1
|
Borowicz M, Krzyżanowska DM, Sobolewska M, Narajczyk M, Mruk I, Czaplewska P, Pédron J, Barny M, Canto PY, Dziadkowiec J, Czajkowski R. Tailocin-Mediated Interactions Among Soft Rot Pectobacteriaceae. Mol Ecol 2025; 34:e17728. [PMID: 40087984 PMCID: PMC11974492 DOI: 10.1111/mec.17728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Bacteria carry phage-derived elements within their genomes, some of which can produce phage-like particles (tailocins) used as weapons to kill kin strains in response to environmental conditions. This study investigates the production and activity of tailocins by plant-pathogenic bacteria: Pectobacterium, Dickeya, and Musicola genera, which compete for niche, providing an attractive model to study the ecological role of tailocins. Microscopy revealed that most analysed strains (88%) produced tailocins. Tailocin-mediated killing interactions were assessed across 351 strain pairs, showing that Dickeya spp. had a higher likelihood of killing neighbours (57.1%) than Pectobacterium spp. (21.6%). Additionally, Dickeya spp. strains exhibited broader phylogenetic killing, targeting both Pectobacterium spp. and Musicola sp., while Pectobacterium spp. tailocins were genus-specific. The mutual (bilateral) killing was observed in 33.9% of interactions, predominantly within Dickeya spp. Although tailocins were morphologically indistinguishable between producers, genomic analyses identified conserved clusters having diverse structural and organisational differences between Pectobacterium spp. and Dickeya spp. tailocins. This suggests different origins of these particles. Induction experiments demonstrated that tailocin production was boosted by hydrogen peroxide, supporting the role of these particles in bacteria-bacteria competition during plant infection when plants produce ROS to protect themselves from pathogens. Tailocins were detectable in infected potato tissue but not in river water, highlighting the particular ecological relevance of tailocins in these studied environments.
Collapse
Affiliation(s)
- Marcin Borowicz
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | - Dorota M. Krzyżanowska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | - Marta Sobolewska
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | | | - Inez Mruk
- Laboratory of Mass Spectrometry‐Core Facility Laboratories, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry‐Core Facility Laboratories, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| | - Jacques Pédron
- Institute of Ecology and Environmental Sciences of ParisSorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618ParisFrance
| | - Marie‐Anne Barny
- Institute of Ecology and Environmental Sciences of ParisSorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618ParisFrance
| | - Pierre Yves Canto
- Institute of Ecology and Environmental Sciences of ParisSorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618ParisFrance
| | - Joanna Dziadkowiec
- Departments of Geosciences and Physics, The Njord CentreUniversity of OsloOsloNorway
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of UG and MUGUniversity of GdanskGdanskPoland
| |
Collapse
|
2
|
Golshan M, Dortaj H, Rajabi M, Omidi Z, Golshan M, Pourentezari M, Rajabi A. Animal origins free products in cell culture media: a new frontier. Cytotechnology 2025; 77:12. [PMID: 39654546 PMCID: PMC11625046 DOI: 10.1007/s10616-024-00666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/02/2024] [Indexed: 12/12/2024] Open
Abstract
Despite the importance of finding replacements for fetal bovine serum (FBS), very few studies have focused on this subject. Historically, the use of animals and their derivatives in growth, reproduction, and physiological studies has raised several concerns. The supplementation of culture media with FBS, also known as fetal calf serum, continues to be widespread, despite its limitations in quality, reproducibility, and implications for animal welfare. Moreover, the presence of counterfeit and illegal products can adversely affect cell cultures and treatments, prompting the search for alternative solutions. To reduce reliance on FBS, various substitutes have been introduced, such as plant-derived proteins, bovine eye fluid, sericin protein, human platelet lysate, and inactivated coelomic fluid, which can provide roles similar to that of FBS. Therefore, it is essential to develop serum-free and animal supplement-free environments suitable for therapeutic and clinical applications, tailored to the specific needs of different cell types. Among the alternatives, plant-based options have gained attention as sustainable and ethical solutions. These include plant-derived peptones from sources like soy and wheat, which are rich in amino acids and peptides essential for mammalian cell growth, as well as plant protein hydrolysates from beans and peas that serve as sources of amino acids and growth factors. Plant extracts, especially from soy and various seeds, contain necessary proteins and growth factors, while phytohormones such as cytokinins and plant polysaccharides can help regulate cell growth. While these alternatives offer benefits like reduced costs and lower risks of disease transmission, further research is necessary to refine and align them with the specific requirements of diverse cell types. Graphical abstract
Collapse
Affiliation(s)
- Mahsa Golshan
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| | - Hengameh Dortaj
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rajabi
- Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Omidi
- Department of Cardiovascular Disease, Alzahra Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Golshan
- Shiraz Transplant Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Majid Pourentezari
- Department of Anatomical Sciences, School of Medicine Shahid, Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Rajabi
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| |
Collapse
|
3
|
Yakkou L, Houida S, El Baaboua A, Bilen S, Chelkha M, Okyay Kaya L, Aasfar A, Ameen F, Ahmad Bhat S, Raouane M, Amghar S, El Harti A. Unveiling resilience: coelomic fluid bacteria's impact on plant metabolism and abiotic stress tolerance. PLANT SIGNALING & BEHAVIOR 2024; 19:2363126. [PMID: 38832593 DOI: 10.1080/15592324.2024.2363126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Earthworms' coelomic fluid (CF) has been discovered to possess properties that promote plant development. In particular, the earthworm's coelomic fluid-associated bacteria (CFB) are the primary factor influencing the plants' response. To investigate this, we used bacteria isolated from the CF and selected based on different plant growth-promoting traits, in a mesocosm ecosystem that includes plants. This experiment aimed to assess their impact on the metabolism of plants growing under abiotic stress environments (alkaline soil and nitrogen (N), phosphate (P), and potassium (K) deficit) and compare the lipid profiles of plants under the various treatments. We used seven different bacterial species isolated from the CF of Aporrectodea molleri and as a plant model Zea mays L. For the metabolomic analysis method, we used gas chromatography-mass spectrometry lipidomic. After observing the metabolomic profiles, we found that a few molecular pathways are involved in how plants react to bacterial biostimulants. The bacterial isolates belonging to Pantoea vagans, Pseudomonas aeruginosa, Bacillus paramycoides, and Bacillus thuringiensis have led to a significant increase in synthesizing several metabolites belonging to various chemical categories. Contrary to predictions, abiotic stress did not cause a drop in the composition and concentration of lipids in plants treated with the CFB, demonstrating the rigidity of the protective mechanisms. The statistical analysis based on the Pearson method revealed a positive significant correlation between plant growth parameters (length of the aerial part, surface of the leaves, and biomass) and some metabolites belonging to fatty acids, carboxylic acids, benzene derivatives, and alkanes. Moreover, the standard metabolic components of all treatments in much higher concentrations during bacterial treatments than the control treatment suggests that the bacteria have stimulated the overexpression of these metabolic components. According to these results, we could assume that plants treated with CFB exhibit an adaptability of abiotic stress defense mechanisms, which may be attributed to the upregulation of genes involved in lipid biosynthesis pathways.
Collapse
Affiliation(s)
- Lamia Yakkou
- Laboratory of Microbial Biotechnologies and Plant Protection (LBVRN), Faculty of Sciences Agadir, University Ibn Zohr, Agadir, Morocco
- Faculty of Applied Sciences- Ait Melloul, University Ibn Zohr, Agadir, Morocco
| | - Sofia Houida
- Laboratory of Mycobacteria and Tuberculosis, Institut Pasteur of Morocco, Casablanca, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Serdar Bilen
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Maryam Chelkha
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Leyla Okyay Kaya
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Abderrahim Aasfar
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed Raouane
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| | - Souad Amghar
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| | - Abdellatif El Harti
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| |
Collapse
|
4
|
Czaplewska P, Müller M, Musiał N, Okrój M, Felberg-Miętka A, Sadowska J, Dudzińska W, Lubkowska A, Tokarz-Deptuła B, Fiołka M. Preliminary proteomic analysis of mouse lung tissue treated with cyclophosphamide and Venetin-1. Sci Rep 2024; 14:25056. [PMID: 39443613 PMCID: PMC11499674 DOI: 10.1038/s41598-024-76143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Cyclophosphamide (CPAm) is a widely used chemotherapeutic agent that exhibits potent anti-cancer properties but is often associated with debilitating side effects. Despite its efficacy, the management of CPAm-induced toxicities remains a significant clinical challenge. There has been growing interest in exploring complementary and alternative therapies to mitigate these adverse effects in recent years, and this may be a chance for the earthworm-derived preparation, Venetin-1. Its rich composition of bioactive compounds has demonstrated promising pharmacological properties, including anti-inflammatory, antioxidant, and immunomodulatory effects. These properties suggest its potential to counteract various systemic toxicities induced by CPAm. We conducted a comprehensive study to investigate the effect of Venetin-1 on cyclophosphamide-induced toxicity. Mice were administered CPAm for four days, followed by application of the earthworm preparation in two doses (50 mg/kg and 100 mg/kg b.w). Importantly, the preparation did not cause any side effects in all mice, ensuring the safety of the intervention. We then determined global changes in the proteome using proteomics and quantitative SWATH-MS analysis, which is a robust and reliable method. This allowed us to identify up- and downregulated proteins in each studied group, providing valuable insights into the mechanism of action of Venetin-1. As shown by the results, Venetin-1 had a significant effect on the proteome of mouse lung tissue. It was possible to determine quantitative changes in 400 proteins, and the analysis after administration of Venetin-1 showed a change in the global proteomic profile from upregulated to down-regulated. The stimulating properties of the preparation concerning the complement system were also confirmed in a separate validation experiment. Venetin-1 shows promise in reducing the harmful effects of cyclophosphamide on lung tissue. It encourages tissue regeneration, reduces inflammation, supports autophagy, and boosts the immune system. However, more research is needed to thoroughly elucidate and describe the benefits of Venetin-1.
Collapse
Affiliation(s)
- Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, Gdańsk, Poland.
| | - Marc Müller
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Musiał
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Okrój
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Felberg-Miętka
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Sadowska
- Department of Applied Microbiology and Human Nutrition Physiology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Szczecin, Poland
| | - Wioleta Dudzińska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Marta Fiołka
- Department of Immunobiology, Institute of Biological Sciences, Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
5
|
Zhu Z, Deng X, Xie W, Li H, Li Y, Deng Z. Pharmacological effects of bioactive agents in earthworm extract: A comprehensive review. Animal Model Exp Med 2024; 7:653-672. [PMID: 38957072 PMCID: PMC11528390 DOI: 10.1002/ame2.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
This review compiles information from the literature on the chemical composition, pharmacological effects, and molecular mechanisms of earthworm extract (EE) and suggests possibilities for clinical translation of EE. We also consider future trends and concerns in this domain. We summarize the bioactive components of EE, including G-90, lysenin, lumbrokinase, antimicrobial peptides, earthworm serine protease (ESP), and polyphenols, and detail the antitumor, antithrombotic, antiviral, antibacterial, anti-inflammatory, analgesic, antioxidant, wound-healing, antifibrotic, and hypoglycemic activities and mechanisms of action of EE based on existing in vitro and in vivo studies. We further propose the potential of EE for clinical translation in anticancer and lipid-modifying therapies, and its promise as source of a novel agent for wound healing and resistance to antibiotic tolerance. The earthworm enzyme lumbrokinase embodies highly effective anticoagulant and thrombolytic properties and has the advantage of not causing bleeding phenomena due to hyperfibrinolysis. Its antifibrotic properties can reduce the excessive accumulation of extracellular matrix. The glycolipoprotein extract G-90 can effectively scavenge reactive oxygen groups and protect cellular tissues from oxidative damage. Earthworms have evolved a well-developed defense mechanism to fight against microbial infections, and the bioactive agents in EE have shown good antibacterial, fungal, and viral properties in in vitro and in vivo experiments and can alleviate inflammatory responses caused by infections, effectively reducing pain. Recent studies have also highlighted the role of EE in lowering blood glucose. EE shows high medicinal value and is expected to be a source of many bioactive compounds.
Collapse
Affiliation(s)
- Zihan Zhu
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Xinyi Deng
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Wenqing Xie
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Hengzhen Li
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yusheng Li
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Zhenhan Deng
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
6
|
Haque S, Hussain A, Almalki AH, Aldawsari MF, Lal B, Rai AK, Srivastava M, Fiołka M. Prospects of earthworm coelomic fluid as a potential therapeutic agent to treat cancer. Cancer Metastasis Rev 2024; 43:621-637. [PMID: 37910294 DOI: 10.1007/s10555-023-10148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Cancer is a major public health concern because it is one of the main causes of morbidity and mortality worldwide. As a result, numerous studies have reported the development of new therapeutic compounds with the aim of selectively treating cancer while having little negative influence on healthy cells. In this context, earthworm coelomic fluid has been acknowledged as a rich source of several bioactive substances that may exhibit promising anticancer activity. Therefore, the objective of the present review is to evaluate the findings of the reported studies exploring the antitumor effects of coelomic fluid in the context of its possible utilization as a natural therapeutic agent to cure different types of cancer. The possible mechanisms underlying the coelomic fluid's anticancerous potential as well as the possibility for future development of cutting-edge therapeutic agents utilizing coelomic fluid-derived natural bioactive compounds to treat cancer disorders have been discussed along with future challenges. In addition, the feasibility of encapsulation of bioactive compounds derived from coelomic fluid with nanomaterials that could be further explored to attain more effective anticancer competence is discussed.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif, 21944, Saudi Arabia
| | - Mohammed F Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Basant Lal
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Manish Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
- LCB Fertilizers Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh, 273015, India.
| | - Marta Fiołka
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
7
|
Wójcik-Mieszawska S, Lewtak K, Skwarek E, Dębowski D, Gitlin-Domagalska A, Nowak J, Wydrych J, Pawelec J, Fiołka MJ. Autophagy of Candida albicans cells after the action of earthworm Venetin-1 nanoparticle with protease inhibitor activity. Sci Rep 2023; 13:14228. [PMID: 37648723 PMCID: PMC10468520 DOI: 10.1038/s41598-023-41281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
The present studies show the effect of the Venetin-1 protein-polysaccharide complex obtained from the coelomic fluid of the earthworm Dendrobaena veneta on Candida albicans cells. They are a continuation of research on the mechanisms of action, cellular targets, and modes of cell death. After the action of Venetin-1, a reduced survival rate of the yeast cells was noted. The cells were observed to be enlarged compared to the controls and deformed. In addition, an increase in the number of cells with clearly enlarged vacuoles was noted. The detected autophagy process was confirmed using differential interference contrast, fluorescence microscopy, and transmission electron microscopy. Autophagic vesicles were best visible after incubation of fungus cells with the Venetin-1 complex at a concentration of 50 and 100 µg mL-1. The changes in the vacuoles were accompanied by changes in the size of mitochondria, which is probably related to the previously documented oxidative stress. The aggregation properties of Venetin-1 were characterized. Based on the results of the zeta potential at the Venetin-1/KCl interface, the pHiep = 4 point was determined, i.e. the zeta potential becomes positive above pH = 4 and is negative below this value, which may affect the electrostatic interactions with other particles surrounding Venetin-1.
Collapse
Affiliation(s)
- Sylwia Wójcik-Mieszawska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Kinga Lewtak
- Department of Cell Biology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Ewa Skwarek
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Jakub Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jerzy Wydrych
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jarosław Pawelec
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marta J Fiołka
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
8
|
Atypical changes in Candida albicans cells treated with the Venetin-1 complex from earthworm coelomic fluid. Sci Rep 2023; 13:2844. [PMID: 36807384 PMCID: PMC9938250 DOI: 10.1038/s41598-023-29728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
In the present research, the effect of a protein-polysaccharide complex Venetin-1 obtained from the coelomic fluid of Dendrobaena veneta earthworm on Candida albicans cells was characterized. The compound destroyed fungal cells without showing cytotoxicity to human skin fibroblasts, which was demonstrated in earlier studies. Since it had an effect on the fungal cell wall and membrane, this complex was compared with the known antifungal antibiotic fluconazole. Both preparations disturbed the division of yeast cells and resulted in the formation of aggregates and chains of unseparated cells, which was illustrated by staining with fluorochromes. Fluorescent staining of the cell wall with Calcofluor white facilitated comparison of the types of aggregates formed after the action of both substances. The analysis performed with the use of Congo red showed that Venetin-1 exposed deeper layers of the cell wall, whereas no such effect was visible after the use of fluconazole. The FTIR analysis confirmed changes in the mannoprotein layer of the cell wall after the application of the Venetin-1 complex. Staining with Rhodamine 123 and the use of flow cytometry allowed comparison of changes in the mitochondria. Significantly elongated mitochondria were observed after the Venetin-1 application, but not after the application of the classic antibiotic. Phase contrast microscopy revealed vacuole enlargement after the Venetin-1 application. The flow cytometry analysis of C. albicans cells treated with Venetin-1 and fluconazole showed that both substances caused a significant decrease in cell viability.
Collapse
|
9
|
Liu Z, Chen Q, Zhong Y, Wu Y, Li J, Kong Z, Zhang Q, Lei X. Effects of earthworm hydrolysate in production performance, serum biochemical parameters, antioxidant capacity and intestinal function of Muscovy ducks. Poult Sci 2022; 102:102409. [PMID: 36716514 PMCID: PMC9922925 DOI: 10.1016/j.psj.2022.102409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Earthworm has a variety of molecular biological characteristic, for example, growth promotion, antioxidant, and anti-bacteria. Thus, we decomposed earthworm by earthworm's own protease for preparing of earthworm hydrolysate. Muscovy ducks were fed with basal diet that formulated to contain 1.5% and 2.5% earthworm hydrolysate. Then, we investigated the influences of earthworm hydrolysate on growth performance in Muscovy ducks by performance terminology and measurement for poultry (NY/T 823-2020). The morphology of duodenum and number of intraepithelial lymphocytes were tested by HE staining and immunohistochemical method. Serum biochemical parameters and antioxidant capacity were also determined. High-throughput sequencing technology can sequence 16S rDNA of cecal contents from experimental Muscovy ducks. Results showed that 1.5% earthworm hydrolysate increased ADG (16-70 days old), ALB, HDL-C, T-AOC, CAT, SOD, GSH-PX, villi length, intestine thickness and surface area of villi (P < 0.05 or P < 0.01), and reduced FCR (16-70 days old), UREA, CRE, LDL-C, MDA (P < 0.05 or P < 0.01). Meanwhile, 2.5% improved ADG (16-70 days old), abdominal fat yield, breast muscle yield, heart index, spleen index, ALP, UA, T-AOC, CAT, SOD, GSH-PX, villi length, crypt depth, intestine thickness, surface area of villi, the percentage of intraepithelial lymphocytes (P < 0.05 or P < 0.01), and decreased FCR (42-70 days old and 16-70 days old), UREA, UA, MDA (P < 0.05 or P < 0.01). The sequencing results of gut flora demonstrated that earthworm hydrolysate improved variety of the gut flora in the V4 area of ducks immensely. In a word, our results provide the foundation for preliminary researching the potential principles of earthworm hydrolysate in promoting production performance, adjusting antioxidant function and intestinal functions in the Muscovy duck industry.
Collapse
Affiliation(s)
- Zhenni Liu
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences, Ganzhou, 341000, P.R. China
| | - Qiang Chen
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences, Ganzhou, 341000, P.R. China,Nankang District Agricultural Technology Extension Center, Ganzhou, 341400, P.R. China
| | - Yunping Zhong
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences, Ganzhou, 341000, P.R. China
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Jianjun Li
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences, Ganzhou, 341000, P.R. China
| | - Zhiwei Kong
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences, Ganzhou, 341000, P.R. China
| | - Qiang Zhang
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences, Ganzhou, 341000, P.R. China
| | - Xiaowen Lei
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences, Ganzhou, 341000, P.R. China.
| |
Collapse
|
10
|
Rybicka M, Czaplewska P, Rzymowska J, Sofińska-Chmiel W, Wójcik-Mieszawska S, Lewtak K, Węgrzyn K, Jurczak P, Szpiech A, Nowak J, Musiał N, Fiołka MJ. Novel Venetin-1 nanoparticle from earthworm coelomic fluid as a promising agent for the treatment of non-small cell lung cancer. Sci Rep 2022; 12:18497. [PMID: 36323731 PMCID: PMC9630273 DOI: 10.1038/s41598-022-21665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
The present research shows the antitumor activity of a protein-polysaccharide complex Venetin-1 obtained from the coelomic fluid of Dendrobaena veneta earthworms against A549 cancer cells. The investigations are a continuation of experiments on the antitumor activity of coelomic fluid obtained from this species. The Venetin-1 nanoparticle was obtained after thermal treatment of the coelomic fluid, separation from coelomocytes, filtration, and lyophilization. The preparation showed a selective effect on cancer cells, whereas normal cells were unaffected. Venetin-1 was effective against the lung cancer cells at doses of 31.3 and 62.5 µg/ml, and the results were imaged using light microscopy and scanning electron microscopy (SEM). The cells died mainly via the apoptosis pathway. Necrotic cells appeared sporadically in the microscopic view. SEM imaging revealed complete destruction of the A549 cells after the incubation with Venetin-1. The atomic force microscopy (AFM) analyses showed changes in the topography, peak force error images, and Young's modulus (elasticity) of the A549 cells after the incubation with Venetin-1. The transmission electron cryomicroscopy (Cryo-TEM) analysis indicated a polymeric nature of the analyzed preparation. The samples of Venetin-1 showed a very homogeneous size profile with the microparticle size of approximately 58.23 nm. A significant decrease in Venetin-1 binding to sphingomyelin was observed. Venetin-1 lost its pore-forming activity or deactivation of the pore-forming activity occurred. This confirms the absence of hemolytic capacity of Venetin-1 towards red blood cells. The conducted analyses show the suitability of the obtained complex for biomedical research. The next step will consist in analyses of the effect of Venetin-1 on the immune system in mice.
Collapse
Affiliation(s)
- Magda Rybicka
- grid.11451.300000 0001 0531 3426Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Paulina Czaplewska
- grid.11451.300000 0001 0531 3426Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Jolanta Rzymowska
- grid.411484.c0000 0001 1033 7158Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Weronika Sofińska-Chmiel
- grid.29328.320000 0004 1937 1303Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sylwia Wójcik-Mieszawska
- grid.29328.320000 0004 1937 1303Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Kinga Lewtak
- grid.29328.320000 0004 1937 1303Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Katarzyna Węgrzyn
- grid.11451.300000 0001 0531 3426Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Przemysław Jurczak
- grid.8585.00000 0001 2370 4076Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Agata Szpiech
- grid.11451.300000 0001 0531 3426Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Jakub Nowak
- grid.5522.00000 0001 2162 9631Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Natalia Musiał
- grid.11451.300000 0001 0531 3426Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Marta J. Fiołka
- grid.29328.320000 0004 1937 1303Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
11
|
Lee M, Park S, Choi B, Kim J, Choi W, Jeong I, Han D, Koh WG, Hong J. Tailoring a Gelatin/Agar Matrix for the Synergistic Effect with Cells to Produce High-Quality Cultured Meat. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38235-38245. [PMID: 35968689 DOI: 10.1021/acsami.2c10988] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Edible scaffolds are needed in cultured meat to mimic meat's three-dimensional structure by organizing cells and replenishing the insufficient meat mass of cells alone. However, there is still a large gap between slaughtered meat and cells developed into tissues using scaffolds. This is mainly due to the difference in size, texture, flavor, and taste. In this study, we develop a coating matrix to modify the surface of textured vegetable protein (TVP), a vegetable cell support, to produce cultured meat having slaughtered meat's essential characteristics. We optimized the fish gelatin/agar matrix's microstructure by controlling the ratio of the two biopolymers, stably introducing a cell adhesive environment on the TVP. By coating the optimized gelatin/agar matrix on the TVP's surface using an easy and fast dipping method, hybrid cultured meat composed of animal cells and plant protein was produced. As the cells proliferated, their synergistic effect permitted the cultured meat's texture, flavor, and taste to reach a level comparable to that of slaughtered meat. The TVP-based cultured meat prepared with the present technology has been recreated as high-quality cultured meat by satisfying five challenging factors: cells, texture, cost, mass, and flavor.
Collapse
Affiliation(s)
- Milae Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Bumgyu Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiyu Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woojin Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ildoo Jeong
- SIMPLE Planet Inc., 48 Achasan-ro 17-gil, Seongdong-gu, Seoul 04799, Republic of Korea
| | - Dongoh Han
- SIMPLE Planet Inc., 48 Achasan-ro 17-gil, Seongdong-gu, Seoul 04799, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Polysaccharide-protein complex from coelomic fluid of Dendrobaena veneta earthworm exerts a multi-pathway antiplatelet effect without coagulopathy and cytotoxicity. Biomed Pharmacother 2022; 151:113205. [PMID: 35644114 DOI: 10.1016/j.biopha.2022.113205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
There is a pressing need to identify novel antiplatelet agents, an alternative to acetylsalicylic acid and thienopyridines, to broaden the prevention of cardiovascular events, the leading cause of global morbidity and mortality. Invertebrate coelomocytes structurally and functionally resemble the thrombocyte-like cells of vertebrates; therefore, the coelomic fluid in which they are suspended may contain agents controlling their clumping abilities. However, whether coelomocytes-free coelomic fluid may also affect human platelet activities was not a subject of any study. This study aimed to screen the in vitro antiplatelet and anticoagulant activities of the polysaccharide-protein complex from Dendrobaena veneta coelomic fluid (25-100 µg/mL) (PPC-DV). All tested fluid concentrations induced significant (42.4-52.5%) inhibition of adenosine-5'-diphosphate (ADP)-induced aggregation of human platelets at a level comparable to that of 140 µmol/L acetylsalicylic acid. Its relevant antiplatelet effect (27.2-45.9%) was also evidenced in the thrombin receptor-activating peptide-6 (TRAP-6) assay. Moreover, 50 and 100 µg/mL of PPC-DV inhibited arachidonic acid-inducible aggregation. No coagulopathic or cytotoxic effects of PPC-DV were observed. The study indicates that PPC-DV, at a concentration of at least 50 µg/mL, exerts a favorable antiplatelet effect by targeting at least three pathways (P2Y12 receptor, cyclooxygenase-1, and protease-activated receptor-1), justifying further experimental and clinical investigations on its use in cardiovascular disease prevention.
Collapse
|
13
|
Vermicompost and Its Derivatives against Phytopathogenic Fungi in the Soil: A Review. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Synthetic chemicals, such as fertilizers and pesticides, are abundantly used in agriculture to enhance soil fertility and prevent the occurrence of diseases, respectively. Many studies have reported a negative influence of these chemicals on the soil environment. Natural sources from earthworms and their products, as a result of vermicomposting, may be considered better alternatives. The aim of this review was to reveal the source of antifungal efficiency of vermicompost and its derivatives, such as vermiwash, coelomic fluid, skin secretion of earthworms, and metabolites from decomposer bacteria in vermicompost, in order to highlight their application in agriculture. The synergistic activity of bioactive compounds present in coelomic fluid, mucus, skin secretion, and metabolites from associated bacteria (decomposer) assisted crop plants for effective action against various soil pathogenic fungi, such as Rhizoctoniasolani, Alternaria solani, Aspergillus niger, A.flavus, Fusariumoxysporum, and F. graminearum. Thus, these bioactive metabolites can be recommended to suppress plant fungal diseases. Vermicompost and its derivatives should be considered for use in agricultural fields to control harmful soil fungi and increase crop productivity.
Collapse
|
14
|
Antifungal Activity of Earthworm Coelomic Fluid Obtained from Eisenia andrei, Dendrobaena veneta and Allolobophora chlorotica on Six Species of Phytopathogenic Fungi. ENVIRONMENTS 2021. [DOI: 10.3390/environments8100102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The functioning of soil ecosystems greatly depends on the interactions occurring between soil biota communities. It is well known that earthworms are an important soil component that substantially affects its function, including their meaningful impact on the development of different phytopathogenic soil fungi. Phytopathogenic fungi are responsible for crop disease and cause great economic damage. It has previously been established that earthworms’ coelomic fluid can suppress the growth of phytopathogenic fungi, but the exact molecular mechanism is unknown. The present study aimed at broadening the proof of this observed phenomenon by investigating the effects of the coelomic fluid extract of three different earthworm species (Eisenia andrei, Dendrobaena veneta and Allolobophora chlorotica) on the growth of six different phytopathogenic fungi species (Berkeleyomyces basicola, Fusarium culmorum, Globisporangium irregulare, Rhizoctonia solani, Macrophomina phaseolina, and Sclerotinia sclerotiorum). Coelomic fluid extract was obtained by electrostimulation or usage of extraction buffer (only in case of A. chlorotica) and prepared in three different concentrations by diluting the obtained coelomic fluid with physiological saline. The coelomic fluid extract of the three investigated earthworm species had an inhibitory effect on the growth of all six phytopathogenic fungi species. The greatest inhibitory effect was achieved with the E. andrei coelomic fluid extract reducing the growth of R. solani fungi. The findings of this research confirm the antifungal activity of coelomic fluid obtained from earthworm species belonging to different ecological categories and may be of potential use in crop protection against phytopathogenic fungi.
Collapse
|
15
|
Fiołka MJ, Czaplewska P, Wójcik-Mieszawska S, Lewandowska A, Lewtak K, Sofińska-Chmiel W, Buchwald T. Metabolic, structural, and proteomic changes in Candida albicans cells induced by the protein-carbohydrate fraction of Dendrobaena veneta coelomic fluid. Sci Rep 2021; 11:16711. [PMID: 34408181 PMCID: PMC8373886 DOI: 10.1038/s41598-021-96093-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
The isolated protein-polysaccharide fraction (AAF) from the coelomic fluid of Dendrobaena veneta earthworm shows effective activity against Candida albicans yeast. Fungal cells of the clinical strain after incubation with the active fraction were characterized by disturbed cell division and different morphological forms due to the inability to separate the cells from each other. Staining of the cells with acridine orange revealed a change in the pH of the AAF-treated cells. It was observed that, after the AAF treatment, the mitochondrial DNA migrated towards the nuclear DNA, whereupon both merged into a single nuclear structure, which preceded the apoptotic process. Cells with a large nucleus were imaged with the scanning electron cryomicroscopy (Cryo-SEM) technique, while enlarged mitochondria and the degeneration of cell structures were shown by transmission electron microscopy (TEM). The loss of the correct cell shape and cell wall integrity was visualized by both the TEM and SEM techniques. Mass spectrometry and relative quantitative SWATH MS analysis were used to determine the reaction of the C. albicans proteome to the components of the AAF fraction. AAF was observed to influence the expression of mitochondrial and oxidative stress proteins. The oxidative stress in C. albicans cells caused by the action of AAF was demonstrated by fluorescence microscopy, proteomic methods, and XPS spectroscopy. The secondary structure of AAF proteins was characterized by Raman spectroscopy. Analysis of the elemental composition of AAF confirmed the homogeneity of the preparation. The observed action of AAF, which targets not only the cell wall but also the mitochondria, makes the preparation a potential antifungal drug killing the cells of the C. albicans pathogen through apoptosis.
Collapse
Affiliation(s)
- Marta J Fiołka
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Wójcik-Mieszawska
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Aleksandra Lewandowska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Kinga Lewtak
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Weronika Sofińska-Chmiel
- Analytical Laboratory, Institute of Chemical Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Tomasz Buchwald
- Faculty of Materials Science and Technical Physics, Institute of Materials Research and Quantum Engineering, Poznan University of Technology, Poznań, Poland
| |
Collapse
|
16
|
Subbiahanadar Chelladurai K, Selvan Christyraj JD, Rajagopalan K, Yesudhason BV, Venkatachalam S, Mohan M, Chellathurai Vasantha N, Selvan Christyraj JRS. Alternative to FBS in animal cell culture - An overview and future perspective. Heliyon 2021; 7:e07686. [PMID: 34401573 PMCID: PMC8349753 DOI: 10.1016/j.heliyon.2021.e07686] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Fetal bovine serum (FBS) is a widely used growth supplement in the in vitro culturing of animal and human cells, tissues and organs, notably due to the occurrence of abundant micro- and macronutrients, along with growth factors. Over the years, increasing demand, high price, batch-to-batch variability in quality and composition, increasing ethical concerns lead to the search for an alternative to FBS. Several approaches have been suggested and employed in the past, but none is implemented as widely as FBS, and each supplement has its own disadvantages. In this review, we described the importance of FBS in cell culture, discussed the issues associated with FBS use and presented the efforts made in the recent past to reduce or replace FBS. The potential of four different alternative sources to FBS, namely, bovine ocular fluid, sericin protein, human platelet lysate and earthworm heat inactivated coelomic fluid was evaluated. In the end, we present the conceptual perspective using the Human Platelet Lysate (HPL) and earthworm Heat Inactivated Coelomic Fluid (HI-CF) combination to alternate FBS and its context in scientific and economic impacts.
Collapse
Affiliation(s)
- Karthikeyan Subbiahanadar Chelladurai
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Jackson Durairaj Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Kamarajan Rajagopalan
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Saravanakumar Venkatachalam
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Manikandan Mohan
- Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, USA
| | - Niranjan Chellathurai Vasantha
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| |
Collapse
|
17
|
Morphological and physicochemical diversity of snow algae from Alaska. Sci Rep 2020; 10:19167. [PMID: 33154522 PMCID: PMC7644681 DOI: 10.1038/s41598-020-76215-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/23/2020] [Indexed: 11/08/2022] Open
Abstract
Snow algae are photosynthetic microbes growing in thawing snow. They usually show various morphological cell types. The aim of this study was to carry out microscopic and spectroscopic analysis of different forms of cells of snow algae collected on glaciers in Alaska. Four different shapes of algal cells were observed with the use of bright field LM (Light Microscopy), DIC (Differential Interference Contrast), EDF (Extended Depth Focus), fluorescence microscopy, and SEM (Scanning Electron Microscopy). The cells exhibited the strongest autofluorescence after the exposure to 365-nm excitation light, and the intensity differed among the cell types. Zygotes (cysts) showed the most intense fluorescence. Acridine orange staining revealed the acid nature of the algal cells. The use of Congo red and Calcofluor white fluorochromes indicated differences in the structure of polysaccharides in the cell wall in the individual types of algal cells. FTIR (Fourier-Transform Infrared Spectroscopy) analyses showed the presence of polysaccharides not only in the algal cells but also in the fixative solution. The presence of polysaccharides in the extracellular algal fraction was confirmed by X-ray dispersion spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy imaging (SEM). The differences observed in the structure of the cell wall of the different forms of red snow algae prompt further analysis of this structure.
Collapse
|
18
|
Candida albicans cell wall as a target of action for the protein-carbohydrate fraction from coelomic fluid of Dendrobaena veneta. Sci Rep 2020; 10:16352. [PMID: 33004852 PMCID: PMC7529762 DOI: 10.1038/s41598-020-73044-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/08/2020] [Indexed: 01/28/2023] Open
Abstract
The protein-polysaccharide fraction (AAF) isolated from the coelomic fluid of the earthworm Dendrobaena veneta destroys C. albicans cells by changing their morphology, disrupting cell division, and leading to cell death. Morphological changes in C. albicans cells induced by treatment with AAF were documented using DIC, SEM, and AFM. Congo Red staining showed that the fungal wall structure was changed after incubation with AAF. The effect on C. albicans cell walls was shown by AFM analysis of the surface roughness of fungal cell walls and changes in the wall thickness were visualized using Cryo-SEM. The FTIR analysis of C. albicans cells incubated with AAF indicated attachment of protein or peptide compounds to the fungal walls. The intact LC-ESI-MS analysis allowed accurate determination of the masses of molecules present in AAF. As shown by the chromatographic study, the fraction does not cross biological membranes. The Cryo-TEM analysis of AAF demonstrated the ability of smaller subunits to combine into larger agglomerates. AAF is thermally stable, which was confirmed by Raman spectroscopy. AAF can be considered as a potential antifungal antibiotic with activity against clinical C. albicans strains.
Collapse
|
19
|
Long Y, Huang W, Wang Q, Yang G. Green synthesis of garlic oil nanoemulsion using ultrasonication technique and its mechanism of antifungal action against Penicillium italicum. ULTRASONICS SONOCHEMISTRY 2020; 64:104970. [PMID: 32014757 DOI: 10.1016/j.ultsonch.2020.104970] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 05/11/2023]
Abstract
Penicillium italicum (P. italicum) can cause significant economic loss of fruits and vegetables. Although garlic oil (GO) is an effective antimicrobial agent, the unstability and hydrophobicity limit its use as an environmentally friendly alternative to the conventional antibiotics against P. italicum. In this study, we focused on the fabrication and characterization of a functional GO nanoemulsion (NE) using ultrasonic technique and revealed the antifungal mechanism of the GO NE on P. italicum based on morphological, structural and molecular analyses. The optimal hydrophilic lipophilic balance (HLB) value determined for GO was 14 through the combination of Tween 80 and Span 80. Then the Box-Benhnken Design (BBD) was applied to produce the GO NE and the effects of different fabrication parameters on the particle size were evaluated. The optimal GO NE was selected with the GO concentration of 5.5%, the Smix concentration of 10%, the ultrasonic time of 5 min and the power of 50%. This GO NE had the smallest particle size of 52.27 nm, the best antifungal effect and the most stability. Furthermore, the antifungal mechanism of the GO NE on P. italicum was evaluated by extracellular conductivity, micro-Raman spectra, fluorescence imaging and scanning electron microscopy (SEM) imaging. The results presented that the GO NE retained the antifungal active ingredients. The fungal cell structure and morphology were malformed after treated with the GO NE and the lipids, nucleic acids and protein of P. italicum were destructed. Finally, the optimal GO NE was applied in vivo and P. italicum in citrus was successfully inhibited. It indicated that the optimal GO NE had the better antifungal activity against P. italicum than the pure GO. Besides, the minimum inhibitory concentration (MIC) of GO after preparing into the NE was changed from 3.7% to 0.01265% with about 300 times improvement of bioavailability. Therefore, the synthetic GO NE which promoted the bioavailability of GO was recommended as a promising alternative to inhibit P. italicum in vegetables and fruits.
Collapse
Affiliation(s)
- Yuan Long
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China; Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Intelligent Equipment Technology for Agriculture, Beijing 100097, China
| | - Wenqian Huang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China; Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Intelligent Equipment Technology for Agriculture, Beijing 100097, China.
| | - Qingyan Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China; Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Intelligent Equipment Technology for Agriculture, Beijing 100097, China
| | - Guiyan Yang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China; Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Intelligent Equipment Technology for Agriculture, Beijing 100097, China
| |
Collapse
|
20
|
Czerwonka A, Fiołka MJ, Jędrzejewska K, Jankowska E, Zając A, Rzeski W. Pro-apoptotic action of protein-carbohydrate fraction isolated from coelomic fluid of the earthworm Dendrobaena veneta against human colon adenocarcinoma cells. Biomed Pharmacother 2020; 126:110035. [PMID: 32113054 DOI: 10.1016/j.biopha.2020.110035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Earthworm coelomic fluid (CF) is known as a rich source of various bioactive compounds with promising anticancer features. However, it has been demonstrated that CF affects functionality of both, cancer and normal cells. This non-selective activity causes a major problem for medical application of CF. In this study, we present the anticancer activity of the active protein-carbohydrate fraction (AF) isolated from thermally treated CF of earthworm Dendrobaena veneta. The in vitro effect of the AF was examined in human colon model including normal human colon epithelium (CCD 841 CoTr) and human colon adenocarcinoma (HT-29 and LS180) cell lines. We investigated the impact of AF on cell viability neutral red and lactate dehydrogenase assays, morphology May-Grünwald-Giemsa staining assay proliferation MTT tetrazolium salt and BrdU incorporation assays as well as cell cycle progression propidium iodide/RNase staining and the activity of human 20S proteasome the hydrolysis of AMC from a Suc-LLVY-AMC peptide substrate. Additionally, the influence of AF on apoptosis was examined in HT-29 cells by Annexin V/PI, Hoechst 33342 staining and active caspase-3 assays. Our investigation demonstrated that AF at the tested concentration range does not affect the viability and morphology of CCD 841 CoTr cells. Simultaneously, AF inhibits human 20S proteasome activity as well as significantly decreases mitochondrial metabolism, disturbs cell cycle and induces apoptosis via activation of procaspase-3 in HT-29 cancer cells. Obtained results demonstrate the antiproliferative and proapoptotic activity of AF that can be useful in developing therapeutic strategies to treat human colon cancer.
Collapse
Affiliation(s)
- Arkadiusz Czerwonka
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Lublin 20-033, Poland.
| | - Marta J Fiołka
- Department of Immunobiology, Maria Curie-Skłodowska University, Lublin 20-033, Poland.
| | - Katarzyna Jędrzejewska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk 80-308, Poland.
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk 80-308, Poland.
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Lublin 20-033, Poland.
| | - Wojciech Rzeski
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Lublin 20-033, Poland; Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Lublin 20-033, Poland; Department of Medical Biology, Institute of Rural Health, Lublin 20-090, Poland.
| |
Collapse
|
21
|
Abstract
The coelomic cavity is part of the main body plan of annelids. This fluid filled space takes up a considerable volume of the body and serves as an important site of exchange of both metabolites and proteins. In addition to low molecular substances such as amino acids and glucose and lactate, the coelomic fluid contains different proteins that can arise through release from adjacent tissues (intestine) or from secretion by coelomic cells. In this chapter, we will review the current knowledge about the proteins in the annelid coelomic fluid. Given the number of more than 20,000 extant annelid species, existing studies are confined to a relatively few species. Most studies on the oligochaetes are confined to the earthworms-clearly because of their important role in soil biology. In the polychaetes (which might represent a paraphyletic group) on the other hand, studies have focused on a few species of the Nereidid family. The proteins present in the coelomic fluid serve different functions and these have been studied in different taxonomic groups. In oligochaetes, proteins involved antibacterial defense such as lysenin and fetidin have received much attention in past and ongoing studies. In polychaetes, in contrast, proteins involved in vitellogenesis and reproduction, and the vitellogenic function of coelomic cells have been investigated in more detail. The metal binding metallothioneins as well as antimicrobial peptides, have been investigated in both oligochaetes and polychaetes. In the light of the literature available, this review will focus on lipoproteins, especially vitellogenin, and proteins involved in defense reactions. Other annelid groups such as the Pogonophora, Echiura, and Sipuncula (now considered polychaetes), have not received much attention and therefore, this overview is far from being complete.
Collapse
|
22
|
Sida hermaphrodita seeds as the source of anti - Candida albicans activity. Sci Rep 2019; 9:12233. [PMID: 31439915 PMCID: PMC6706583 DOI: 10.1038/s41598-019-48712-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/08/2019] [Indexed: 11/15/2022] Open
Abstract
Sida hermaphrodita is a perennial herbaceous plant with potential economic importance; however, there is no information about its antimicrobial properties. The aim of our study was to analyze the morphology and metabolic activity of Candida albicans cells after exposure to the extract from S. hermaphrodita seeds, determine its cytotoxicity against human skin fibroblasts and carry out chemical analysis of the extract. Microscopic analysis showed that the crude seed extract (CSE) caused a significant decrease in the metabolic activity of fungal cells, clear cell deformation, and budding disturbances. The analysis of cytotoxicity showed no influence of the extract on the fibroblasts. The CSE and seed extract after dialysis (DSE) were analyzed using electrophoretic, chromatographic, and spectroscopic methods. SDS-PAGE electrophoresis showed the presence of proteins and carbohydrate compounds in the extract. The Raman spectroscopy analysis of the DSE confirmed the presence of proteins, while FTIR analyses revealed the occurrence of albumin-type proteins. The NMR and GC-MS analyses showed the presence of carbohydrates in the seed extract. The MALDI and ESI LC-MS/MS analysis of the CSE and the DSE fractions revealed the occurrence of vicilin-type and plant lipid transfer proteins. The seed extract is a promising formulation to use in C. albicans infections.
Collapse
|
23
|
Anticancer Activity of Earthworm Powder (Lumbricus terrestris) Against MCF-7 and PC-3 Cancer Cell Lines. J Gastrointest Cancer 2019; 50:919-925. [DOI: 10.1007/s12029-019-00268-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|