAD metabolism. Cellular Thermal Shift Assay (CETSA) experiments and molecular docking studies further confirmed that TMP can restore the level of NAD+ by stabilizing the NAMPT protein. TMP is present in various foods, including Semen Sojae Preparatum, a TMP-rich fermented food commonly used in Traditional Chinese Medicine for ALD treatment. This food exhibited significant protective effects against ALD. In conclusion, TMP, an aromatic compound in fermented alcohol, could protect the liver from alcohol-induced damage. Enhancing TMP content in fermented alcohol holds significant promise for mitigating the adverse effects of alcohol consumption on the liver.
Collapse
Affiliation(s)
- Qing Pu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China
| | - Han Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Dake Xiao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China
| | - Manyuan Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zhiyun Yang
- Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China; Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qiang He
- Department of Traditional Chinese Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Min Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China
| | - Xuejin Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China
| | - Tao Pan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China
| | - Zhitao Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China; Department of Traditional Chinese Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Research and Translational Laboratory for Traditional Chinese Medicine in the Prevention and Treatment of Infectious Severe Hepatitis, Capital Medical University, Beijing 100069, China.
| | - Yao Liu
- Department of Hepatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
2
|
Xu L, Zhao Y, Yang Y, Qi E, Liu B, Zhuang P, Song S, Chang T, Chen Z, Kang X, Xiong X. Constitutive Hepatic mTORC1 Activation Aggravates Alcohol-Induced Liver Injury via Endoplasmic Reticulum Stress-Mediated Ferroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00106-3. [PMID: 40204188 DOI: 10.1016/j.ajpath.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
Alcohol-related liver disease (ALD), a consequence of excessive alcohol use, manifests across a broad spectrum of liver damage, ranging from steatosis to cirrhosis. DEPDC5 (DEP domain-containing protein 5) is a component of the GATOR1 (gap activity towards rags 1) complex, which functions as a repressor of the amino acid-sensing branch of the mammalian target of rapamycin complex 1 (mTORC1) pathway. In this study, hepatocyte-specific Depdc5 knockout mice (Depdc5△Hep) were generated, and it was found that aberrant activation of mTORC1 caused by Depdc5 deletion led to exacerbated endoplasmic reticulum (ER) stress and hepatocyte ferroptosis in the livers of ethanol-fed mice. Torin-1, an ATP-competitive mTOR inhibitor, suppressed the mTORC1 activity and reversed the effects of Depdc5 deletion on ER stress and ferroptosis in ethanol-fed mouse livers. Furthermore, pharmacologic relief of ER stress using tauroursodeoxycholic acid or inhibition of ferroptosis with liproxstatin-1 both alleviated the liver abnormalities induced by Depdc5 ablation in ethanol-fed mice. In addition, the research uncovered that ER stress functions as an upstream signal of ferroptosis in the progression of ALD. These findings provide novel in vivo evidence that sustained mTORC1 activation leads to alcoholic liver injury by inducing ER stress and ferroptosis, suggesting that targeting these pathways may represent a potential therapeutic strategy for ALD.
Collapse
Affiliation(s)
- Lin Xu
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuanyuan Zhao
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Department of Clinical Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yang Yang
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Enbo Qi
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Boao Liu
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peili Zhuang
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Shiyi Song
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tingmin Chang
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhiguo Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaohong Kang
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Department of Radiation Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Xiwen Xiong
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
3
|
Lee J, Woo H, Kang H, Park YK, Lee JY. Nicotinamide riboside targets mitochondrial unfolded protein response to reduce alcohol-induced damage in Kupffer cells. J Pathol 2025; 265:110-122. [PMID: 39624887 DOI: 10.1002/path.6372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/15/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
The pathogenesis of alcohol-related liver disease (ALD) is closely linked to mitochondrial dysfunction and impaired cellular energy metabolism. In this study, we explored how ethanol triggers inflammation, oxidative stress, and mitochondrial dysfunction in Kupffer cells, i.e.hepatic resident macrophages, primarily focusing on the mitochondrial unfolded protein response (UPRmt) using immortalized mouse Kupffer cells (ImKCs) and mouse primary KCs. The UPRmt is a cellular defense mechanism activated in response to the perturbation of mitochondrial proteostasis to maintain mitochondrial integrity and function by upregulating the expression of mitochondrial chaperones and proteases. We also determined whether nicotinamide riboside (NR), a NAD+ precursor, could mitigate ethanol-triggered cellular damage. When ImKCs were exposed to 80 mm ethanol for 72 h, they displayed inflammation, oxidative stress, and impaired mitochondrial function with decreased mitochondrial content and deformed mitochondrial crista structure. NR, however, counteracted the effects of ethanol. Furthermore, ethanol increased mRNA and protein levels of UPRmt genes, such as mitochondrial chaperones and proteases, which were attenuated by NR. Notably, the ethanol-induced shift in the entry of activating transcription factor 5 (ATF5), a putative transcriptional regulator of UPRmt, to the nucleus from the mitochondria was abolished by NR. The induction of UPRmt genes by ethanol was significantly repressed when Atf5 was knocked down, indicating the role of ATF5 in the induction of UPRmt genes in ImKCs exposed to ethanol. We also confirmed the induction of UPRmt gene expression in mouse and human livers exposed to alcohol. Our findings demonstrate the ability of NR to alleviate ethanol-induced oxidative stress, inflammation, and mitochondrial dysfunction, partly by modulating the ATF5-dependent UPRmt pathway in ImKCs, suggesting its potential for ALD therapy. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hayoung Woo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Hyunju Kang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
- Department of Food and Nutrition, Keimyung University, Daegu, South Korea
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
4
|
Kwon SY, Park YJ. Function of NAD metabolism in white adipose tissue: lessons from mouse models. Adipocyte 2024; 13:2313297. [PMID: 38316756 PMCID: PMC10877972 DOI: 10.1080/21623945.2024.2313297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Nicotinamide Adenine Dinucleotide (NAD) is an endogenous substance in redox reactions and regulates various functions in metabolism. NAD and its precursors are known for their anti-ageing and anti-obesity properties and are mainly active in the liver and muscle. Boosting NAD+ through supplementation with the precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), enhances insulin sensitivity and circadian rhythm in the liver, and improves mitochondrial function in the muscle. Recent evidence has revealed that the adipose tissue could be another direct target of NAD supplementation by attenuating inflammation and fat accumulation. Moreover, murine studies with genetically modified models demonstrated that nicotinamide phosphoribosyltransferase (NAMPT), a NAD regulatory enzyme that synthesizes NMN, played a critical role in lipogenesis and lipolysis in an adipocyte-specific manner. The tissue-specific effects of NAD+ metabolic pathways indicate a potential of the NAD precursors to control metabolic stress particularly via focusing on adipose tissue. Therefore, this narrative review raises an importance of NAD metabolism in white adipose tissue (WAT) through a variety of studies using different mouse models.
Collapse
Affiliation(s)
- So Young Kwon
- Graduate Program in System Health and Engineering, Ewha Womans University, Seoul, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Jung Park
- Graduate Program in System Health and Engineering, Ewha Womans University, Seoul, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
6
|
Große-Segerath L, Follert P, Behnke K, Ettich J, Buschmann T, Kirschner P, Hartwig S, Lehr S, Korf-Klingebiel M, Eberhard D, Lehwald-Tywuschik N, Al-Hasani H, Knoefel WT, Heinrich S, Levkau B, Wollert KC, Scheller J, Lammert E. Identification of myeloid-derived growth factor as a mechanically-induced, growth-promoting angiocrine signal for human hepatocytes. Nat Commun 2024; 15:1076. [PMID: 38316785 PMCID: PMC10844291 DOI: 10.1038/s41467-024-44760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Recently, we have shown that after partial hepatectomy (PHx), an increased hepatic blood flow initiates liver growth in mice by vasodilation and mechanically-triggered release of angiocrine signals. Here, we use mass spectrometry to identify a mechanically-induced angiocrine signal in human hepatic endothelial cells, that is, myeloid-derived growth factor (MYDGF). We show that it induces proliferation and promotes survival of primary human hepatocytes derived from different donors in two-dimensional cell culture, via activation of mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3). MYDGF also enhances proliferation of human hepatocytes in three-dimensional organoids. In vivo, genetic deletion of MYDGF decreases hepatocyte proliferation in the regenerating mouse liver after PHx; conversely, adeno-associated viral delivery of MYDGF increases hepatocyte proliferation and MAPK signaling after PHx. We conclude that MYDGF represents a mechanically-induced angiocrine signal and that it triggers growth of, and provides protection to, primary mouse and human hepatocytes.
Collapse
Affiliation(s)
- Linda Große-Segerath
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Paula Follert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Tobias Buschmann
- Institute for Molecular Medicine III, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Philip Kirschner
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
| | - Sonja Hartwig
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225, Düsseldorf, Germany
| | - Stefan Lehr
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225, Düsseldorf, Germany
| | - Mortimer Korf-Klingebiel
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Daniel Eberhard
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany
| | - Nadja Lehwald-Tywuschik
- Department of General, Visceral, Thorax and Pediatric Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225, Düsseldorf, Germany
| | - Wolfram Trudo Knoefel
- Department of General, Visceral, Thorax and Pediatric Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Stefan Heinrich
- Department of General, Visceral and Transplantation Surgery, University Hospital Center Mainz, 55131, Mainz, Germany
| | - Bodo Levkau
- Institute for Molecular Medicine III, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Kai C Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Eckhard Lammert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, 40225, Düsseldorf, Germany.
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| |
Collapse
|
7
|
Wang Y, Guo D, Winkler R, Lei X, Wang X, Messina J, Luo J, Lu H. Development of novel liver-targeting glucocorticoid prodrugs. MEDICINE IN DRUG DISCOVERY 2024; 21:100172. [PMID: 38390434 PMCID: PMC10883687 DOI: 10.1016/j.medidd.2023.100172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Background Glucocorticoids (GCs) are widely used in the treatment of inflammatory liver diseases and sepsis, but GC's various side effects on extrahepatic tissues limit their clinical benefits. Liver-targeting GC therapy may have multiple advantages over systemic GC therapy. The purpose of this study was to develop novel liver-targeting GC prodrugs as improved treatment for inflammatory liver diseases and sepsis. Methods A hydrophilic linker or an ultra-hydrophilic zwitterionic linker carboxylic betaine (CB) was used to bridge cholic acid (CA) and dexamethasone (DEX) to generate transporter-dependent liver-targeting GC prodrugs CA-DEX and the highly hydrophilic CA-CB-DEX. The efficacy of liver-targeting DEX prodrugs and DEX were determined in primary human hepatocytes (PHH), macrophages, human whole blood, and/or mice with sepsis induced by cecal ligation and puncture. Results CA-DEX was moderately water soluble, whereas CA-CB-DEX was highly water soluble. CA-CB-DEX and CA-DEX displayed highly transporter-dependent activities in reporter assays. Data mining found marked dysregulation of many GR-target genes important for lipid catabolism, cytoprotection, and inflammation in patients with severe alcoholic hepatitis. These key GR-target genes were similarly and rapidly (within 6 h) induced or down-regulated by CA-CB-DEX and DEX in PHH. CA-CB-DEX had much weaker inhibitory effects than DEX on endotoxin-induced cytokines in mouse macrophages and human whole blood. In contrast, CA-CB-DEX exerted more potent anti-inflammatory effects than DEX in livers of septic mice. Conclusions CA-CB-DEX demonstrated good hepatocyte-selectivity in vitro and better anti-inflammatory effects in vivo. Further test of CA-CB-DEX as a novel liver-targeting GC prodrug for inflammatory liver diseases and sepsis is warranted.
Collapse
Affiliation(s)
- Yazheng Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaohong Lei
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaojing Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Jennifer Messina
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
8
|
Orhan C, Sahin E, Tuzcu M, Sahin N, Celik A, Ojalvo SP, Sylla S, Komorowski JR, Sahin K. Nicotinamide Riboside and Phycocyanin Oligopeptides Affect Stress Susceptibility in Chronic Corticosterone-Exposed Rats. Antioxidants (Basel) 2023; 12:1849. [PMID: 37891928 PMCID: PMC10604757 DOI: 10.3390/antiox12101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Phycocyanin oligopeptide (PC), a phytonutrient found in blue-green algae, has antioxidant and anti-inflammatory properties. This study explored the effects of NR, PC, and their combination on the telomere length as well as inflammatory and antioxidant status of rats under chronic stress conditions (CS). Forty-nine rats were allocated into seven groups: control, chronic stress (CS), CS with NR (26.44 mg/kg), a low dose of 2.64 mg/kg of PC (PC-LD), or a high dose of 26.44 mg/kg PC (PC-HD), NR + PC-LD, and NR + PC-HF. The rats were given daily corticosterone injections (40 mg/kg) to induce stress conditions, or NR and PC were orally administered for 21 days. NR and PC supplementation, particularly NR plus PC, increased the serum antioxidant enzyme activities, hepatic nicotinamide adenine (NAD+) content, and telomere length (p < 0.001 for all) compared to the CS group. The levels of serum malondialdehyde (MDA), liver interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), IL-1β, and IL-8 were reduced under the CS condition (p < 0.001). In addition, CS decreased the levels of hepatic telomere-related proteins and sirtuins (SIRT1 and 3), whereas administration of NR and PC or their combination to CS-exposed rats increased the levels of telomere-related proteins (e.g., POT1b, TRF1 and TRF2), SIRT3 and NAMPT (p < 0.05). In conclusion, NR and PC, especially their combination, can alleviate metabolic abnormalities by enhancing hepatic cytokines, SIRT3, NAMPT, and NAD+ levels in CS-exposed rats. More research is needed to further elucidate the potential health effects of the combination of NR and PC in humans.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, Bingol 12000, Turkey;
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey;
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Abdullah Celik
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Sara Perez Ojalvo
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - Sarah Sylla
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - James R. Komorowski
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| |
Collapse
|
9
|
Lai S, Ma Y, Hao L, Ding Q, Chang K, Zhuge H, Qiu J, Xu T, Dou X, Li S. 1-Methylnicotinamide promotes hepatic steatosis in mice: A potential mechanism in chronic alcohol-induced fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159286. [PMID: 36690322 DOI: 10.1016/j.bbalip.2023.159286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Alcohol abuse and its related diseases are the major risk factors for human health. Alcohol-related liver disease (ALD) is a leading cause of morbidity and mortality worldwide. Although the mechanism of ALD has been widely investigated, liver metabolites associated with long-term alcohol intake-induced hepatic steatosis have not been well explored. In this study, we aimed to investigate the role and mechanisms of 1-methylnicotinamide (1-MNA), a metabolite during nicotinamide adenine dinucleotide (NAD+) metabolism, in the pathogenesis of ALD. C57BL/6 wild-type mice were subjected to chronic alcohol feeding with or without 1-MNA (50 mg/kg/day). Our data showed that 1-MNA administration significantly enhanced chronic alcohol consumption-induced hepatic steatosis. Mechanistic studies revealed that alcohol-increased hepatic protein levels of sterol regulatory element-binding transcription factor (SREBP-1c), a key enzyme that regulates lipid lipogenesis, were enhanced in mice administered with 1-MNA, regardless of alcohol feeding. Consistently, alcohol-increased mRNA and protein levels of hepatic diacylglycerol o-acyltransferase 2 (DGAT2) and very low-density lipoprotein receptor (VLDLR) were also exacerbated by 1-MNA administration. Alcohol-induced hepatic endoplasmic reticulum (ER) stress was enhanced by 1-MNA administration, which was evidenced by increased protein levels of binding immunoglobulin protein (BIP), phosphorylated- protein kinase r-like ER kinase (PERK), activating transcription factor 4 (ATF4), and C/EBP-homologous protein (CHOP) in the mouse liver. Overall, this study demonstrated that 1-MNA serves as a pathogenic factor in the development of ALD. Targeting liver 1-MNA levels may serve as a promising therapeutic approach for improving hepatic steatosis in ALD.
Collapse
Affiliation(s)
- Shanglei Lai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China; School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yue Ma
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, PR China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Hui Zhuge
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Tiantian Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China; Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
10
|
Sun BL, Sun X, Kempf CL, Song JH, Casanova NG, Camp SM, Hernon VR, Fallon M, Bime C, Martin DR, Travelli C, Zhang DD, Garcia JGN. Involvement of eNAMPT/TLR4 inflammatory signaling in progression of non-alcoholic fatty liver disease, steatohepatitis, and fibrosis. FASEB J 2023; 37:e22825. [PMID: 36809677 PMCID: PMC11265521 DOI: 10.1096/fj.202201972rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Although the progression of non-alcoholic fatty liver disease (NAFLD) from steatosis to steatohepatitis (NASH) and cirrhosis remains poorly understood, a critical role for dysregulated innate immunity has emerged. We examined the utility of ALT-100, a monoclonal antibody (mAb), in reducing NAFLD severity and progression to NASH/hepatic fibrosis. ALT-100 neutralizes eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a novel damage-associated molecular pattern protein (DAMP) and Toll-like receptor 4 (TLR4) ligand. Histologic and biochemical markers were measured in liver tissues and plasma from human NAFLD subjects and NAFLD mice (streptozotocin/high-fat diet-STZ/HFD, 12 weeks). Human NAFLD subjects (n = 5) exhibited significantly increased NAMPT hepatic expression and significantly elevated plasma levels of eNAMPT, IL-6, Ang-2, and IL-1RA compared to healthy controls, with IL-6 and Ang-2 levels significantly increased in NASH non-survivors. Untreated STZ/HFD-exposed mice displayed significant increases in NAFLD activity scores, liver triglycerides, NAMPT hepatic expression, plasma cytokine levels (eNAMPT, IL-6, and TNFα), and histologic evidence of hepatocyte ballooning and hepatic fibrosis. Mice receiving the eNAMPT-neutralizing ALT-100 mAb (0.4 mg/kg/week, IP, weeks 9 to 12) exhibited marked attenuation of each index of NASH progression/severity. Thus, activation of the eNAMPT/TLR4 inflammatory pathway contributes to NAFLD severity and NASH/hepatic fibrosis. ALT-100 is potentially an effective therapeutic approach to address this unmet NAFLD need.
Collapse
Affiliation(s)
- Belinda L. Sun
- Department of Pathology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Xiaoguang Sun
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Carrie L. Kempf
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jin H. Song
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nancy G. Casanova
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Sara M. Camp
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Vivian Reyes Hernon
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Michael Fallon
- Department of Medicine, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Christian Bime
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Diego R. Martin
- Department of Radiology and the Translational Imaging Center, Houston Methodist Hospital and the Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Joe G. N. Garcia
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Hepatic Nampt Deficiency Aggravates Dyslipidemia and Fatty Liver in High Fat Diet Fed Mice. Cells 2023; 12:cells12040568. [PMID: 36831235 PMCID: PMC9954480 DOI: 10.3390/cells12040568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide (NAD) biosynthesis. Thus far, hepatic Nampt has not been extensively explored in terms of its effects on serum lipid stability and liver lipids metabolism. In this study, hepatocyte-specific Nampt knockout (HC-Nampt-/-) mice were generated by Cre/loxP system. Nampt mRNA expression was reduced in the liver, but not in other tissues, in HC-Nampt-/- mice compared with wild-type (WT) mice. Hepatic Nampt deficiency had no effect on body weight and fasting blood glucose, and it did not induce atherosclerosis in mice under both normal chow diet (NCD) and high fat diet (HFD). At baseline state under NCD, hepatic Nampt deficiency also did not affect liver weight, liver function index, including alanine aminotransferase, aspartate aminotransferase, albumin and alkaline phosphatase, and serum levels of lipids, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and non-esterified fatty acids (NEFA). However, under HFD, deficiency of hepatic Nampt resulted in increased liver weight, liver function index, and serum levels of TG, TC, HDL-C, and NEFA. Meanwhile, histopathological examination showed increased fat accumulation and fibrosis in the liver of HC-Nampt-/- mice compared with WT mice. Taken together, our results show that hepatic Nampt deficiency aggravates dyslipidemia and liver damage in HFD fed mice. Hepatocyte Nampt can be a protective target against dyslipidemia and fatty liver.
Collapse
|
12
|
Narrative Review: Glucocorticoids in Alcoholic Hepatitis—Benefits, Side Effects, and Mechanisms. J Xenobiot 2022; 12:266-288. [PMID: 36278756 PMCID: PMC9589945 DOI: 10.3390/jox12040019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Alcoholic hepatitis is a major health and economic burden worldwide. Glucocorticoids (GCs) are the only first-line drugs recommended to treat severe alcoholic hepatitis (sAH), with limited short-term efficacy and significant side effects. In this review, I summarize the major benefits and side effects of GC therapy in sAH and the potential underlying mechanisms. The review of the literature and data mining clearly indicate that the hepatic signaling of glucocorticoid receptor (GR) is markedly impaired in sAH patients. The impaired GR signaling causes hepatic down-regulation of genes essential for gluconeogenesis, lipid catabolism, cytoprotection, and anti-inflammation in sAH patients. The efficacy of GCs in sAH may be compromised by GC resistance and/or GC’s extrahepatic side effects, particularly the side effects of intestinal epithelial GR on gut permeability and inflammation in AH. Prednisolone, a major GC used for sAH, activates both the GR and mineralocorticoid receptor (MR). When GC non-responsiveness occurs in sAH patients, the activation of MR by prednisolone might increase the risk of alcohol abuse, liver fibrosis, and acute kidney injury. To improve the GC therapy of sAH, the effort should be focused on developing the biomarker(s) for GC responsiveness, liver-targeting GR agonists, and strategies to overcome GC non-responsiveness and prevent alcohol relapse in sAH patients.
Collapse
|
13
|
NAFLD: Mechanisms, Treatments, and Biomarkers. Biomolecules 2022; 12:biom12060824. [PMID: 35740949 PMCID: PMC9221336 DOI: 10.3390/biom12060824] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-associated fatty liver disease (MAFLD), is one of the most common causes of liver diseases worldwide. NAFLD is growing in parallel with the obesity epidemic. No pharmacological treatment is available to treat NAFLD, specifically. The reason might be that NAFLD is a multi-factorial disease with an incomplete understanding of the mechanisms involved, an absence of accurate and inexpensive imaging tools, and lack of adequate non-invasive biomarkers. NAFLD consists of the accumulation of excess lipids in the liver, causing lipotoxicity that might progress to metabolic-associated steatohepatitis (NASH), liver fibrosis, and hepatocellular carcinoma. The mechanisms for the pathogenesis of NAFLD, current interventions in the management of the disease, and the role of sirtuins as potential targets for treatment are discussed here. In addition, the current diagnostic tools, and the role of non-coding RNAs as emerging diagnostic biomarkers are summarized. The availability of non-invasive biomarkers, and accurate and inexpensive non-invasive diagnosis tools are crucial in the detection of the early signs in the progression of NAFLD. This will expedite clinical trials and the validation of the emerging therapeutic treatments.
Collapse
|
14
|
Katz DH, Tahir UA, Bick AG, Pampana A, Ngo D, Benson MD, Yu Z, Robbins JM, Chen ZZ, Cruz DE, Deng S, Farrell L, Sinha S, Schmaier AA, Shen D, Gao Y, Hall ME, Correa A, Tracy RP, Durda P, Taylor KD, Liu Y, Johnson WC, Guo X, Yao J, Ida Chen YD, Manichaikul AW, Jain D, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Bouchard C, Sarzynski MA, Rich SS, Rotter JI, Wang TJ, Wilson JG, Natarajan P, Gerszten RE. Whole Genome Sequence Analysis of the Plasma Proteome in Black Adults Provides Novel Insights Into Cardiovascular Disease. Circulation 2022; 145:357-370. [PMID: 34814699 PMCID: PMC9158509 DOI: 10.1161/circulationaha.121.055117] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Plasma proteins are critical mediators of cardiovascular processes and are the targets of many drugs. Previous efforts to characterize the genetic architecture of the plasma proteome have been limited by a focus on individuals of European descent and leveraged genotyping arrays and imputation. Here we describe whole genome sequence analysis of the plasma proteome in individuals with greater African ancestry, increasing our power to identify novel genetic determinants. METHODS Proteomic profiling of 1301 proteins was performed in 1852 Black adults from the Jackson Heart Study using aptamer-based proteomics (SomaScan). Whole genome sequencing association analysis was ascertained for all variants with minor allele count ≥5. Results were validated using an alternative, antibody-based, proteomic platform (Olink) as well as replicated in the Multi-Ethnic Study of Atherosclerosis and the HERITAGE Family Study (Health, Risk Factors, Exercise Training and Genetics). RESULTS We identify 569 genetic associations between 479 proteins and 438 unique genetic regions at a Bonferroni-adjusted significance level of 3.8×10-11. These associations include 114 novel locus-protein relationships and an additional 217 novel sentinel variant-protein relationships. Novel cardiovascular findings include new protein associations at the APOE gene locus including ZAP70 (sentinel single nucleotide polymorphism [SNP] rs7412-T, β=0.61±0.05, P=3.27×10-30) and MMP-3 (β=-0.60±0.05, P=1.67×10-32), as well as a completely novel pleiotropic locus at the HPX gene, associated with 9 proteins. Further, the associations suggest new mechanisms of genetically mediated cardiovascular disease linked to African ancestry; we identify a novel association between variants linked to APOL1-associated chronic kidney and heart disease and the protein CKAP2 (rs73885319-G, β=0.34±0.04, P=1.34×10-17) as well as an association between ATTR amyloidosis and RBP4 levels in community-dwelling individuals without heart failure. CONCLUSIONS Taken together, these results provide evidence for the functional importance of variants in non-European populations, and suggest new biological mechanisms for ancestry-specific determinants of lipids, coagulation, and myocardial function.
Collapse
Affiliation(s)
- Daniel H. Katz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Usman A. Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | | | | | - Debby Ngo
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Mark D. Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Zhi Yu
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Jeremy M. Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Zsu-Zsu Chen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Daniel E. Cruz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Laurie Farrell
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Sumita Sinha
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Alec A. Schmaier
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Dongxiao Shen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Yan Gao
- Univ of Mississippi Medical Center, Jackson, MS
| | | | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS
| | - Russell P. Tracy
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT
| | - Peter Durda
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Ani W. Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
- Division of Biostatistics and Epidemiology, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Deepti Jain
- University of Washington, Seattle, Washington
| | | | - Claude Bouchard
- Human Genomic Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Mark A. Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Thomas J. Wang
- Department of Medicine, UT Southwestern Medical Center, Dallas, TX
| | - James G. Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Pradeep Natarajan
- Broad Institute of Harvard and MIT, Cambridge, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Department of Medicine Harvard Medical School, Boston, MA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
15
|
Xu L, Yang C, Wang J, Li Z, Huang R, Ma H, Ma J, Wang Q, Xiong X. Persistent mTORC1 activation via Depdc5 deletion results in spontaneous hepatocellular carcinoma but does not exacerbate carcinogen- and high-fat diet-induced hepatic carcinogenesis in mice. Biochem Biophys Res Commun 2021; 578:142-149. [PMID: 34562654 DOI: 10.1016/j.bbrc.2021.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) acts as a central regulator of metabolic pathways that drive cellular growth. Abnormal activation of mTORC1 occurs at high frequency in human and mouse hepatocellular carcinoma (HCC). DEP domain-containing protein 5 (DEPDC5), a component of GATOR1 complex, is a repressor of amino acid-sensing branch of the mTORC1 pathway. In the current study, we found that persistent activation of hepatic mTORC1 signaling caused by Depdc5 ablation was sufficient to induce a pathological program of liver damage, inflammation and fibrosis that triggers spontaneous HCC development. Take advantage of the combinatory treatment with a single dose of diethylnitrosamine (DEN) and chronic feeding with high-fat diet (HFD), we demonstrated that hepatic depdc5 deletion did not aggravate DEN&HFD induced liver tumorigenesis, probably due to its protective effects on diet-induced liver steatosis. In addition, we further showed that chronic rapamycin treatment did not have any apparent tumor-suppressing effects on DEN&HFD treated control mice, whereas it dramatically reduced the tumor burden in mice with hepatic Depdc5 ablation. This study provides the novel in vivo evidence for Depdc5 deletion mediated mTORC1 hyperactivation in liver tumorigenesis caused by aging or DEN&HFD treatment. Moreover, our findings also propose that pharmacological inhibition of mTORC1 signaling maybe a promising strategy to treat HCC patients with mutations in DEPDC5 gene.
Collapse
Affiliation(s)
- Lin Xu
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chenyan Yang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jing Wang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zun Li
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rong Huang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Honghui Ma
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jie Ma
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qingzhi Wang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
16
|
Xu L, Yang C, Ma J, Zhang X, Wang Q, Xiong X. NAMPT-mediated NAD + biosynthesis suppresses activation of hepatic stellate cells and protects against CCl 4-induced liver fibrosis in mice. Hum Exp Toxicol 2021; 40:S666-S675. [PMID: 34752167 DOI: 10.1177/09603271211052991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in the salvage pathway of mammalian nicotinamide adenine dinucleotide (NAD+) biosynthesis. Through its NAD+-biosynthetic activity, NAMPT is able to regulate the development of hepatic steatosis and inflammation induced by diet or alcohol. However, the roles NAMPT plays in the development of liver fibrosis remain obscure. Purpose: To investigate the roles of NAMPT-mediated NAD+ biosynthesis in hepatic stellate cell (HSC) activation and liver fibrosis. Research Design: Realtime RT-PCR and western blot analyses were performed to analyze the expression of profibrogenic genes. Sirius red staining was conducted to examine the fibrosis in liver. Mouse liver fibrosis was induced by intraperitoneal injection of carbon tetrachloride (CCl4) 2 times a week for 6 weeks. Adenovirus-mediated NAMPT overexpression or nicotinamide mononucleotide (NMN) administration was carried out to study the effects of elevation of NAD+ levels on protecting CCl4-induced liver fibrosis in mice. LX2 cells or primary HSCs were used to study the role of NAMPT overexpression or NMN treatment in reducing profibrogenic gene expression in vitro. ResultsCCl4 administration suppresses NAMPT expression in liver and reduces hepatic NAD+ content. Tgfβ1 treatment decreases intracellular NAD+ levels and NAMPT expression in LX2 cells. Adenovirus-mediated NAMPT overexpression augments liver NAD+ levels, inhibits HSC activation and alleviates CCl4-induced liver fibrosis in mice. Administration of NMN also suppresses HSC activation and protects against CCl4-induced liver fibrosis in mice. Conclusions: NAMPT-mediated NAD+ biosynthesis inhibits HSC activation and protects against CCl4-induced liver fibrosis.
Collapse
Affiliation(s)
- Lin Xu
- School of Forensic Medicine, 91593Xinxiang Medical University, Xinxiang, China.,Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenyan Yang
- School of Forensic Medicine, 91593Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Metabolism and Integrative Physiology, 91593Xinxiang Medical University, Xinxiang, China
| | - Jie Ma
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, 91593Xinxiang Medical University, Xinxiang, China.,Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, 91593Xinxiang Medical University, Henan, China
| | - Xinge Zhang
- School of Forensic Medicine, 91593Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Metabolism and Integrative Physiology, 91593Xinxiang Medical University, Xinxiang, China
| | - Qingzhi Wang
- School of Forensic Medicine, 91593Xinxiang Medical University, Xinxiang, China
| | - Xiwen Xiong
- School of Forensic Medicine, 91593Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Metabolism and Integrative Physiology, 91593Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
17
|
Xu L, Zhang X, Xin Y, Ma J, Yang C, Zhang X, Hou G, Dong XC, Sun Z, Xiong X, Cao X. Depdc5 deficiency exacerbates alcohol-induced hepatic steatosis via suppression of PPARα pathway. Cell Death Dis 2021; 12:710. [PMID: 34267188 PMCID: PMC8282792 DOI: 10.1038/s41419-021-03980-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022]
Abstract
Alcohol-related liver disease (ALD), a condition caused by alcohol overconsumption, occurs in three stages of liver injury including steatosis, hepatitis, and cirrhosis. DEP domain-containing protein 5 (DEPDC5), a component of GAP activities towards Rags 1 (GATOR1) complex, is a repressor of amino acid-sensing branch of the mammalian target of rapamycin complex 1 (mTORC1) pathway. In the current study, we found that aberrant activation of mTORC1 was likely attributed to the reduction of DEPDC5 in the livers of ethanol-fed mice or ALD patients. To further define the in vivo role of DEPDC5 in ALD development, we generated Depdc5 hepatocyte-specific knockout mouse model (Depdc5-LKO) in which mTORC1 pathway was constitutively activated through loss of the inhibitory effect of GATOR1. Hepatic Depdc5 ablation leads to mild hepatomegaly and liver injury and protects against diet-induced liver steatosis. In contrast, ethanol-fed Depdc5-LKO mice developed severe hepatic steatosis and inflammation. Pharmacological intervention with Torin 1 suppressed mTORC1 activity and remarkably ameliorated ethanol-induced hepatic steatosis and inflammation in both control and Depdc5-LKO mice. The pathological effect of sustained mTORC1 activity in ALD may be attributed to the suppression of peroxisome proliferator activated receptor α (PPARα), the master regulator of fatty acid oxidation in hepatocytes, because fenofibrate (PPARα agonist) treatment reverses ethanol-induced liver steatosis and inflammation in Depdc5-LKO mice. These findings provide novel insights into the in vivo role of hepatic DEPDC5 in the development of ALD.
Collapse
Affiliation(s)
- Lin Xu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xinge Zhang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yue Xin
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Jie Ma
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Chenyan Yang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xi Zhang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Guoqing Hou
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Xiaocheng Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| | - Xuan Cao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
18
|
Sirtuin 6 ameliorates alcohol-induced liver injury by reducing endoplasmic reticulum stress in mice. Biochem Biophys Res Commun 2021; 544:44-51. [PMID: 33516881 DOI: 10.1016/j.bbrc.2021.01.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Alcoholic liver disease (ALD) occurs as a result of chronic and excessive alcohol consumption. It encompasses a wide spectrum of chronic liver abnormalities that range from steatosis to alcoholic hepatitis, progressive fibrosis and cirrhosis. Endoplasmic reticulum (ER) stress induced by ethanol metabolism in hepatocytes has been established as an important contributor to the pathogenesis of ALD. However, whether SIRT6 exerts regulatory effects on ethanol-induced ER stress and contributes to the pathogenesis of ALD is unclear. In this study, we developed and characterized Sirt6 hepatocyte-specific knockout and transgenic mouse models that were treated with chronic-plus-binge ethanol feeding. We observed that hepatic Sirt6 deficiency led to exacerbated ethanol-induced liver injury and aggravated hepatic ER stress. Tauroursodeoxycholic acid (TUDCA) treatment remarkably attenuated ethanol-induced ER stress and ameliorated ALD pathologies caused by Sirt6 ablation. Reciprocally, SIRT6 hepatocyte-specific transgenic mice exhibited reduced ER stress and ameliorated liver injury caused by ethanol exposure. Consistently, knockdown of Sirt6 elevated the expression of ER stress related genes in primary hepatocytes treated with ethanol, whereas overexpression of SIRT6 reduced their expression, indicating SIRT6 regulates ethanol-induced hepatic ER stress in a cell autonomous manner. Collectively, our results suggest that SIRT6 is a positive regulator of ethanol-induced ER stress in the liver and protects against ALD by relieving ER stress.
Collapse
|
19
|
Wei X, Jia R, Yang Z, Jiang J, Huang J, Yan J, Luo X. NAD + /sirtuin metabolism is enhanced in response to cold-induced changes in lipid metabolism in mouse liver. FEBS Lett 2020; 594:1711-1725. [PMID: 32227472 DOI: 10.1002/1873-3468.13779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/22/2020] [Accepted: 03/04/2020] [Indexed: 12/23/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+ )/Sirtuin (SIRT) system is linked to metabolic adaptation. This study aimed to determine the temporal profile of metabolic responses of the liver to cold exposure and changes in the hepatic NAD+ /SIRT system. Eight-week-old male C57BL/6 mice were individually housed in conventional cages under cold exposure (4 °C) for up to 5 days. Cold exposure decreased the hepatic triglyceride level and cholesterol level in mice by 1.7- and 1.6-fold, respectively. Lipogenic gene expression was persistently reduced, while gluconeogenic gene expression was transiently increased. Hepatic NAD+ /SIRT metabolism was induced during the 'cold remodeling' phase (days 1-3) and correlated with decreasing lipogenic and increasing gluconeogenic gene expression, contributing to the maintenance of whole-body lipid and glucose homeostasis.
Collapse
Affiliation(s)
- Xiaojing Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Ru Jia
- Department of Prosthodontics, College of Stomatology, Stomatological Hospital, Xi'an Jiaotong University, China
| | - Zhao Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Jianan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China
| |
Collapse
|
20
|
McReynolds MR, Chellappa K, Baur JA. Age-related NAD + decline. Exp Gerontol 2020; 134:110888. [PMID: 32097708 PMCID: PMC7442590 DOI: 10.1016/j.exger.2020.110888] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite that is reported to decline in concentration in tissues of aged animals. Strategies to increase NAD+ availability have shown promise in treating many conditions in rodents, including age-related degeneration, which has in turn driven intense interest in the effects of supplements on human health. However, many aspects of NAD+ metabolism remain poorly understood, and human data are limited. Here, we discuss the state of the evidence for an age-related decline in NAD+, along with potential mechanistic explanations, including increased consumption or decreased synthesis of NAD+ and changes in the composition of cells or tissues with age. Key challenges for the field involve the development of better tools to resolve information on the NAD+ content of specific cells and subcellular compartments as well as determining the threshold levels at which NAD+ depletion triggers physiological consequences in different tissues. Understanding how NAD+ metabolism changes with age in humans may ultimately allow the design of more targeted strategies to maintain its availability, such as inhibition of key consumers in specific tissues or direct delivery of precursors to sites of deficiency. In the meantime, human clinical trials with oral supplements are poised to provide some of the first direct evidence as to whether increasing NAD+ availability can impact human physiology. Thus, it is an exciting time for NAD+ research, with much remaining to be learned in terms of both basic biology and potential therapeutic applications.
Collapse
Affiliation(s)
- Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, United States of America
| | - Karthikeyani Chellappa
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|